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Abstract: The amalgamation of natural polysaccharides with synthetic polymers often produces
fruitful results in the area of drug delivery due to their biodegradable and biocompatible nature. In
this study, a series of blend films composed of chitosan (CS)/poly(allylamine hydrochloride) (PAH)
in different compositions were prepared as smart drug delivery matrices. The properties of these
polymeric films were then explored. Attenuated total reflectance-Fourier transform infrared (ATR-
FTIR) analysis confirmed an intermolecular hydrogen bonding between CS and PAH. Atomic force
microscopy (AFM) revealed improvements in surface morphology as the percentage of PAH in the
blend films increased up to 60% (w/w). Water contact angle (WCA) ranged between 97° to 115°,
exhibiting the hydrophobic nature of the films. Two films were selected, CTH-1 (90% CS and 10%
PAH) and CTH-2 (80% CS and 20% PAH), to test for in vitro cumulative drug release (%) at 37 + 0.5
°C as a function of time. It was revealed that for simulated gastric fluid (SGF) with pH 1.2, the
cumulative drug release (CDR) for CTH-1 and CTH-2 was around 88% and 85% in 50 min,
respectively. Both films converted into gel-like material after 30 min. On the other hand, in pH 7.4
phosphate buffer saline (PBS) solution, the maximum CDR for CTH-1 and CTH-2 was 93% in 90
min and 98% in 120 min, respectively. After 120 min, these films became fragments. Sustained drug
release was observed in PBS, as compared to SGF, because of the poor stability of the films in the
latter. These results demonstrate the excellent potential of blend films in sustained-release drug
delivery systems for hydrophilic or unstable drugs.
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1. Introduction

Natural biopolymers, especially polysaccharides, have attracted considerable interest in the field
of drug delivery due to their biodegradable, biocompatible, hydrophilic, and protective properties
[1-3]. In pharmaceutical research and applications, polymeric nano-particles and natural biological
macromolecules-based delivery systems are commonly used these days. These potential carriers are
capable of delivering bioactive compounds to specific cells and tissues with minimal immune
response at the nanoscale. Natural polymers, due to their diverse physico-chemical properties, can
be used to fabricate polymeric nano-carrier systems (NCS) that can optimize the bioavailability of
drugs by increasing retention time, minimizing side effects, increasing drug solubility, and reducing
dosage frequency [4].

Chitosan, a natural carbohydrate, is inexpensive, easily available, a cationic copolymer, and can
be obtained by deacetylation of chitin. It consists of N-acetyl-D-glucosamine and D-glucosamine units.
Considering the non-toxic, biocompatible, and biodegradable nature, chitosan is a prospective
candidate in the field of pharmaceutical industry [4,5]. Several researchers have investigated chitosan
in gene delivery, drug release, and biomedical areas [6-9]. It can increase the extent of drug delivery
across mucosal or nasal layers without causing any damage to the tissues [10]. On the contrary,
various processing conditions (such as a change in temperature, etc.) and environmental factors may
trigger degradation and deteriorate its polymeric structure [11].

It has been observed recently that two or more polymers are usually blended to obtain a wide
range of physico-chemical properties. Numerous properties of chitosan can be enhanced by blending
with natural polymers as well with synthetic ones such as zein, sodium alginate, curdlan, konjac
glucomann, poly(lactic acid), polycaprolactone, poly(ethylene oxide), poly(vinyl pyrollidine), and
graphene oxide [12-15]. Depending on the nature of biomedical applications, such as tissue
engineering and drug delivery, chitosan has been blended with polyethylene glycol fumarate,
poly(ethylene glycol) methyl ether, bone, polyethylene glycol, cartilage, skin, gelatin, dialdehyde
starch, and nerves [14,16-20].

Poly(allylamine hydrochloride) is a water-soluble weak-base, a cationic and biodegradable
polymer. It has a large number of amino groups that are present as a free amine or cationic
ammonium salt like other amine group-containing polymers [21-23]. Chitosan alone cannot satisfy
biomedical applications due to mechanical defects; therefore, blends of chitosan are employed to
overcome insufficient mechanical features [24-28]. Multitudinous systems comprising of polymeric
materials have been prepared to serve as drug carriers to investigate the controlled release behavior
of payloads and offer smart drug delivery. Polymeric biocompatible materials such as
polyelectrolytes nanoparticles coated with a bilayer of polyelectrolytes, namely PAH and poly
(sodium 4-styerenesulfonate) (PSS) were investigated for hydrophobic drug release [29]. It has been
reported that PAH and polyurethane multilayer films as a drug delivery system are potential
contestants for pharmaceutical and biomedical applications [22]. The efficiency of nanoparticulate
drug delivery systems can be increased by modifying poly(D,L-lactide-co-glycolide) via layer-by-layer
adsorption, with two polyelectrolyte pairs such as PAH/PSS and poly(L-lysine
hydrobromide)/dextran sulfate [30].

Several efforts to develop functional materials (films, beads, and hydrogels) from chitosan have
been reported for potential use in wound healing [31] and drug delivery systems [32-37]. Blending
of natural polymers with synthetic polymeric material is an alternative approach to incorporate a
desired set of physico-mechanical characteristics in new materials. The film matrix generated by the
blending of two or more different polymeric systems generally results in modification of physico-
mechanical properties, compared to a film obtained by an individual polymer. For instance,
chitosan/starch blend films show higher flexibility and improved elongation [38], chitosan and
quaternized poly(4-vinyl-N-butyl) pyridine demonstrate robust tensile strength [39], blends of
chitosan/poly(vinylalcohol) [40], chitosan/N-methylol nylon 6 [41], and
chitosan/polycaprolactone[12] exhibit improved properties compared to pure chitosan films. Several
publications related to the blending of chitosan with natural (particularly cellulose and its derivative)
[42-44] and synthetic polymers [11,41,45-47] have been reported.
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In continuation of our efforts to develop materials for controlled drug delivery [48,49], the
purpose of the current study was to develop a smart drug delivery system for ciprofloxacin
hydrochloride monohydrate (CPX) using biodegradable CS/PAH blend films. CS and PAH were
selected to prepare a series of blend films with different compositions as smart drug delivery
matrices. The prepared polymeric films were characterized to explore their properties. To study the
drug release behaviour of CS/PAH blend films, CPX was taken as a model drug. CPX is a
fluoroquinolone drug that has a broad antibiotic spectrum. It is widely used for microbial infections
such as pulmonary, urinary, and dermal infections [50] and anterior ocular infections [51]. It can be
administered intravenously or orally [52]. It is very effective against gram-positive and gram-
negative bacteria that cause gastrointestinal, urinary tract, abdominal, and respiratory infections.
Prophylaxis and osteomyelitis, which is caused by P. aeruginosa, has been treated with CPX [53].
Due to its low solubility, CPX is usually formulated as a colloidal drug carrier, such as micelles, nano-
suspensions, and polymeric nanoparticles [54]. CPX offers bioavailability (60-80%) and serum half-
life (~3—4 h); however, in clinical settings, repeated administration (b.i.d, for 5 days) concerns have
made CPX a suitable candidate for controlled-release drug delivery system that can reduce gastric
irritation and dose dumping concerns [55,56]. A number of studies have shown the incorporation of
CPX in polymeric matrices and have demonstrated control release to function as wound-dressing
materials [57-59], and antibacterial efficacy of CPX-loaded imprinted hydrogels [60]. To further
address the limitations of instantaneous release of CPX, the aim of this study was to design and
develop blend films using a biocompatible and biodegradable polymeric blend of CS/PAH in varying
compositions, to be used as a drug delivery matrix for sustained release.

We previously reported drug releasing films prepared by blending CS with methoxy
polyethylene glycol (mPEG) for controlled drug release applications [20]. In the present study, based
on the well-known fact that cationic polymers have the potential to adhere to negatively charged
surfaces of bacteria, we incorporated PAH primarily to impart flexibility in blend films and
speculated on the retention of the overall cationic nature of blend films. To the best of our literature
survey and knowledge, there are no publications reporting controlled release behaviour of CPX from
CS/PAH blended films as potential biomaterials for drug delivery applications.

2. Materials and Methods

2.1. Materials

Chitosan (Cat No. 448869, viscosity: 20-300 cP) with deacetylation degree (DDA) value ~75 to
85% molecular weight: 50 to 190 kDa was purchased from Sigma Aldrich, Saint Louis, MO, USA.
Poly(allylamine hydrochloride (PAH) (formula weight: 120,000~200,000 g-mol™ was obtained from
Beantown Chemical, Hudson, NH, USA. Acetic acid (>99.9%) was also purchased from Sigma
Aldrich, Saint Louis, MO, USA. Ciprofloxacin hydrochloride monohydrate was collected from Tokyo
Chemical Industry Co. Ltd. (TCI, Portland, OR, USA). All of the other chemicals were used as
received and without any further purification.

2.2. Preparation of Films

Polymeric blend films of chitosan (CS) with Poly(allylamine hydrochloride) (PAH) were
prepared by solution casting technique as reported earlier [61]. The solutions in different CS/PAH
ratios (100/0, 90/10, 80/20, 70/30, 60/40, 40/60) were prepared and each film was coded as CTH-0, CTH-
1, CTH-2, CTH-3, CTH-4, CTH-5, respectively. In the first step, chitosan was dissolved in acetic acid
solution, 2% (v/v), with constant stirring for 90 min at room temperature. Secondly, an aqueous
solution of PAH, prepared in deionized water, was added in a dropwise manner into the chitosan
solutions with continuous stirring at room temperature. These blended solutions were stirred at room
temperature for 90 min to obtain homogenous polymeric solutions. For film casting, the polymeric
blended solutions were poured into polystyrene petri dishes and allowed to dry under ambient
conditions. The blend films were peeled off and immersed in a solution of NaOH (1%), followed by
thorough washing with deionized distilled water. Finally, the prepared blended films were placed in



Pharmaceutics 2020, 12, 131 4 of 18

an oven at 48 + 2 °C for 2 days, enclosed in airtight plastic bags, and stored at room temperature until
further analysis.

2.3. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy

For intermolecular determinations, ATR-FTIR spectra of the prepared films as well as PAH were
recorded using a spectrometer (Thermo Electron Corp., Madison, WI, USA). The spectra were taken
in transmittance mode ranging from 4000 to 400 cm™ at a resolution of 4 cm™ and 256 scans per
sample.

2.4. Atomic Force Microscopy (AFM) Studies

Surface characterization of prepared films was subjected to AFM using Nanoscope Illa
Multimode microscope (Veeco Instruments, Inc., Santa Barbara, CA, USA), equipped with silicon
RTESP7 cantilever (Veeco Nanoprobe, Camarillo, CA, USA) in tapping mode. For silicon tip, nominal
spring constant of 40 N/m was applied. AFM images were recorded as 10 um x 10 um using scan rate
of 0.5 Hz in air keeping ambient conditions. For AFM, blended solutions of polymers were spin-
coated on newly cleaved mica surface using a spin coater (Laurell Technologies Corporation, North
Wales, PA, USA). The spinning rate was kept at 1500 RPM for 2 min. All the prepared samples were
placed in the oven at 48 + 2 °C for two days to obtain complete dried films [13].

2.5. Water Contact Angle (WCA) Measurements

To calculate WCA in degree, the dried films were attached to the microscope glass slides using
double-sided tape. A water droplet (8 uL) was placed on each film by a micro-injector syringe
(Hamilton Company, Reno, NV, USA). Different images were recorded until WCA was constant
using video contact angle instrument VCA optima (AST Products, Inc., Billerica, MA, USA). An
automatic WCA measurement, from both the right and left-hand side of the drop, was done using
VCA-optima software. On average, twenty measurements were performed per film, which was cut
from four different sites.

2.6. Swelling Behaviour of Blend Films

The swelling experiments of pristine CS film and their blend films with PAH were conducted in
deionized water and ionic solutions, such as 0.1 M, 0.3 M, 0.5 M, 0.7 M, 0.9 M, 1.0 M NaCl, and CaClz
by following previously reported procedure [62]. All vacuum dried films were cut into smaller pieces,
weighed (~20 mg), and dipped into glass vials containing 40 mL of solvent/solution. Every 20 min,
excess solvent was discarded, each vial was dried using tissue paper, and the weight of swollen film
was measured along with the vial. This procedure was repeated until equilibrium was achieved. The
experiment was repeated thrice for each film to calculate the standard deviation (SD). Degree of
swelling was calculated using Equation (1):

W, — W,
Swelling (8/8) = =7~ : (1)

Wa = weight of the dried films, Ws= weight of the swollen films.
2.7. Cumulative Drug Release (CDR) Study

2.7.1. Preparation of Simulated Gastric Fluid (SGF) and Phosphate Buffer Saline (PBS) Solution

SGF (pH 1.2) was prepared by mixing NaCl (1 g) with 4 mL of HCI and diluted to 500 mL using
deionized water [62]. PBS (pH adjusted to 7.4 using 0.1 M NaOH and 0.1 M HCI) solution was
prepared by dissolving NaCl (8 g), KCl (0.2 g), Na2HPOs (1.44 g), and KH2POs (0.24 g) in 800 mL
deionized water and diluted to 1000 mL [63]. A pH meter (Fischer Scientific accumet, Singapore
139949, Singapore) was used to monitor the pH of solutions.
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2.7.2. Drug Loading Method

To study controlled drug release, 20 mg of CPX was dissolved in deionized water. The drug
solution was added dropwise in a polymeric blended solution of CS/PAH (90/10). The solution was
stirred for 90 min at room temperature prior to pouring into a polystyrene petri dish for film
formation under ambient conditions. CPX was also loaded in a film with CS/PAH (80/20) by repeating
the same procedure as mentioned above. Finally, the prepared blended films were peeled off,
enclosed in airtight plastic bags, and stored at room temperature in the dark until further analysis.

2.7.3. In Vitro Drug Release

The CDR mechanism was studied using a smart dissolution tester (Sortax AG, CH-4123,
Allschwil 1, CE 7smart, Basel, Switzerland) [64]. The average thickness of drug-loaded films was 40—
70 um, determined using a micrometre (Mitutoyo Corporation, model PK-0505CPX, Kanagawa,
Japan) by performing three measurements for each specimen. Films were cut from six different
regions for triplicate measurements in SGF and PBS solutions. The average weight of the drug-loaded
CTH-1 and CTH-2 films was 0.0791 g and 0.0588 g, respectively. These drug-loaded films were put
into a 500-mL dissolution medium, such as SGF and PBS solution, at temperature 37 + 0.5 °C and
stirred at 50 rpm. Every 10 min, 5 mL solution was collected separately from each SGF and PBS
solution using a pipette. The obtained solutions were filtered through a membrane (pore size; 0.45
pum). Fresh 5 mL of the SGF and PBS solutions were added back every time to keep the volume at 500
mL. The drug release analysis was investigated for 2-3 h in the SGF and PBS solutions. UV scans of
the collected solutions were recorded at Amax 277 nm for SGF and 270 nm for PBS using a UV-Visible
spectrometer (Agilent Technologies, Cary 60, UV-Vis, Santa Clara, CA, USA). The standard drug
solutions of CPX (100 ppm) in SGF and PBS were used as a reference [62].

2.8. Statistical Analysis

Data were handled using the SPSS (v.20, IBM, USA) and expressed in the form of means +
standard deviation (SD). The data were analyzed statistically by the two-way analysis of variance
(ANOVA) and p < 0.05 was considered as statistically significant. Independent sample t-test was
applied to compare drug release in different two media, SGF and PBS.

3. Results and Discussion

3.1. Preliminary Characterization

We prepared polymeric blend films of CS/PAH using the solution casting technique. A solution
of chitosan in acetic acid (2% v/v) and an aqueous solution of PAH were prepared separately. The
aqueous solution was then added drop by drop to the chitosan solution. A preliminary examination
showed that the prepared films were translucent and slightly yellowish in color. Films thickness (~40-
70 pm) was determined using a micrometre (Mitutoyo Corporation, model PK-0505CPX, Kanagawa,
Japan) by performing three measurements per specimen (Table 1). We could not find any statistically
significant difference in film thickness among the six samples (CTH0-CTHS5) using ANOVA, E(5,18)
=2.35, p-value = 0.083. The projected interactions between CS and PAH are shown in Figure 1.
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Table 1. Films thickness data of each film from different regions.

Films Films Films Films Average
. Thickness Thickness Thickness Thickness Films
Films . . . . . *SD ()
(Istregion)  (2nd region)  (3rd region)  (4th region) Thickness

(1m) (um) (um) (um) (um)
CTH-0 40 50 70 50 52.5 10.9
CTH-1 70 80 90 40 70 18.7
CTH-2 40 40 50 60 47.5 8.3
CTH-3 50 70 40 50 52.5 10.9
CTH-4 70 70 40 70 62.5 13.0
CTH-5 50 40 30 40 40 7.1

* SD means standard deviation, CTH stands for chitosan/poly(allylamine hydrochloride) blend.

CHZOH CHZOH

H H H/H
«HCI o o
NH +

Poly(allylamine hydrochloride)
Chitosan

Intermolecular hydrogen bonding

CH20H

CH,OH
H:H :FH<H >
@H:H :L

CH,OH CHon

Figure 1. The proposed interactions between the CS and PAH in the prepared blend films.

3.2. ATR-FTIR Spectroscopy

FTIR spectroscopy is a technique frequently employed to uncover intermolecular interactions,
particularly hydrogen bonding between diverse types of functional groups in polymeric molecules.
Intermolecular interactions either lead to a shift in frequency or band broadening of particular
functional groups. Information related to the conformational changes occurring in compatible blends
can be acquired by FTIR spectral analysis [65]. As we had prepared several solutions —CTH-0 (100/0),
CTH-1 (90/10), CTH-2 (80/20), CTH-3 (70/30), CTH-4 (60/40), and CTH-5 (40/60)—of CS/PAH in
different ratios, we investigated whether CS molecules really interacted with the polymeric backbone
of PAH. To confirm possible interactions, the prepared biodegradable blend films—chitosan and
PAH samples—were subjected to ATR-FTIR spectroscopy. The presence of each component was
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established by the appearance of absorption bands for different functional groups. The spectra of CS,
PAH, and their blend films are shown in Figure 2. In the case of PAH spectra, the bands at 1610 cm™
and 1381 cm™ were detected corresponding to N-H in the plane bending motion and C-H bending,
respectively [66]. The broadband varying from 3400 to 2800 cm™! with two split peaks was observed —
one peak at 2910 cm™ and 2845 cm™, attributed to C-H asymmetric and symmetric vibrations—while
another sharp peak at 3391 cm™ was caused by stretching vibration of the intermolecular as well as
intramolecular N-H bond of the primary amine group. These peaks were observed in all blend films,
but with less intensity [21].

In the spectra of chitosan, bands of amide-I (C=O) and amide-II (N-H) were detected at around
1640 cm™ and 1538 cm™, respectively. The cis-amide III band was located at 1248 cm™[62,67]. A peak
at 1078 cm confirmed C-O-C stretching vibrations [68]. The glycosidic linkages appeared at 1154
and 894 cm™. Moreover, a band ranging from 3391 to 3386 cm™ was assigned to the O-H stretching
of chitosan [6,69]. We noticed that as the concentration of PAH in blend films increased, the intensity
of the band also decreased. In the typical spectrum of a CS/PAH composite film, the amino peak of
CS shifts from 1541 to 1510 cm™ and the intensity of these bands decrease dramatically with the
addition of PAH, indicating an intermolecular hydrogen bonding between CS and PAH (Figure 2)
[16]. This manifests that CS has good compatibility with PAH.

= ©
CTH-6 3391-3386 33

----- o

CTH-5 | 3 N/ 2910-2845
TN ——
CTH-4

CTH-3
—_———

1640-161 0\

CTH-2

CTH-1

Transmittance (%)

CTH-0

—

1541 1154

1 LS L] i L) s | L 1 L L] = L)
4000 3500 3000 2500 2000 1500 1000
Wavenumber (cm’ )

Figure 2. ATR-FTIR spectra of chitosan (CTH-0), PAH (CTH-6), and their blend films showing different
chitosan/PAH compositions —100/0 (CTH-0), 80/10 (CTH-2), 60/40 (CTH-4), and 40/60 (CTH-5).

3.3. Atomic Force Microscopy Study

AFM is an excellent tool that investigates the texture and morphology of diverse surfaces,
including thin films [70-72]. The versatility of AFM allows acquiring of rigorous observations and
assessment of the textural and morphological characteristics of films. In this study, the surface texture
and roughness of CS and its blend films with PAH (CTH-0, CTH-1, CTH-2, CTH-3, CTH-4, CTH-5)
were examined using AFM with a Nanoscope IIla Multimode microscope (Veeco Instruments, Inc.,
Santa Barbara, CA, USA), equipped with a silicon RTESP? cantilever (Veeco Nanoprobe, Camarillo,
CA, USA) in tapping mode. For the silicon tip, nominal spring constant of 40 N/m was applied. AFM
images were recorded as 10 um x 10 um using scan rate of 0.5 Hz under atmospheric conditions at
ambient temperature. For AFM measurements, the blended solutions of polymers were spin-coated
on a newly cleaved mica surface using a spin coater (Laurell Technologies Corporation, USA) and
the spinning rate was maintained at 1500 RPM for 2 min. Experimental data were processed with the
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help of Nanoscope 5.30 software [13]. The micrographs infer that films coded with CTH-0 and CTH-
2 were found to be rough. On the other hand, CTH-4 and CTH-5 films displayed a smooth surface
morphology (Figure 3). This might be attributed to the rigid and crystalline nature of chitosan [73].
These properties of chitosan molecules were also affected by sample preparation. Like these films,
CTH-0 and CTH-2 present spherical, branch crystals due to the higher percentage of chitosan 100%
(w/w) and 80% (w/w), respectively [69]. AFM analysis showed that as the concentration of PAH
increased up to 60% (w/w), the surface morphology improved, representing an increase in
compatibility with polymer chains. The CTH-5 film was found to be more homogenous as compared
to the other films.

Figure 3. AFM images of films with different chitosan/PAH compositions—100/0 (CTH-0), 80/10
(CTH-2), 60/40 (CTH-4), and 40/60 (CTH-5)—and their corresponding 3D images in panels on mica
using tapping mode. The scale size was 10 x 10 um and the z scale was 20 nm and 30 nm, respectively.

3.4. WCA Measurements

Water contact angle measurement is one of the most common methodologies used to determine
the wettability of a surface/material and their hydrophobic or hydrophilic nature [74]. The intrinsic
values of WCA are dependent on surface roughness, porosity, and heterogeneity [75]. We recorded
WCA of different images for each blend film using video contact angle instrument VCA optima (AST
Products, Inc. Billerica, MA, USA) until WCA became constant. An automatic WCA measurement,
from both the right and left-hand side of the drop, was done by VCA-optima software. On average,
twenty measurements were performed per film, which was cut from four different sites. A report
demonstrated that the water contact angle of blank chitosan was higher than 83° due to its
hydrophilic nature and high surface tension [76]. In order to decrease the hydrophilicity of chitosan,
it was blended with PAH to impart flexibility. The WCA of the prepared films fluctuated between
96.7° to 114.7° because of a CS-to-PAH ratio that varied as shown in Figure 4. As shown in Table 2,
the WCA of CTH-0, CTH-1, CTH-2, CTH-3, CTH-4, and CTH-5 was 107 +3.5°, 114.7 £2.0°, 112 £ 3.9°,
108.6 + 1.8°, 96.7 + 2.5°, and 110.8 + 2.5°, respectively. It was noted that as the concentration of PAH
in blend films increased up to 60% (w/w), except 40% (w/w), the WCA increased. This increase might
be due to a decrease in intensity of polar groups, resulting in more networking among polymer chains

[9].
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Table 2. Water contact angles data of films having CS/PAH ratios of 100/0 (CTH-0), 90/10 (CTH-1),
80/10 (CTH-2), 70/30 (CTH-3), 60/40 (CTH-4), and 40/60 (CTH-5).

Films Water Contact Angle (degree) *SD ()
CTH-0 107.4 3.5
CTH-1 114.7 2.0
CTH-2 112.0 3.9
CTH-3 108.6 1.8
CTH-4 96.7 2.5
CTH-5 110.8 2.5

* SD means standard deviation; all experiments were performed in triplicate.

. T . .
1 1
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1

-

[=3

o
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o
1 a

Water contact angle (0)
& 3
o o
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CTH0 CTH1 CTH-2 CTH-3 CTH-4 CTH-§

Figure 4. Water contact angles of films with chitosan/PAH ratios of 100/0 (CTH-0), 90/10 (CTH-1),
80/10 (CTH-2), 70/30 (CTH-3), 60/40 (CTH-4), and 40/60 (CTH-5).

3.5. Swelling Behaviour in Different Media

3.5.1. Swelling in Deionized Water

The swelling behaviour of pristine CS and CSPAH blend films was studied as a function of time
(Table 3). It was observed that all films displayed a linear increase with time and equilibrium for the
CTH-1, CTH-2, and CTH-4 films were attained at around 80 min, 60 min, and 80 min, respectively.
The CTH-3 and CTH-5 films exhibited a distinctive behaviour as these films were converted into a
gel-like material after 25 min and 40 min, respectively. The CTH-1 film had a higher degree of
swelling response —around 122 g/g after 80 min—as compared to the other blend films, but less than
blank chitosan film, which was around 182 g/g (Figure 5).

Table 3. Swelling data of CS/PAH films in deionized water.

Ti CTH-0 CTH-1 CTH-2 CTH-3 CTH-4 CTH-5
(I:::; Swelling SD Swelling SD Swelling SD Swelling SD Swelling SD Swelling SD
(g/g) () (g/g) () (g/g) () (g/g) () (g/g) () (g/g) ()
20 109.96 7.06 99.15 3.49 55.90 6.42 90.00 6.70 24.20 3.43 41.90 4.56
40 136.41 6.25 10649 371 97.26 3.59 92.00 9.70 25.30 3.77 46.12 9.59
60 158.62  5.95 11952  3.67 97.27 751 - - 45.32 1.04 - -
80 181.39 6.70 122.40 0.57 95.86 6.52 - - 47.42 3.21 - -
100 181.95 7.08 106.29 227 98.14 4.18 - - 47.35 2.33 - -
120 - - - - 98.44 3.19 - - 46.14 1.09 - -
140 - - - - 98.99 6.22 - - 45.59 2.46 - -

SD means standard deviation; in order to obtain standard deviation, the experiment was repeated
three times for each film.
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Figure 5. Swelling behaviour of CS/PAH films with different compositions in deionized water.

The swelling of blend films was due to diffusion of water from the extracellular matrix to the
polymeric structures [77]. This mode of swelling was calculated by the following equation:

F =kt @)

where,

k = swelling rate constant describing the characteristics of polymer network and water

n = swelling or diffusional exponent

F = fractional swelling at the time (t), calculated by the swelling ratio of Wt (swelling ratio at time
t) and Weq (swelling ratio at equilibrium time ¢).

In order to obtain the values of n and k, the swelling data of pure CS and its blend films was
used. Figure 6 showed a plot between In(F) versus In(f) and the values of diffusion parameters (Table
4). It can be inferred from Table 4 that n < 0.5 (corresponding to Fickian transport) for all films, which
indicated that the rate of relaxation was higher than the rate of diffusion.
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Figure 6. Swelling behavior of CS/PAH films with different compositions.

Table 4. Diffusion parameters of different CS/PAH films.

Parameters CTH-0 CTH-1 CTH-2 CTH-3 CTH-4 CTH-5

n 0.355 0.160 0.280 0.098 0.442 0.138
Intercept —-1.58 —0.70 -1.25 —-0.31 —2.040 —0.51
k 0.457 —0.357 0.223 -1.204 0.713 —0.673

The experiment was repeated three times for each film.
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3.5.2. Swelling Behaviour in Ionic Solutions

The swelling behaviour of pure CS and CS/PAH blend films as a function of time was evaluated
in different ionic solutions, such as NaCl and CaCl.. The effect of the ionic concentration of
electrolytes on the swelling behavior of blend films is shown in Figures 7 and 8. These Figures
demonstrate that with the increase of concentration of electrolyte in swelling medium, the swelling
capacity of blend films significantly decreased. It was found that the nature of salt and the
concentration of ions had a noticeable influence on the swelling response. As the concentration of
both electrolytes (NaCl and CaClz) increased, the rate of swelling decreased (Tables 5 and 6). This
might be due to the generation of high-charge screening effects, which ultimately reduced the rate of
diffusion and osmotic pressure developed between the films and the external solvent. Consequently,
the diffusion of solvent into blend film decreased, resulting in lesser swelling. From Figures 7 and 8,
it can be inferred that maximum swelling was shown by CTH-1 in NaCl (0.1 M) compared to CaClz
(0.1 M). The swelling value for CTH-1 was 41 g/g and 26 g/g in NaCl (0.1 M) and CaCl (0.1 M),
respectively [77]. Furthermore, overall higher swelling response was noticed in NaCl solution, as
compared to other CaClz solutions. It was observed that the CTH-3 film was converted into gel-like
material in 0.1 M and 0.3 M CaClzsolutions.

Table 5. Data showing swelling behaviour of CS/PAH films in different molar concentrations of NaCl.

CTH-0 CTH-1 CTH-2 CTH-3 CTH-4 CTH-5
[NaCll Swelling SD Swelling SD Swelling SD Swelling SD Swelling SD Swelling SD
(g/g) (¥) (g/g) (¥) (g/g) (¥) (g/g) (¥) (g/g) (¥) (g/g) (¥)

01M 27.25 1.95 40.69 1.09 21.32 0.00 33.84 1.62 14.53 1.96 22.33 0.23
03 M 23.58 1.14 31.04 228 15.98 1.53 20.56 0.07 10.33 1.69 14.54 1.48
05M 14.95 0.95 24.66 1.51 12.86 0.07 18.65 1.04 9.74 1.52 10.70 0.38
0.7M 14.56 0.76 16.75 0.52 10.59 1.95 11.70 0.93 8.78 1.24 10.03 0.50
09M 211 0.92 10.38 1.22 9.34 1.40 10.56 1.49 8.12 1.73 10.07 1.24
1.0 M 0.84 0.83 1.79 1.02 8.10 0.59 7.85 1.74 8.14 0.17 5.27 1.07

SD means standard deviation; in order to obtain standard deviation, the experiment was performed
in triplicate for each film.

~8-CTH-0 —e=CTH-1 =#4=CTH-2 ==CTH-3 -8-(CTH-4 -e—C(CTH-5

swelling (g/g)
= = N N w w B S
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I

o
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Concentration (mol/L)

Figure 7. Swelling behavior of CS/PAH films in NaCl solutions of variable molar concentrations.
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Table 6. Data showing swelling behaviour of CS/PAH films in CaClz solutions of variable molar
concentrations.

CTH-0 CTH-1 CTH-2 CTH-3 CTH-4 CTH-5
[CaCl:] Swelling SD  Swelling SD  Swelling SD  Swelling SD  Swelling SD  Swelling SD
(g/g) (¥) (g/g) () (g/g) () (g/g) (+) (g/g) () (g/g) ()
01M 30.95 0.99 25.54 0.99 18.69 0.56 - - 24.83 0.84 23.87 1.21

03 M 14.55 0.49 17.22 1.26 12.16 1.63 - - 8.66 1.06 13.96 0.74
05M 7.04 0.90 9.50 1.59 10.82 0.69 8.91 1.69 7.48 0.15 7.51 0.56
0.7M 8.33 1.50 10.38 1.59 9.06 0.57 8.10 0.01 6.76 0.37 10.40 1.63
09M 5.67 0.98 10.06 0.97 9.18 1.89 7.09 0.75 8.82 0.18 11.70 0.62
1.0 M 7.11 0.25 11.88 1.07 7.80 0.68 4.42 0.26 11.17 2.86 8.15 1.23

SD means standard deviation; in order to obtain standard deviation, the experiment was repeated
three times for each film.

—&—-(CTH-0 =e—=CTH-1 =#=CTH-2 ==CTH-3 -#8-(CTH-4 -=e—CTH-5
35

Swelling (g/g)
[y (=3 N N w
o (6, ] o wv o

[6,]
M

0 T T T T T
0 0.2 0.4 0.6 0.8 1
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Figure 8. Swelling behaviour of CS/PAH films in different molar concentrations of CaClz solutions.

3.6. Cumulative Drug Release (CDR) Study

Ciprofloxacin hydrochloride monohydrate, a model drug, was loaded in two films coded as
CTH-1 and CTH-2 (Table 7). Based on encouraging results as described in Sections 3.1-3.5, the CTH-
1 and CTH-2 blend films were selected. These two blend films had a greater concentration of natural
polymer used in the present study (chitosan). However, CTH-3 and CTH-5 showed more solubility
in aqueous media and CTH-4 film had a greater concentration of PAH. The controlled drug release
from both films (CTH-1 and CTH-2) was studied in SGF (pH 1.2) as well as in PBS (pH 7.4) solution
as a function of time at 37 °C (Figure 9). In the case of SGF, it was observed that most of the drug,
around 88% from CTH-1 and 85% from CTH-2, was released in 50 min. On the contrary, in the PBS
solution, the CDR for CTH-1 and CTH-2 was around 93% in 90 min and 98% in 120 min, respectively.
The balance amount of drug could not be determined because both films converted into gel-like
material due to acidic dissolution in SGF and fragmented in PBS after 30 min (CTH-1) and 120 min
(CTH-1). The drug release in PBS solution at 120 min for CTH-1 sample was significantly higher in
the CTH-2 sample (mean = 95.30%, SD = 1.40) than the CTH-1 sample (mean = 91.44%, SD = 1.87), t
(4) = —2.86, p-value < 0.05. A similar pattern was observed for the SGF solution; mean for the CTH-1
sample was 88.39% (SD = 0.51), while the mean was 84.78% (SD = 0.48) for the CTH-2 sample; t (4) =
8.87, p-value <0.005. From these results, it could be deduced that the drug was released in a controlled
manner in the PBS solution, when compared to the SGF.
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Table 7. Data on cumulative drug release (%) in SGF and PBS solutions.

Time (min) CTH-1 *SD CTH-1 *SD CTH-2 SD CTH-2 SD
(PBS)% (#) (SGF)% (#) (PBS)% (#) (SGF)% (#)
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 62.11 0.90 40.21 0.30 46.47 0.50 47.21 0.30
20 68.19 1.00 66.42 0.50 64.95 0.60 56.56 0.50
30 78.55 1.20 80.45 0.30 75.60 0.40 80.45 0.30
40 90.50 1.50 88.26 0.30 79.88 0.70 84.74 0.30
50 91.30 0.90 88.39 0.60 84.63 0.10 84.80 0.60
60 92.73 2.00 -- -- 89.59 0.30 -- --
70 89.90 2.00 -- - 89.99 0.50 -- -
80 91.46 1.80 -- - 90.19 0.30 - -
90 92.09 1.80 -- -- 91.64 0.30 -- --
100 91.49 1.60 -- - 94.49 0.60 -- -
110 91.13 1.20 - -- 97.91 0.20 -- --
120 91.44 0.60 -- -- 95.31 0.60 -- --

* SD means standard deviation; in order to obtain standard deviation, the experiment was repeated
three times for each film.

100
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Figure 9. Data on cumulative drug release (%) in SGF and PBS solutions.

4. Conclusions

In this study, a drug delivery matrix based on chitosan/PAH blend films with different
compositions was successfully prepared by the solution casting method and their physicochemical
characteristics were evaluated. These films were found to have a homogenous architecture and
excellent surface morphology. AFM exhibited improvements in surface morphology when the PAH
concentration was increased up to 60% (w/w). CTH-1 (90% chitosan and 10% PAH) showed maximum
WCA, which was 115°. Moreover, the CS/PAH blend films exhibited varied swelling responses in
different media and sustained drug release behaviour in PBS, as compared to SGF. The swelling
response of blend films in deionized water showed a linear increase as a function of time, and CTH-
1(90% CS and 10% PAH) had a higher degree of swelling, which was around 122 g/g after 80 min, as
compared to the other blend films. The maximum observed swelling value in NaCl (0.1 M) for CTH-
1 was 41 g/g and in CaCl2 (0.1 M) 31 g/g for CTH-0 (100% CS). Two films were selected, CTH-1 (90%
CS and 10% PAH) and CTH-2 (80% CS and 20% PAH), for in vitro CDR at 37 °C. In SGF (pH 1.2), the
CDR for CTH-1 and CTH-2 was about 88% and 85% in 50 min, respectively. In SGF, both films were
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converted into gel-like material after 30 min due to lesser stability of films at lower pH. In the PBS
solution (pH 7.4), meanwhile, the CDR for CTH-1 and CTH-2 was around 93% in 90 min and 98% in
120 min, respectively. It can be concluded that the drug was released in a controlled manner in the
PBS solution, as compared to the SGF. The selected blend films showed a relatively reduced release
(CHT1 =88% in 50 min, CTH2 = 85% 50 min) in simulated gastric fluid (pH = 1.2) and maximum drug
release (CHT1 = 93% in 90 min, CTH2 = 98% 120 min) in phosphate buffer saline (pH = 7.4), thus
indicating a pH-responsive (smart) nature. Although the CTH-1 and CTH-2 films showed remarkable
drug release, they converted to a gel-like material over a period of time (30 min) in acidic pH (pH =
1.2). This showed the pH-responsive nature of CTH-1 and CTH2. In summary, the results show that
chitosan CS/PAH are excellent drug delivery matrices for drug release at pH 7.4. These blend films
can be employed for injectable drug delivery systems, tissue regeneration, and associated biomedical
applications such as wound dressing due to good compatibility between the drug and the film matrix;
they may, however, may not be suitable candidates for oral drug administration.
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