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Governing Transport Equations  

Here, we consider the Navier–Stokes equations describing the conservation of mass and 

momentum for incompressible and isothermal fluid flows. 

Continuity equation: 
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where u is the velocity vector,  is the mass density, P is the pressure,   is the dynamic viscosity. 

RANS based Realizable k–  Turbulence Model 

The modeled transport equations in the realizable k–  model are defined as follows [34, 35-36]: 
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In these equations, t is defined as turbulent dynamic viscosity, k  represents turbulent kinetic 

energy,   is turbulent dissipation, kG  represents the generation of turbulence kinetic energy due to 

the mean velocity gradients. bG  is the generation of turbulence kinetic energy due to buoyancy. MY

represents the contribution of the fluctuating dilatation in compressible turbulence to the overall 

dissipation rate. 2C  and 1C   are constants. k  and  are the turbulent Prandtl numbers  or k and 

 , respectively. kS  and S  are user-defined source terms. 

  



Convergence test for the Mesh in the upper airways model 

We meshed the upper airways model with 2, 3, 4.8, 6, 8 million elements, and compared the velocity 

profile at the larynx cut plain to the results of Das et al. (2018) (see Figure S1). 

 

Figure S1. Flow profile at the larynx at pick inhalation of different mesh sizes. 

Convergence test for the Mesh in the bronchi model 

We meshed the bronchial model with 5,6.8,7.5 million elements, and compared between the velocity 

profile at the centreline and at the first bifurcation (see Figure S2 and Figure S3). 

 

Figure S2. Velocity profiles at the center line (left) and at the first bifurcation (right) of 3 different 

mesh densities. 



 

Figure S3. Flow patterns at the first bifurcation of the bronchial tree in three different mesh 

densities. 

Ellipsoid geometric representation using Euler angles 

We begin by reviewing the geometrical definitions of the particle orientation. First, let us build 

two additional auxiliary coordinate systems. In Figure S4, a schematic diagram of an ellipsoid is 

presented; we define three coordinate systems, the first (x,y,z), marked green, is the global lab 

coordinate system. The system (x',y',z'), marked black, is the particle coordinate system, its center 

coinciding with the particle center of mass, and the z' axis is aligned with the ellipsoid's major axis. 

Finally, (x'',y'',z''), marked blue, is a coordinate system centered at the particle center of mass, but 

parallel to the lab coordinate system (“Euler Angles -- from Wolfram MathWorld,” n.d.).  

 

Figure S4. Definition of two auxiliary coordinate systems. 

The transformation matrix between the systems (x',y',z') and (x'',y'',z'') is marked as ‘A’, such 

that for a vector 'v  or a matrix 'M : 

' ''=v Av  (6) 

1' '' −=M AM A  (7) 

The ‘A’ matrix is defined by Euler angles and Euler quaternions (Lin Tian, Ahmadi, Wang, & 

Hopke, 2012), as 
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where: we mark the vector N (orange) to be the intersection of the two planes, (x-y) with the plane 

(x'-y');   is the angle between x and N;   is the angle between z to z';   is the angle between x' and 

N 

In Figure S5, we have 3 examples illustrating this idea: 

 
  

Figure S5. Examples of 3 simple cases to illustrate Euler angle. 

Euler Quaternions 

The use of Euler angles directly in the solution of particle's motion, will lead to singularities (Fan 

& Ahmadi, 1995) at 0, = . Therefore, to solve this problem we use Euler quaternions to visually 

describe the particle position and orientation, as defined in the following formula (Feng & 

Kleinstreuer, 2013): 
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We note here that quaternions must always satisfy the condition 
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Finally, in terms of the Euler quaternions, the rotation matrix ‘A’ now reads: 
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For the completeness of this section, we develop a simple expression to convert the orientation 

of the particle represented in Euler quaternions, to a simple direction vector representation. This 

conversion is particularly useful when visualizing calculated behavior of such particles. We imagine 

the particle to be a unit vector in coordinate system (x',y',z'): 
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We remind that the z' direction is the direction of the ellipsoid's major axis. Using the 

transformation matrix, the rotated particle would then be 
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Force Balance 

An ellipsoid particle, moving in a shear flow at a low particle Reynolds number is subjected to 

the gravitational force (𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦), the hydrodynamic drag force (𝐹𝑑𝑟𝑎𝑔) and the lift force (𝐹𝑙𝑖𝑓𝑡). The 

equation for conservation of linear momentum reads 
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Subscripts p and f represent particle and fluid respectively. The mass an ellipsoid particle used 

in equation (14) is given by: 
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Where 
pa  is the particle's semi-minor axis (the semi-major axis will be marked as

pb ),

/p pAR b a= , and 
p  is the mass density. The gravitational force is calculated as 

34

3
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Hydrodynamic Drag Force 

The hydrodynamic drag force is defined as 

( )''drag p f fa = −F K v v  (18) 

where 
f  is the viscosity of the fluid, and ''K  is the resistance tensor accounting for a particle's shape. 

The resistance tensor for an ellipsoid in the particle coordinate system, 'K , is given by: 
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Since the particle coordinate system is also the particle principal coordinate system, this matrix 

is diagonal. The transformation of this matrix to the lab global system (in which the force balance is 

solved) is 



1'' '−= =  K K A K A  (20) 

In fact, the resistance tensor in the particle coordinate system 'K is constant, and the drag force 

is actually changing due to rotation of the particle, through the rotation matrix A. Therefore, the drag 

force takes the final form 

( )1 ' ''drag p f fa  −=   −F A K A v v  (21) 

Particle Lift Force 

We assume that the particle is small enough that a linear shear flow can be locally approximated 

around the particle. The lift force is then given by 
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where B  is the transformation matrix of velocity gradients, added here to create a simpler to 

implement sum representation. This matrix is given by (Yu Feng, 2013) 
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and the L  matrix is (Harper & Chang, 1968) 
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Torque Balance 

Previously, the importance of solving the orientation of the ellipsoid fiber in order to solve the 

force balance was described. Thus, it is of special importance to solve the torque equation of this 

particle as well. The Euler rotation equations, i.e. the balance of torques, reads 
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We note that all values here are in the particle coordinate system (x',y',z'). ω  is the angular 

velocity, and T is the torque. The principal mass moment of inertia ( )' y' z', ,xI I I  for an ellipsoid is 

given by 
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Hydrodynamic Torque 

Under the assumption that the particle is sufficiently small, and the flow around it can be 

approximated as a linear shear flow, the hydrodynamic torques read 
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where D  is the deformation tensor, and W  is the spin tensor 
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In Eq. (29), the fluid velocity gradient matrix is in the reference frame of the particle, i.e. it needs 

to be rotated from the lab frame. This can be done using Eq. (7): 
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Once the torques are solved (Eq. (26)) we are able to integrate the angular velocity and calculate 

the change in the orientation and find the new quaternions: 
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Particles Characteristics 

Table S1 contain a detailed description of the particles geometry and flow characteristics, 

including d𝑝 - is the diameter of a sphere with the equivalent volume, a𝑝 and b𝑝 are the minor and 

major diameters of the fiber, 𝑑𝑠𝑡𝑘 is the fiber equivalent volume diameter given by Shapiro and 

Goldenberg (1993): 𝑑𝑠𝑡𝑘 = 2𝑎𝑝√
𝐴𝑅 ln(𝐴𝑅+√𝐴𝑅2−1)

√𝐴𝑅2−1
, 𝑡0 is the relaxation time calculated as 𝑡0 =

𝜌𝑝𝑑𝑠𝑡𝑘
2

18𝜇𝑔
, 



Where particle density 𝜌𝑝 = 1000 𝑘𝑔 𝑚3⁄  and air dynamic viscosity 𝜇𝑔 = 1.26 𝑒 − 6 𝑘𝑔 𝑚𝑠⁄ , and 𝑆𝑡𝑘 

is the stokes number of fibers, calculated as 𝑆𝑡𝑘 =
𝑡0𝑢0

𝐷
, where 𝑢0 is the maximal velocity during peak 

inhalation and 𝐷 is the average alveoli diameter. As the AR increase 𝑑𝑠𝑡𝑘 decrease, as well as the 

relaxation time and the Stk number of the fibers, meaning they are more convected, reach the flow 

velocity and follow stream lines. 

Table S1. Particle non dimensional characteristics for all size and AR ensembles. 

   1.02 AR=    

Stk (TB) Stk (Bronchi) Stk (acinus) Relexation time d_Stk b_p a_p d_p 

2.99E-02 9.14E-02 4.07E-03 4.48E-05 1.01 1 1 1 

1.19E-01 3.66E-01 1.63E-02 1.79E-04 2.01 2 2 2 

2.69E-01 8.23E-01 3.67E-02 4.03E-04 3.02 4 3 3 

4.78E-01 1.46E+00 6.52E-02 7.17E-04 4.03 4 4 4 

7.47E-01 2.29E+00 1.02E-01 1.12E-03 5.03 5 5 5 

1.08E+00 3.29E+00 1.47E-01 1.61E-03 6.04 6 6 6 

1.46E+00 4.48E+00 2.00E-01 2.19E-03 7.05 7 7 7 

2.99E+00 9.14E+00 4.07E-01 4.48E-03 10.07 10 10 10 

1.19E+01 3.66E+01 1.63E+00 1.79E-02 20.13 20 20 20 
   3 AR=    

Stk (TB) Stk (Bronchi) Stk (acinus) Relexation time d_Stk b_p a_p d_p 

2.62E-02 8.03E-02 3.58E-03 3.94E-05 0.94 2.08 0.69 1 

1.06E-01 3.26E-01 1.45E-02 1.60E-04 1.90 4.16 1.39 2 

2.38E-01 7.30E-01 3.25E-02 3.58E-04 2.84 6.24 2.08 3 

4.23E-01 1.29E+00 5.77E-02 6.34E-04 3.79 8.32 2.77 4 

6.64E-01 2.03E+00 9.05E-02 9.95E-04 4.74 10.4 3.47 5 

9.54E-01 2.92E+00 1.30E-01 1.43E-03 5.69 12.48 4.16 6 

1.30E+00 3.97E+00 1.77E-01 1.94E-03 6.63 14.56 4.85 7 

2.65E+00 8.10E+00 3.61E-01 3.97E-03 9.48 20.8 6.93 10 

1.06E+01 3.25E+01 1.45E+00 1.59E-02 18.97 41.6 13.87 20 
   10 AR=    

Stk (TB) Stk (Bronchi) Stk (acinus) Relexation time d_Stk b_p a_p d_p 

1.88E-02 5.74E-02 2.56E-03 2.81E-05 0.80 4.64 0.46 1 

7.67E-02 2.35E-01 1.05E-02 1.15E-04 1.61 9.28 0.93 2 

1.71E-01 5.24E-01 2.34E-02 2.57E-04 2.41 13.92 1.39 3 

3.07E-01 9.39E-01 4.18E-02 4.60E-04 3.23 18.57 1.86 4 

4.77E-01 1.46E+00 6.51E-02 7.16E-04 4.02 23.21 2.32 5 

6.85E-01 2.10E+00 9.34E-02 1.03E-03 4.82 27.85 2.78 6 

9.37E-01 2.87E+00 1.28E-01 1.40E-03 5.64 32.49 3.25 7 

1.91E+00 5.84E+00 2.60E-01 2.86E-03 8.05 46.41 4.64 10 

7.64E+00 2.34E+01 1.04E+00 1.15E-02 16.10 9.083 9.28 20 
   30 AR=    

Stk (TB) Stk (Bronchi) Stk (acinus) Relexation time d_Stk b_p a_p d_p 

1.24E-02 3.78E-02 1.69E-03 1.85E-05 0.65 9.65 0.32 1 

4.95E-02 1.51E-01 6.74E-03 7.42E-05 1.30 19.31 0.64 2 

1.11E-01 3.41E-01 1.52E-02 1.67E-04 1.94 28.96 0.96 3 

2.01E-01 6.15E-01 2.74E-02 3.01E-04 2.61 38.62 1.29 4 

3.13E-01 9.58E-01 4.27E-02 4.69E-04 3.26 48.27 1.61 5 

4.50E-01 1.38E+00 6.13E-02 6.75E-04 3.91 57.93 1.93 6 

6.11E-01 1.87E+00 8.33E-02 9.17E-04 4.55 67.58 2.25 7 

1.25E+00 3.83E+00 1.71E-01 1.88E-03 6.52 93.55 3.22 10 



5.01E+00 1.53E+01 6.83E-01 7.51E-03 13.03 193.1 6.44 20 

Table S2. Computational details and various properties of flow and particles used in the present 

simulations. 
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Converging the number of particles simulated in the upper airways model 

We analysed the DE results of different number of randomized particles. According to the results 

presented in Figure S6, negligible difference was found between simulating 1,500 particles of the 

same group and simulating 3,000 particles of the same group. 



 

Figure S6. DE results of different number of particles, shown in each plot. Negligible difference was 

found between 1,500 and 3,000 particles results. 

Validation for upper airways deposition efficiencies 

Tian & Ahmadi, (2013)  

We compared our upper airways deposition efficiencies to the work of  Tian & Ahmadi [48] (see 

Figure S7).  



 

Figure S7. Validation of upper airways deposition against the work of  Tian & Ahmadi [48] (shown 

on the left). On the right- the results of the current study match the black squares describing the results 

of  Tian & Ahmadi [48]. 

Feng & Kleinstreuer(2013) 

We compared our upper airways deposition efficiencies to the work of  Feng & Kleinstreuer [18]  

and found a match between the current study results of fibers of AR=3 and AR=10 with 𝑎𝑝 = 1.83 𝜇𝑚. 

Our results did not match the results of AR=30 (see Figure S8). 



 

Figure S8. Validation of upper airways deposition against the work of Feng & Kleinstreuer [18] (left). 

In black squares, the matched results of AR=3,10 are shown in both plots. 

Validation of the bronchi model 

We compared our bronchial airways deposition efficiencies to the work of Koullapis et al. [23] 

and found a good match between the current study results of spheres to the range of particle sizes 

simulated (see Figure S9).  

 

Figure S9. Validation of bronchial deposition against the work of Koullapis et al. [23] (left). In black 

squares, the matched results of spheres 𝒅𝒑 = 𝟏 − 𝟐 𝝁𝒎, 𝒅𝒑 = 𝟐 − 𝟓 𝝁𝒎 are shown (right). 


