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Abstract: Plain or coated pellets of different densities 1.45, 2.53, and 3.61 g/cc in two size ranges, 
small (380–550 μm) and large (700–1200 μm) (stereoscope/image analysis), were prepared according 
to experimental design using extrusion/spheronization. Multiple linear regression (MLR) and 
artificial neural networks (ANNs) were used to predict packing indices and capsule filling 
performance from the “apparent” pellet density (helium pycnometry). The dynamic packing of the 
pellets in tapped volumetric glass cylinders was evaluated using Kawakita’s parameter a and the 
angle of internal flow θ. The capsule filling was evaluated as maximum fill weight (CFW) and fill 
weight variation (FWV) using a semi-automatic machine that simulated filling with vibrating plate 
systems. The pellet density influenced the packing parameters a and θ as the main effect and the 
CFW and FWV as statistical interactions with the coating. The pellet size and coating also displayed 
interacting effects on CFW, FWV, and θ. After coating, both small and large pellets behaved the 
same, demonstrating smooth filling and a low fill weight variation. Furthermore, none of the 
packing indices could predict the fill weight variation for the studied pellets, suggesting that the 
filling and packing of capsules with free-flowing pellets is influenced by details that were not 
accounted for in the tapping experiments. A prediction could be made by the application of MLR 
and ANNs. The former gave good predictions for the bulk/tap densities, θ, CFW, and FWV (R-
squared of experimental vs. theoretical data >0.951). A comparison of the fitting models showed that 
a feed-forward backpropagation ANN model with six hidden units was superior to MLR in 
generalizing ability and prediction accuracy. The simplification of the ANN via magnitude-based 
pruning (MBP) and optimal brain damage (OBD), showed good data fitting, and therefore the 
derived ANN model can be simplified while maintaining predictability. These findings emphasize 
the importance of pellet density in the overall capsule filling process and the necessity to implement 
MLR/ANN into the development of pellet capsule filling operations.  

Keywords: capsule filling; packing indices; pellet density; pellet size; coating; artificial neural 
networks; regression  

 

1. Introduction 

Multiple-unit dosage forms (pellets) offer both technological (spherical shape, narrow particle 
size distribution, easier application of coating) and therapeutic advantages (lower gastric time 
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variation, lower risk of dumping, feasibility of combination therapy with pellets containing different 
drugs, or the same drug but different functional excipients for controlled-release). However, to 
administer the pellets they have to be filled into hard gelatin capsules. The filling methods employed 
are mostly based on gravitational feeding where the capsule shell forms the volumetric measure, and 
hence the success depends on the flow and packing ability of the pellets, which to a large extent is 
controlled by the micromeritic characteristics and surface treatment [1,2]. Although several studies 
have been carried out on the effects of particle size and shape, there is no information in the literature 
on the effect of pellet density on capsule filling.  

One of the earliest attempts to predict packing and capsule filling performance from the 
properties of individual components was made by Newton and Bader (1981) who developed a 
relationship between capsule fill weight and theoretical maximum bulk density [3]. Furthermore, a 
direct relationship between the angle of internal flow [3] and fill weight variation was established by 
Varthalis and Pilpel, and by Podczeck et al. [4,5]. However, modern trends in the pharmaceutical 
industry and the introduction of process analytical technology (PAT) necessitates new methodologies 
that can accurately predict the filling performance directly from the properties of the feed 
particulates. To improve the prediction accuracy [2] applied computer simulation based on a Monte 
Carlo technique and investigated the influence of pellet size, dispersity, shape, and aggregation on 
the filling of hard-shell capsules. The results were in general agreement with the experimental 
observations and also confirmed that above an aspect ratio of 1.2 filling reproducibility is reduced. 
Ali et al. [6] also used computer simulation to investigate the role of pellet size, shape, and filling 
method on the fill weight variability of encapsulated pellets by simulating pellet size and shape 
distributions. The variability was predicted for a variety of pellet sizes and shapes. Other newer 
works under investigation report feasibility of terahertz reflection measurements to predict relative 
densities of packed powders and capsule fill weight [7]. 

Design of experiments (DoE), supplemented with polynomial model fitting via multiple linear 
regression (MLR), is gaining acceptance as a prediction tool in pharmaceutical formulation work due 
to its simplicity, software availability, and the physical interpretation of the effects and interactions 
[8,9]. However, there are cases where high precision levels in conjunction with generalizing ability 
are required and MLR may not adequately satisfy these requirements [10]. In such cases, more 
sophisticated regression techniques, e.g., feed-forward artificial neural networks (ANNs), have been 
suggested [11]. They are biologically inspired, highly efficient machine learning regression 
techniques that act as universal function approximators for modelling high complex non-linear 
relationships [12]. Among the several advantages of ANN regression, the development of a single 
universal fitting model which is able to generalize several stages of solids formulation development 
is very desirable (i.e., to predict intermediate particulate behavior in early stages and product 
characteristics in late stages).  

In this work, MLR was compared with ANNs for predicting the packing characteristics and 
capsule filling performance of plain or coated pellets, with small or large sizes. Since pellets may 
contain ingredients of low density, e.g., organic drugs, or high density, e.g., inorganic excipients, 
density is an important factor (besides pellet size) to consider due to its influence on the packing and 
capsule fill weight [3]. Pellet shape is also important, but as long as the aspect ratio is kept below 1.2 
its effect is controllable [1,2]. Pellets of different density were obtained using paracetamol (density 
1.343 g/cc) as a low density modifying ingredient, calcium phosphate dehydrate (density 2.893 g/cc) 
as intermediate, and barium sulfate (density 4.675 g/cc) as a high density ingredient. These modifiers 
cover cases from low density pellets containing high drug content to high density pellets containing 
inorganic excipients such as diluents (e.g., calcium phosphate hydrate) or disintegrants of release 
modifiers (e.g., barium sulfate). To our knowledge, this is the first time that the effect of density on 
capsule filling has been examined and included in MLR and ANN predictive models of capsule filling 
performance. 
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2. Materials and Methods 

2.1. Materials 

The density modifiers were: paracetamol (PCT, Eu.Ph., ρs = 1.343 g/cc) gifted from Boehringer 
Ingelheim, Germany (via Boehringer Ingelheim Hellas, Greece); calcium hydrogen phosphate (CPH, 
Emcompress, ρs = 2.893 g/cc) from Edward Mendell New York, USA; barium sulfate (BSF, ρs = 4.675 
g/cc) from VWR Cemicals, Monroeville, PA, USA. Microcrystalline cellulose (MCC, Avicel PH-101, 
lot 6950C) was obtained from FMC (Cork, Ireland) and was added in different proportions with the 
density modifiers. Polyvinylpyrrolidone (PVP K25, 21,000 g/mol) was obtained from BASF 
(Ludwigshafen, Germany) and was used as binder as 3% w/v solution in deionized water.  

2.2. Preparation of Pellets  

Pellets were prepared using extrusion/spheronization. About 20-gram MCC/modifier powder 
mixtures were placed in jars which were mounted on a Turbula mixer (Type T2C, Willy Bachofen 
AG, Basel Switzerland) and tumbled for 15 min at 45 rpm. They were then transferred into a 500 mL 
capacity bowl fitted with a 3-blade paddle for wet mixing using PVP (3% w/w in deionized water) as 
a binder. The produced wet mass was extruded in a radial extruder (Model 20, Caleva, Dorset, UK), 
operated at 25 rpm. It was fitted with replaceable 0.5 mm or 1 mm aperture extrusion screens for the 
production of small or large pellets, respectively. The consumed quantities of binder/gram solids for 
the MCC/PCT mixtures were between 4.8 and 17.6 mL, for the MCC/CPH between 7.2 and 18.4 mL, 
and for the MCC/BSF between 5.4 and 18.5 mL. The wet mass was immediately transferred into a 
spheronizer (Model 120, Caleva) fitted with a cross-hatch plate and rotated for 10 min, with the small 
pellets at 940 rpm corresponding to a linear velocity of 5.92 m/s and the large pellets at 1440 rpm 
corresponding to a linear velocity of 9.07 m/s [9]. MCC/modifier pellets with different proportions, 
10% to 80%, were prepared and different density ranges were obtained. Compositions were selected 
from each one that gave densities 1.45 g/cc, 2.53 g/cc, and 3.61 g/cc, respectively, according to the 
experimental design. 

Coating Process 

Some 10-gram batches of dry pellets were suspended in a mini coater/drier (Caleva, Sturminster 
Newton, UK) and polymeric coating was applied by spraying with Opadry® 200 (6% w/v) polyvinyl 
alcohol based aqueous film coating polymeric dispersion in water for 5 min at a rate of 2.1 mL/min. 
Talc was added in the dispersion as an anti-adherent at 0.5% w/w concentration after dispersing for 
20 min at 10,000 rpm (Ultra-Turrax, IKA-Werke, Staufen, Germany). The inlet air temperature was 
40 °C and after the application of the coating the pellets were kept under fluidization for 5 min to 
dry. The weight increase due to the coating was 2–2.5%. 

2.3. Characterization of the Pellets 

2.3.1. Size, Shape, Moisture Content, and Density  

Pellet size and shape was determined using an image processing and analysis system comprised 
of a stereomicroscope, top cold light source (Olympus SZX9, Tokyo, Japan and Highlight 3100, 
Olympus Optical), video camera (VC-2512, Sanyo Electric, Osaka, Japan), and software (Quantimet 
500, Cambridge, UK). About 100 pellets were examined at a total magnification of ×32.5. Mean pellet 
diameter was expressed as equivalent circle diameter (diameter of a circle with the same area as the 
projected pellet) and particle shape as aspect ratio (quotient of longest and shortest orthogonal 
dimension). Moisture content (% weight change on dry basis) of the pellets was determined using a 
moisture analyzer (Unibloc MOC63u; Shimadzu Corporation, Kyoto, Japan) (accuracy ±0.001 g) by 
exposing approximately 5 g samples at 105 °C for 30 min. 

For the determination of pellet density, helium pycnometry was applied (Ultrapycnometer 1000, 
Quantachrome Instruments, Boynton Beach, Florida, FL, USA). The instrument was calibrated using 
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a standard 7.0699 cm3 steel ball. Samples were accurately weighed (3 decimals) and purged for 10 
min before measurement. Sample volume (average of 10 runs) was measured from the displaced gas. 
Measurements were made in triplicate and mean values and standard deviations were calculated. 
According to the USP 31, Chapter <699>, pycnometric density is a convenient measurement of the 
density of pharmaceutical powders. This differs from the granular density, where impenetrable voids 
or inaccessible pores may alter the measurement. In the case of pellets made by 
extrusion/spheronization, closed pores may form during hot air drying due to the operation of 
capillary forces, resulting in larger measured volume or lower density [13]. For this reason, the term 
“apparent” pellet density is adopted in this work.  

2.3.2. SEM Microphotographs 

Photomicrographs were taken with a scanning electron microscope (SEM) (JEOL JSM-6390LV, 
Tokyo, Japan) and the morphology of plain and coated pellets was examined. Photomicrographs of 
the cross sections of the pellets were also taken in backscattered electron mode in order to 
demonstrate the coating surface layer. Unfortunately, since the emission of backscattered electrons 
and/or brightness depends on the atomic number of the chemical elements in the pellet, the 
identification of the coating layer was only possible for pellets containing barium sulfate with a high 
atomic number. 

2.4. Evaluation of the Packing Ability of Pellets 

The packing state of particulates in columnar arrangements is expressed as bulk density (pb), 
defined by the quotient of the pellet mass and confining volume. It includes the contribution of inter-
pellet voids but also depends on the pellet density. Its value increases after mechanical stressing such 
as tapping or vibration. It was determined after pouring a known weight of pellets into a 100 mL 
glass graduated cylinder and application of 300 taps (14 mm vertical drop, USP1, Erweka SVM 101, 
Heusenstamm, Germany). From the bulk (pb) and tap (pt) densities, the compressibility index (CC%) 
[14] equal to the density change relative to tap density was calculated. Since CC% only depends on 
two states of packing, its discriminative ability for the free-flowing pellets used in this study is low 
[15]. For this reason, the dynamic packing behavior of the pellets was evaluated from volumetric 
changes during tapping, using the Kawakita and Lude (1971) and Varthalis–Pilpel (1976) models 
[4,16]. The former of the two is expressed by Equation (1) where N is the number of taps, and a are 
constants related to maximum volume reduction and cohesiveness, respectively. C is the degree of 
volume reduction (Equation (2)).  

N/C = N/a + 1/ab (1) 

C = [(Vo − Vf)/Vo] (2) 

The Varthalis–Pilpel (V–P) model is expressed by Equation (3) where ε is the porosity of the 
powder given by Equation (4).    

ε2/(1 − ε) = ΚO/N (3) 

ε = 1 – (bulk density/“apparent” pellet density) (4) 

Ko in Equation (3) is the intercept of the ordinate found by plotting K = [ε2/(1−ε)] against N. The angle 
of internal flow (θ) is estimated from the slope of the straight-line plot of (K−Ko) vs. N.  

2.5. Capsule Filling 

Hard gelatin capsules were filled using a benchtop semi-automatic capsule-filling machine 
(ZUMA Milano, Italy). Filling was conducted by pouring the pellets into the capsule bodies resting 
in the holes of the vibrated plate. Capsule fill-weight (CFW) was determined from the weight of filled 
capsules after subtracting the mean weight of empty capsule shells. Twenty capsules were weighed 
(±0.1 mg) on an analytical balance (ADA 180, ADAM Equipment, Milton Keynes, UK), which was 
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linked to a computer for transfer and data analysis (mean, SD). Fill weight variation (%FWV) was 
computed from the equation: 

%FWV = [(Σ(xi − x2)/(n−1)]0.5 × 100/x (5) 

where x is the net pellet weight of a capsule and x the mean weight of n = 20 capsules. 

2.6. Design of Experiments (DoE) 

Response surface methodology, following L-optimal design, and the quadratic mathematical 
model were employed. The factors were: “apparent” pellet density (X1, numeric) at three levels: 1.45, 
2.53, and 3.61 g/c selected from preliminary trials on binary MCC/density modifier mixtures; mean 
pellet diameter (X2 categoric) at two levels, the low obtained using the small orifice (0.5 mm) screen 
extruder and the high using the large orifice (1 mm) screen; pellet coating (X3, categoric) at two levels, 
the low for plain (non-coated) and the high for coated. It consisted of 11 design points with 7 
repetitions, making 18 runs in total. The response variables were: bulk density (Y1), tap density (Y2), 
Carr’s index (Y3), Kawakita parameter a (Y4), angle of internal flow (Y5), capsule fill weight (Y6), and 
fill weight variation (Y7). Experiments followed an L-optimal design and were conducted in a 
randomized order and in triplicate. The DoE are shown in Table 1. 

Significant models and model terms were estimated by multiple linear regression (MLR) using 
p-value 0.05 as a criterion and backward elimination. Polynomial (6) and quadratic (7) equations were 
derived based on the results of statistical analysis ANOVA. 

Yi = b0 + Σ(biXi) + Σ(bijXiXj) (6) 

Yi = b0 + Σ(biXi) + Σ(bijXiXj) + Σ(biiXi2) (7) 

Yi is the measured response; b0 is an intercept term; bi, bij, bii are regression coefficients for the main 
effects, two-way interactions, and quadratic terms, respectively. Xi are coded levels of the 
experimental factors. Models with p-values <0.05 and with lowest predicted residual sum of squares 
(PRESS) were selected as best fitting for comparisons with ANNs. For the construction and analysis 
of the models, the Design-Expert software 12 (Stat-Ease Inc., MN, USA) was used. 

2.7. Artificial Neural Networks (ANNs)  

Feed-forward back-propagation ANNs were constructed. The DoE data were split into training 
(70%) and validation (30%) subsets based on the Kennard–Stone design, or “uniform mapping 
algorithm” [17]. The number of training cycles was selected on the basis of the mean squared error 
of prediction (MSEp) for the validation subset, according to the “early stopping” method that 
prevents network overtraining, i.e., memorizing noise [11]. To identify the optimum architecture of 
ANNs, preliminary trial-and-error tests were employed in networks containing 2 to 12 hidden units, 
using the “vanilla” or standard back-propagation (StBack) training algorithm. The learning rate was 
set at 0.2 and the maximum tolerated difference between target and output values was set to 0. The 
logistic sigmoid activation function (Equation (8)) was selected for all units. All input and output data 
(i.e., factors and response variables) were scaled from 0 to 1. 𝑓 𝑥 = [1 + exp −𝑥 ]  (8) 

After determining the optimum ANN structure, the network was trained with other two 
algorithms, the resilient back-propagation (Rprop) [18], and the backpropagation momentum 
(BackMom) [19], for comparison. In Rprop, the maximum update value and weight decay exponent 
were set at 30 and 5, respectively, and the momentum term in BackMom was set at 0.5. The network’s 
sensitivity (i.e., change in the output for a given change in the input variable) and saliency (i.e., 
increase in the error function when an input is omitted from the network), also known as causal and 
predictive importance, were estimated in order to evaluate the input factor’s significance [20]. 
Additionally, two pruning algorithms, namely magnitude-based pruning (MBP) and optimal brain 
damage (OBD), were utilized to simplify the optimum-trained network. In MBP, after each training 
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the link with the smallest weight was removed, while in OBD the changes of the error function after 
pruning a certain weight was approximated using Taylor series (Stuttgart Neural Network Simulator, 
SNNS, User Manual, Version 4.2). The Java Neural Network Simulator (JavaNNS version 1.1 for 
WIN32) software package (new version of Stuttgart Neural Network Simulator (SNNS) 4.2 kernel) 
was employed for the development, training, validation, and pruning of ANNs 
(http://www.ra.cs.uni-tuebingen.de/ downloads/SNNS/). 

Table 1. Pellet code, composition, consumption per 20 g solids, orifice of extruder screen, coating 
application, and particulate properties of the experimental pellets. Presentation follows L-optimal 
experimental design. 

Pelletcode Composition 
/ratio 

Liquid 
Binder 
(mL) 

Extruder 
Screen 
(mm) 

Coating 
Moisture 
Content  

(% ) 

Apparent 
Pellet 

Density (g/cc) 

Pellet Size Distribution 
D10 
(μm) 

D50 
(μm) 

D90 
(μm) 

Span 

F1 MCC/PRC/35:65 8.3 0.5 Yes 1.59 1.45 356 485 606 0.52 
F2 MCC/PRC/35:65 8.3 1.0 Yes 1.60 1.45 715 842 986 0.32 

F3 * MCC/PRC/35:65 8.3 0.5 No 1.69 1.45 358 471 560 0.43 
F4 * MCC/PRC/35:65 8.3 0.5 No 1.70 1.45 357 470 559 0.43 
F5 MCC/PRC/35:65 8.3 1.0 No 1.73 1.45 690 713 867 0.25 
F6+ MCC/CaP/20:80 7.2 0.5 Yes 1.39 2.53 460 503 625 0.33 
F7 + MCC/CaP/20:80 7.2 0.5 Yes 1.40 2.53 458 501 623 0.33 
F8 # MCC/CaP/20:80 7.2 1.0 Yes 1.37 2.53 850 955 988 0.14 
F9 # MCC/CaP/20:80 7.2 1.0 Yes 1.36 2.53 847 952 985 0.14 

F10 ** MCC/CaP/20:80 7.2 0.5 No 1.35 2.53 455 518 613 0.31 
F11 ** MCC/CaP/20:80 7.2 0.5 No 1.35 2.53 457 520 616 0.30 
F12 ++ MCC/CaP/20:80 7.2 1.0 No 1.37 2.53 854 901 948 0.10 
F13 ++ MCC/CaP/20:80 7.2 1.0 No 1.36 2.53 860 907 954 0.10 
F14 ++ MCC/CaP/20:80 7.2 1.0 No 1.37 2.53 856 903 949 0.10 
F15 MCC/BaS/30:70 7.5 0.5 Yes 1.61 3.61 343 469 524 0.39 

F16 ## MCC/BaS/30:70 7.5 1.0 Yes 1.64 3.61 771 895 1010 0.27 
F17 ## MCC/BaS/30:70 7.5 1.0 Yes 1.62 3.61 763 887 1002 0.27 
F18 MCC/BaS/30:70 7.5 0.5 No 1.91 3.61 285 402 515 0.57 
F19 MCC/BaS/30:70 7.5 1.0 No 1.87 3.61 740 885 986 0.28 

Pellets having the same ‘*’ or ‘+’ or ‘#’ or ‘**’ or ‘++’ or ‘##’   superscript symbol are repetitions. D10, D50, D90 represent 
diameters corresponding to 10%, 50% and 90% of the pellet size distribution. 

External Validation of MLR and ANN Models 

The generalizing ability (predictive performance) of the selected MLR models and the original 
or pruned ANNs was tested on a randomly selected external validation set shown in Table 2. Pellets 
were prepared on the basis of the selected test runs, and the packing and capsule filling parameters 
(responses Y1, Y2, … Y7) were determined. The coefficient of determination (R2) of the observed vs. 
the predicted response values was used to compare the performance of the used fitting models. 
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Table 2. External validation set used for the comparison of multiple linear regression (MLR) and 
artificial neural networks (ANN) models prediction ability. 

Factors 
Formulation Code  

T1 T2 T3 T4 T5 
X1: apparent pellet density (g/cc) 2.0715 2.0715 2.376 1.500 3.619 
X2: pellet size (mm) 0.865 0.475 0.475 0.865 0.865 
X3: pellet coating No No No Yes No 

Responses Formulation Code 
T1 T2 T3 T4 T5 

Y1: pellet’s bulk density (g/cc) a 0.81 0.81 0.95 0.57 1.06 
Y2: pellet’s tap density (g/cc) b 0.92 0.95 1.09 0.63 1.18 
Y3: Carr’s index (%) c 11.94 14.16 12.09 9.52 10.26 
Y4: Kawakita’s parameter a d 0.13 0.15 0.13 0.10 0.11 
Y5: angle of internal friction (deg) e 34.13 32.43 32.58 36.49 54.01 
Y6: capsule fill weight (mg) f 649.15 632.90 748.93 415.28 839.45 
Y7: capsule weight variation (%) g 1.81 1.88 1.51 1.19 1.69 
SD: a < 0.001; b < 0.001; c = 0.35–1.27; d < 0.005; e = 0.12–0.61; f = 9.85–13.75; g = 0.03–0.26 

3. Results and Discussion 

3.1. Preparation and Characteristics of the Pellets 

In Table 1, the pellet codes, the composition of solids in the pellets, and the volume of liquid 
binder required per 20 g solids to form spherical pellets with the narrowest size distribution are 
shown together with the corresponding “apparent” densities and the characteristics of pellet size 
distributions. The presentation of the data follows the arrangement of the experimental design. Data 
for high density/large size/plain pellets (F19) are included to enable direct comparisons, although this 
point is not part of the design. The average diameter of the pellets prepared with the 0.5 mm orifice 
extruder screen was 0.475 mm, and the average mean diameter of those prepared with the 1.0 mm 
screen was 0.865 mm. These are less than the respective orifice diameters due to water loss or mass 
reduction during drying of the wet pellets. Besides MCC and density modifier, the final dry pellets 
contain a small amount of PVP binder which was added to improve pellet quality due to the high 
modifier content needed to achieve the desired density levels. Since the volume of the 3% w/v binder 
solution required for pelletization was between 7.2 and 8.3 mL, an average volume of 7.75 mL was 
used and the PVP in the final pellets was 0.232 g (= 0.03 × 7.75) or 1.15%. The moisture contents were 
low between 1.35% and 1.91% (Table 1). Therefore, the introduction of noise into the pycnometry 
data due to MC% differences is not expected to be significant. 

In Figure 1, representative images of plain pellets of the three densifiers: paracetamol 
(MCC/PCT), calcium phosphate hydrate (MCC/CPH), and barium sulphate (MCC/BSF) are 
presented. They appear spherical with low aspect ratios (<1.2), and hence, the shape effect was 
controlled. Furthermore, in Figure 1, a cross section of a coated MCC/BSF pellet is presented, 
demonstrating a dark surface layer against a bright pellet interior. The brightness was due to the 
emission of backscattered electrons by the barium, which has a high atomic number, whereas the 
dark layer represents polymeric coating. Unfortunately, such a presentation was not possible for the 
pellets of the other two densifiers because they did not contain chemicals with high atomic numbers. 
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Figure 1. Images of plain pellets of the three densifiers: paracetamol (MCC/PCR), calcium phosphate 
hydrate (MCC/CPH), and barium sulphate (MCC/BSF) and a cross section of a coated MCC/BSF pellet 
where polymeric coating appears as a dark surface layer against a barium-sulfate-rich interior. 

3.2. Selection of “Apparent” Density Levels 

Pellets with different density modifiers in proportions from 10% to 80% with MCC were 
prepared. Changes of the “apparent” pellet density (papp) due to the addition of a modifier are shown 
in Figure 2a–c. The addition of the low density (PCT) modifier with a density lower than MCC 
decreased papp, whereas the addition of the medium (CPH) and high density (BSF) modifiers with 
greater density increased papp. The obtained papp ranges were: 1.34–1.68 g/cc for MCC/PCT, 1.68–2.89 
g/cc for MCC/CPH, and 1.68–4.68 g/cc for MCC/BSF. The two lines in each subfigure correspond to 
the experimental or “apparent” (solid symbols) and to the theoretical pellet densities, calculated from 
those of the primary components (for MCC 1.682 g/cc, for PCT 1.343, for CPH 2.893, and for BSF 4.675 
g/cc) using Equation (9).  

ptheoretical = (pmodified × %modifier) + (pMCC × %MCC) + (pPVP × %PVP) (9) 

The %PVP was found from the mL of the 3% w/w solution required for pelletization (Table 1). 
From the experimental density curves of each MCC/modifier combination, compositions were 
selected that gave papp 1.45 g/cc, 2.53 g/cc, and 3.61 g/cc, respectively, according to the experimental 
design. 

From Figure 2, it can be seen that the experimental curves always lie below the theoretical. The 
deviations were greater when larger proportions of MCC were added, which was ascribed to the 
closed pores (inaccessible to Helium) that are formed during the drying of the wet pellets, resulting 
in a larger measured volume or lower density [13]. In the case of coated pellets (coating contained 
about 2% hydroxyl propyl methyl cellulose of density 1.33 g/cc), a small density decrease was 
expected: from 2.53 to 2.51 for the MCC/CPH, and from 3.61 to 3.57 for the MCC/BSF pellets (there 
was no significant change for MCC/PCT pellets). For this reason, in the implementation of the 
predictive models, average values of 2.52 and 3.59 g/cc were used in the last two cases.  
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Figure 2. Change of the “apparent” pellet density by the addition of density modifiers to 
microcrystalline cellulose (standard deviation of experimental pellet density measurements was ≤ 
0.001). (a) Paracetamol; (b) calcium hydrogen phosphate; (c) barium sulfate. 

3.3. Dynamic Packing 

In Figures 3 and 4, Kawakita and V–P plots, respective of densification vs. tapping number, are 
presented for small/plain (a), large/plain (b), small/coated (c), and large/coated pellets (d), and in 
Table 3, the values of packing parameters are shown together with results of capsule filling. The lines 
in each subfigure of Figures 3 and 4 represent the pellets of the same size and treatment but different 
density (papp) and were constructed according to Equations (1) and (3). It is evident that straight lines 
were obtained confirming linearity of the Kawakita and V–P models. The lines in the former plots 
are close to each other, making differentiation difficult. Conversely, in the V–P plots, their position is 
clearly different, indicating that this model differentiates better pellet packing in terms of papp. In all 
cases, the V–P plots followed the same trend, i.e., the slope or angle of internal flow (θ), increased, 
i.e., the packing ability decreased as papp increased (black symbols lowest, blue highest papp). The 
decreased packing ability of the high papp pellets was ascribed to their inability to efficiently absorb 
and transform the supplied mechanical energy from tapping into mobility and rearrangement within 
the pellet bed.  
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Figure 3. Kawakita plots for: (a) small/plain, (b) large/plain, (c) small/coated, and (d) large/coated 
pellets. 

 

Figure 4. Varthalis–Pilpel plots for: (a) small/plain, (b) large/plain, (c) small/coated, and (d) 
large/coated pellets. 
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Table 3. Results of the tapping experiments and capsule filling of pellets according to the 
experimental design. 

Code  
Factors Responses 

X1 
(g/cc) 

X2 
(mm) 

X3 pb 
(g/cc) 

pt 
(g/cc) 

CC% 
(%) 

a θ 
(deg) 

CFW 
(mg) 

FWV 
(%) 

F1 1.457 0.475 Yes 0.57 0.63 10.30 0.11 36.21 407.8 1.13 
F2 1.457 0.865 Yes 0.57 0.62 9.89 0.10 37.71 417.4 0.91 

F3 * 1.457 0.475 No 0.59 0.65 9.78 0.11 33.88 450.7 2.98 
F4 * 1.457 0.475 No 0.60 0.66 11.04 0.13 34.20 464.1 3.61 
F5 1.457 0.865 No 0.60 0.67 10.34 0.11 31.97 490.4 1.91 

F6 + 2.512 0.475 Yes 0.85 0.93 12.47 0.14 46.74 627.2 1.25 
F7 + 2.512 0.475 Yes 0.83 0.95 12.24 0.13 45.92 621.4 0.92 
F8 # 2.512 0.865 Yes  0.80 0.90 11.8 0.12 48.86 596.9 1.24 
F9 # 2.512 0.865 Yes 0.83 0.93 11.0 0.13 46.67 604.3 1.28 

F10 ** 2.512 0.475 No 0.76 0.90 14.90 0.16 48.66 636.8 3.44 
F11 ** 2.512 0.475 No 0.78 0.91 16.05 0.16 49.38 658.7 3.49 
F12 ++ 2.512 0.865 No 0.83 0.94 11.28 0.12 45.99 673.1 1.88 
F13 ++ 2.512 0.865 No 0.82 0.93 10.83 0.11 45.42 660.5 1.73 
F14 ++ 2.512 0.865 No 0.84 0.95 11.73 0.13 46.56 685.8 2.03 
F15 3.619 0.475 Yes 0.99 1.13 12.96 0.14 56.08 797.5 1.01 

F16 ## 3.619 0.865 Yes  1.07 1.16 11.68 0.12 55.70 806.3 1.07 
F17 ## 3.619 0.865 Yes 1.04 1.15 9.96 0.11 55.20 799.1 0.90 
F18 3.619 0.475 No 1.00 1.16 13.55 0.14 55.05 770.6 2.29 
F19 3.619 0.865 No 1.06 1.18 10.26 0.11 54.01 829.4 1.69 

X1: pellet density; X2: pellet mean diameter; X3: pellet coating; CFW: capsule fill weight; FWV: fill 
weight variation. Pellets with the same superscript are repetitions. Experimental pellet F19 was not 
included in the design of experiments (DoE), it was added to include data for high density/large 
size/plain pellets for direct comparison. 

Regarding the effects of pellet size and coating on the packing parameters, effects were found 
only for the intermediate density (MCC/PCT) pellets, but not for the low (MCC/PCT) or the high 
(MCC/BSF) density pellets. Comparing small with large pellets of intermediate papp (red) in plain form 
(Figure 4a with 4b) it appears that the slope of the lines for the large pellets were smaller than for the 
small pellets, indicating a lower θ, or better packing ability. This was also deduced from the values 
of the packing indices for the intermediate papp pellets in Table 3. Comparing small/plain (F10–F11) 
with large/plain (F12–F14) pellets, it was observed that both bulk (pb) and tap density (pt) increased 
from 0.76֪–0.78 to 0.82–0.84 and from 0.90–0.91 to 0.93–0.95, respectively, whereas the packing indices 
(CC%, a, θ) decreased (from 14.90–16.05 to 10.83–11.73, from 0.16 to 0.11–0.13, and from 48.66–49.38 
to 45.42–46.56. Conversely, the comparison between small/coated and large/coated pellets (F6–F7 vs. 
F8–F9) did not show significant changes of packing parameters (for pb from 0.83–0.85 to 0.80–0.83 for 
pt from 0.93–0.95 to 0.90–0.93, for CC% from 12.24–12.47 to 11.0–11.8, for a from 0.13–0.14 to 0.12–0.13, 
and for θ from 45.92–46.74 to 46.67–48.86). Therefore, the coating eliminated differences due to pellet 
size.  

Next, we compared the effect of the coating again for the intermediate density pellets. From 
Figure 4a,d (the cascade position) it appears that the slope of the line corresponding to small/coated 
pellets (Figure 4d) is smaller than that of the small/plain pellets (Figure 4a), indicating better packing. 
This can also be observed from the results in Table 4 by comparing small/plain (F10–F11) with 
small/coated pellets (F6–F7). The values of both pb and pt increased (from 0.76–0.78 to 0.83–0.85 and 
from 0.90–0.91 to 0.93–0.95, respectively) whereas the packing indices CC%, a, and θ decreased (from 
14.90–16.05 to 12.24–12.47, from 0.16 to 0.13–0.14, and from 48.66–49.38 to 45.92–46.74, respectively). 
Conversely, when large/plain (F13–F14) with large/coated pellets (F8–F9) were compared, the 
differences were seen to be small or negligible (for pb from 0.82–0.84 to 0.80–0.83, for pt from 0.93–0.95 
to 0.90–0.93, for CC% from 10.83–11.73 to 11.0–11.8, for a from 0.11–0.13 to 0.12–0.13, and for θ from 
45.42–46.56 to 46.67–48.86). There was no significant change in the packing parameters due to pellet 
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size or coating for pellets of low or high density (F1–F5 and F15–F18). The above results show that 
the coating affected the packing of small pellets, but not large pellets.  

Turning to the effects of the studied factors on capsule fill weight (CFW) and fill weight variation 
(FWV), it can be observed from Table 3 that, as expected, density has a major influence on CFW. For 
the low papp pellets the CFW range was 407.9–490.4 mg, for the intermediate pellets 596.9–685.8 mg, 
and for the high pellets 770.6–829.4 mg. The pellet size did not affect fill weight, whereas the influence 
of coating varied. For the low papp pellets, it caused a decrease from 450.7–464.1 to 407.8 mg (F1) for 
the small pellets, and from 490.4 (F5) to 417.4 mg (F2) for the large. For the intermediate papp pellets, 
it caused a small increase from 621.4–627 (F6–F7) to 636.8–658.7 mg (F10–F11) for the small pellets, 
but a decrease from 596.9–604.3 (F8–F9) to 660.5–685.8 mg (F12–F14) for the large. For the high papp, it 
caused an increase from 770.6 (F18) to 797.5 mg (F15) for the small pellets, but a decrease from 829.4 
(F19) to 806.3 mg (F16) for the large. The influence of the studied factors on FWV was not immediately 
obvious, but it appeared that high density pellets (F15–F19) showed less variation than those of low 
(F1–F5) and intermediate papp (F6–F14) (0.90–2.29% compared to 0.91–3.61% and 0.92–3.49%, 
respectively). Overall, the application of the coating decreased FWV. This can be observed by 
comparing the FWV range 0.90–2.1% of coated (F3–F5, F10–F14, F18, F19) with 1.73–3.61% of plain 
pellets.  

 

Figure 5. Capsule fill weight vs. bulk or tap density (a), fill weight variation vs. Kawakita’s a (b), and 
Carr’s compressibility index (c). 

3.4. Correlations between Packing and Capsule Filling Parameters 

In Figure 5a–c plots of CFW vs. bulk (pb) or tap (pt) density and FWV vs. Kawakita’s a and CC% 
are presented. A linear increase in CFW with pb (circles) or pt (squares) is notable in Figure 5a, which 
was expected from the results of earlier works [3,7]. Although the correlation coefficients were 
relatively high (R2 0.975 and 0.982, respectively) the scatter of the data restricted an accurate 
prediction. The previous work also demonstrated correlations between packing indices and FWV for 
relatively free-flowing powders in the size range 64–430 μm (Figure 1 in the previous paper). 
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Obviously, from Figures 5b–c it is clear that with the present experimental pellets there is no such 
correlation. A trend of the increase in FWV with the packing index was seen at higher index ranges 
values, for Kawakita’s a 0.13–0.16, and for CC% 12.24–16.05, which represents pellets classified in 
terms of flowability as “good” but not “excellent” [15]. Therefore, unlike powders, predictions of 
capsule fill weight variation from Kawakita’s a and Carr’s CC% indices that are described in the USP 
Chapter < 616 > for powders are not possible for spherical shape pellets with mean diameters greater 
than 0.475 mm. This finding suggests that the filling and packing of capsules with free-flowing pellets 
was influenced by details of the filling methods that were not accounted for in the tapping 
experiments.  

Table 4. MLR—Significant terms (p values) and computed MLR models with index of the goodness 
of fitting (R2). 

 Response 
Intercept 

# 
X1 X2 X3 X1X2 X1X3 X2X3 X12 

Model Equations with Actual 
Values for Small or Large, Plain 

or Coated Pellets 

R2 

A Y1 (pb) <0.010 <0.010       0.296 + 0.204X1 0.971 
B Y2 (pt) <0.010 <0.010      <0.010 0.149 + 0.385X1 -0.029X12 0.991 

C Y3 (CC%) 0.021 0.023 <0.01     0.013 Small: 2.716 + 7.647X1 – 1.328X12 

Large: 0.795 + 7.647X1 -1.328X12 
0.639 

D Y4 (a) <0.010 0.023 <0.01     <0.010 Small: 0.036 + 0.078X1 - 0.014 X12 

Large: 0.014 + 0.078X1 - 0.014 X12 
0.705 

E Y5 (θ) <0.010 <0.010 
0.328 

* 
0.089 

*   0.04 <0.010 

Small/coated: 8.688 + 21.482X1 - 
2.398 X12    

Small/plain: 8.952 + 21.482X1 - 
2.398 X12   

Large/coated: 9.521 + 21.482X1 - 
2.398 X12 

Large/plain: 6.813 + 21.482X1 - 
2.398 X12 

0.979 

F Y6 (CFW) <0.010 <0.010 0.053 
* 

<0.010  <0.010 <0.010 0.010 

Small/coated: 52.711 + 270.793X1 – 
17.662 X12    

Small/plain: 152.052 + 237.960X1 - 
17.662 X12   

Large/coated: 46.443 + 270.794X1 - 
17.662 X12 

Large/plain: 185.482 + 237.960X1 - 
17.662 X12   

0.994 

G Y7 (FWV) <0.010 0.018 <0.01 <0.010  0.020 <0.001 0.012 

Small/coated: -0.680 + 1.522X1 – 
0.299X12    

Small/plain: 2.397 + 1.107X1 – 
0.299X12   

Large/coated: -0.643 + 1.522X1 – 
0.299X12    

Large/plain: 0.974 + 1.107X1 – 
0.299X12   

0.964 

# Intercepts were estimated using SPSS 20.0 software. The results of ANOVA (squares, residuals and 
total sum of squares were the same for both software SPSS and Design Expert analysis). * Non-
significant terms that are included in the models are parental. 

3.5. Multiple Linear Regression Analysis  

To overcome the inability of the packing indices to accurately predict the capsule filling 
performance, statistical multiple linear regression (MLR) combined with polynomial model fitting, 
and artificial neural networks (ANNs) regression were applied for the prediction of: bulk density (pb), 
tap density (pt), Carr’s index (CC%), Kawakita’s parameter (a), angle of internal friction (θ), capsule 
filling weight (CFW), and capsule fill weight variation (FWV) from the “apparent” density (X1) for 
different levels of the categorical factors pellet size (X2) and coating (X3). In Table 4, statistically 
significant polynomial models derived by application of MLR to the data of Table 3 are shown 
together with significant terms and goodness of fitting (R2). For each response variable, model 
equations are shown for the two levels of the categorical factors X2, X3 when their effect is included. 
Models for θ, CFW, and FWV were hierarchically corrected by adding a non-significant “parental” 
factor X2. Before entering the analysis, Y3 and Y7 responses were mathematically transformed (power 
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of 1.98 and natural log transformation, respectively) in order to meet the assumptions of ANOVA for 
normal distribution of residuals with a constant variance. The equations in Table 4 are expressed in 
terms of X1 because this is the only numerical variable in the design. Variables X2, X3 are categorical, 
and where their effect was significant (e.g., for responses Y3–Y7), the values 0 or 1 are substituted into 
the equations for X2 or X3 as follows: for small size pellets X2 = 0, and for large size X2 = 1. For plain 
(non-coated) pellets X3 = 0, and for coated pellets X3 = 1. It was observed in Table 4 that the p-values 
of the intercepts were significant, i.e., for zero density (X1) or the absence of matter, packing indices 
and capsule filling parameters had values, which is nonsensical. This is because X1 = 0 is outside of 
the experimental range 1.457–3.619 g/cc of pellet density and has no meaningful interpretation. 
However, intercepts were included in the regression models to increase their predicting ability, 
which was the purpose of the study.   

From Table 4, it appears that for bulk density (Y1), tap density (Y2), angle of internal flow (Y3), 
capsule fill weight (Y6), and fill weight variation (Y7), the models provide good fitting with R2 > 0.964, 
but for CC% and the Kawakita’s a, the fitting is not as good (R2 0.639 and 0.705, respectively). pb is 
described by a single term (density, X1) linear model and pt by a simple polynomial including density 
as linear (X1) and quadratic (X12) term. θ and FWV are described by a polynomial, having all factors 
as linear (X1, X2, X3), density as quadratic (X12), and an interaction term for the effects of pellet size 
and coating (X1X3). Lastly, FWV is described by a polynomial with all factors expressed by linear 
terms, besides a quadratic term for density, an interaction term for the effects of density and coating 
(X1X3), and another interaction term for the effects of pellet size and coating (X2X3).  

As a further step, the significant quadratic and interaction terms in the above models were 
graphically visualized in Figure 6. The quadratic effects of density on pt, Kawakita’s a and θ are 
evidenced in Figures 6a–c as curvatures of the initially straight lines at higher density values. The 
curves have decreasing slopes which are expressed by negative terms in the respective equations 
(Table 4, rows B, C, D). This signifies that the effect of papp was more important at low to intermediate 
densities which is attributed to the inability of the high papp pellets to absorb the mechanical energy 
from tapping and transform it into mobility for better rearrangement and packing.  

Interaction plots for the effects of pellet diameter and coating on θ, CFW, and FWV are shown in 
Figure 6d–f for the effects of papp and coating, and in Figure 6g for the effects of papp and coating on 
CFW. From Figure 6d–f it appears that after coating (dotted/red lines) there is no change in θ, CFW, 
and FWV regardless of pellet size, whereas for plain (non-coated) pellets (solid/green lines) there is a 
small decrease in θ and a small increase in CFW for the large pellets (Figure 6d,e, respectively) but a 
large decrease in FWV for the large pellets (Figure 6f). These interaction plots indicate that after 
coating, both small and large pellets behave the same, demonstrating smooth filling and low fill 
weight variation. The slight increase in θ and CFW might be ascribed to some surface sticking due to 
the presence of polymer inhibiting closer packing. Lastly, Figure 6g demonstrates a small, although 
significant, interaction of the effects of “apparent” pellet density and coating on CFW, with a lower 
fill weight obtained from the coated pellets at low papp but a higher fill weight at high papp.  
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Figure 6. MLR analysis—Quadratic effects of pellet density on tap density (a), Kawakita’s a (b), and 
angle of internal flow (c). Interactions of the effects of pellet size and coating (green/solid plain, 
red/dotted coated) on the angle of internal flow (d), capsule fill weight (e), and fill weight variation 
(f), and interactions of the effects of pellet density and coating (green/solid plain, red/dotted coated) 
on capsule fill weight (g). 

3.6. Artificial Neural Networks 

A feed forward ANN consisting of three input units (X1, X2, X3) and seven output units (the 
selected responses Y1–Y7) was constructed, based on the applied DoE. For the determination of the 
optimum number of iterations, the mean squared error (MSE) of the validation subset was recorded 
by training a network, having eight hidden units in a single layer using the StBack algorithm. The 
results in Figure 7a show an MSE minimum at 2000 iterations, indicating that the network generalizes 
best at this point.  

In a subsequent step, the optimum number of hidden units was selected via trial and error, by 
training the ANNs, having 2–12 hidden units for 2000 cycles with StBack algorithm. Results in Figure 
7b showed that the minimum validation MSE value was obtained at six hidden units, and therefore, 
on the basis of these results, the optimum ANN architecture consisted of three input, six hidden, and 
seven output units (Figure 8a). Two alternative training algorithms, BackMom and Rprop were then 
tested in order to evaluate their effect on the prediction performance of the trained network. The 
results also showed similarly low internal validation MSE values (MSE of 0.078, 0.084, and 0.088 for 
StBack, BackMom, and Rprop, respectively) indicating that all tested algorithms were able to 
adequately fit the DoE results.  

In addition to the above ANN construction, an attempt was made to simplify the obtained 
optimum network by applying either MBP or OBD pruning (Figure 8b). The results showed that the 
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number of hidden units could be reduced to three for MBP and four for OBD, respectively, while in 
both cases the neuron connections were significantly reduced. Additionally, in both pruning 
approaches, “apparent” pellet density (X1) was the only input unit that was interconnected with all 
remaining hidden units (after pruning), indicating that X1 had a more pronounced effect on network’s 
performance compared to the other inputs, X2 and X3. This finding is in agreement with the MLR 
fitting results (Table 4), where it can be observed that X1 was included in all proposed fitting 
equations, while X12 was the only quadratic term identified as having a significant impact on the 
studied responses (except bulk density, Y1). The greater impact of X1 in the ANNs’ fitting results is 
also depicted in the sensitivity and saliency analysis, as it showed higher causal and predictive 
importance (Table 5). 

Table 5. ANN—Causal importance (sensitivity) and predictive importance (saliency) of the examined 
input variables. 

Input Variable Sensitivity Saliency (×102) 

X1: “apparent” pellet density 7.05 8.37 

X2: pellet size 2.32 1.71 

X3: pellet coating 2.48 2.05 

 
Figure 7. Determination of optimum training cycles (a) and number of hidden units (b) during ANN 
development. 
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Figure 8. Optimal ANN structure based on the DoE results (a) and ANN structures after pruning with 
magnitude-based pruning (MBP) (b) and optimal brain damage (OBD) (c) algorithms.   

3.7. Results of Validation with External Set 

MLR and ANN fitting models were validated and their generalizing ability was tested on the 
basis of the index of goodness of fitting R2 using data of the external validation test set (Table 2). The 
results are summarized in Table 6 and show that the originally unpruned ANN trained via StBack 
algorithm provides better predictive performance for the tested responses, and especially for Carr’s 
index (Y3), Kawakita’s parameter a (Y4), angle of internal flow (Y5), and fill weight variation (Y7) 
compared to MLR. In the cases of Y1 and Y2, good fitting was obtained from all proposed models. 
Moreover, results from the other training algorithms used (BackMom and Rprop) showed similarly 
good predicting performance as the StBack algorithm, indicating that all tested ANNs algorithms are 
suitable for the modelling and prediction of capsule filling performance. Additionally, a comparison 
of the unpruned and pruned networks showed close proximity of the obtained R2 values, indicating 
that a good level of generalizing ability can be maintained while simplifying the architecture of 
ANNs.  

Table 6. Predictive ability (R2 index) of the MLR and the original ANN models trained by the StBack, 
BackMom, or Rprop, and the pruned (OBD and MBP) networks, and results of the external data set 
(Table 2). 

Responses 
R2 of Predicted vs. Experimental Results Achieved by the Models 

MLR 
ANN 

StBack BackMom Rprop OBD MBP 
Y1: pellet’s bulk density  0.999 0.999 0.999 0.999 0.999 0.999 
Y2: pellet’s tap density  0.998 0.999 0.999 0.999 0.999 0.999 
Y3: Carr’s index  0.659 0.923 0.937 0.916 0.920 0.908 
Y4: Kawakita’s parameter a  0.611 0.947 0.954 0.969 0.951 0.923 
Y5: angle of internal flow 0.877 0.950 0.936 0.907 0.942 0.935 
Y6: capsule fill weight  0.948 0.991 0.966 0.980 0.959 0.971 
Y7: capsule weight variation  0.334 0.920 0.853 0.922 0.918 0.910 
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4. Conclusions 

Pharmaceutical pellets providing drug doses in divided subunits have gained importance in 
controlled drug delivery due to their multiple benefits, including lower gastric time variation, size 
uniformity, and spherical shape, enabling accurate estimation of the required amount of coating per 
pellet and better safety due to a reduced dose dumping for sustained release formulations. Since 
pellets are not a final dosage forms themselves, they are usually filled into hard gelatin capsules for 
administration. Although their free-flowing nature facilitates the filling into capsule bodies, 
interactions of the pellet surface with the machine parts and capsule shell, besides inter-pellet 
interactions, may affect fill weight variation in a different way than predicted from packing indices 
derived from tapping experiments. This is where the use of MLR and ANNs is valuable for the early 
prediction of the capsule filling performance of pellets from particulate properties. Among these, 
“apparent” pellet density exerts a pronounced influence in both capsule fill weight and fill weight 
variation.  
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