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Abstract: The aim of this work was to explore the feasibility of using selective laser sintering (SLS)
3D printing (B3DP) to fabricate orodispersable printlets (ODPs) containing ondansetron.
Ondansetron was first incorporated into drug-cyclodextrin complexes and then combined with the
filler mannitol. Two 3D printed formulations with different levels of mannitol were prepared and
tested, and a commercial ondansetron orally disintegrating tablet (ODT) product (Vonau® Flash)
was also investigated for comparison. Both 3D printed formulations disintegrated at ~15 s and
released more than 90% of the drug within 5 min independent of the mannitol content; these results
were comparable to those obtained with the commercial product. This work demonstrates the
potential of SLS 3DP to fabricate orodispersible printlets with characteristics similar to a commercial
ODT, but with the added benefit of using a manufacturing technology able to prepare medicines
individualized to the patient.

Keywords: three-dimensional printing; 3D printed drug products; printing pharmaceuticals;
additive manufacturing; rapid prototyping; orally disintegrating tablets (ODTs); orally
disintegrating printlets (ODPs); taste masking; personalized medicines

1. Introduction

Ondansetron is an anti-emetic drug, listed on the World Health Organisation (WHO) List of
Essential Medicines, which is used as the first-line therapy for chemotherapy- and radiation-induced
nausea and vomiting with a dose of 16 mg daily [1]. Ondansetron is commercially available as soluble
films or orally disintegrating tablets (ODT) due to its low solubility in water and to minimise water
intake, which can induce vomiting [2]. However, one of the challenges for delivering ondansetron in
the mouth is its bitter taste. Different taste-masking and formulation strategies have been reported,
including the use of sweeteners, ion-exchange resins [3], superdisintegrants such as crospovidone [2],
glycine-chitosan mixtures [4] or enteric polymers such as Eudragit [5].

A family of taste masking excipients often used are cyclodextrins. They are cyclic
oligosaccharides that can encapsulate hydrophobic drugs into their cavity while having a hydrophilic
outer surface [6,7]. The formation of these inclusion complexes helps to improve the physiochemical
properties of hydrophobic drugs, increasing their water solubility, bioavailability and stability [6].
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The ability of cyclodextrins to form such complexes is also exploited for taste-masking purposes of
oral medicines, which could tackle the bitter-taste of ondansetron. Cyclodextrin-drug inclusion
complexes can be easily prepared in different ways, with co-precipitation being the most common
[8]. In this method, the cyclodextrin is dissolved in an appropriate solvent such as ethanol, and the
drug is then added gradually under continuous stirring until evaporation of the solvent. The drug-
cyclodextrin complexes may be also formed “in situ” in the mouth facilitated by the saliva as a solvent
[6].

Despite the high safety profile of ondansetron, one of its adverse effects is arrhythmia and dose-
dependent QT-interval elongation when given with other medications, which requires monitoring
and control of dose [9]. QT-interval elongation is a life-threatening arrhythmia, which can be induced
by many drugs and lead to sudden cardiac death. For vulnerable populations such as cancer patients
or the elderly taking different medicines, the use of personalised and dose-specific dosage forms is
desirable.

Three-dimensional printing (3DP) is an innovative additive manufacturing technology that has
come to the fore in the preparation of personalised dose printlets (3D printed tablets) [10-14]. 3D
printing is an umbrella term that encompasses various technologies, many of which have already
been evaluated in the pharmaceutical field [15-18], including powder bed inkjet printing, fused
deposition modelling (FDM) [19-27], semi-solid extrusion (SSE) [28-33], selective laser sintering
(SLS), direct powder extrusion (DPE) [34] and stereolithography (SLA) [15,35-38].

Selective laser sintering (SLS) is one of the latest and most advanced technologies proposed for
the preparation of solid dosage forms [39]. SLS is a one-step fabrication process involving a laser to
selectively sinter powder particles in a layered manner to form 3D structures. The SLS printer consists
of a powder bed, a powder reservoir, a roller and a laser source. The powder for printing is
homogenously spread on the powder bed by the roller. Depending on the 3D design of the object,
the laser is focused to draw specific patterns on the powder surface sintering and agglomerating the
powder particles. Once the first layer is sintered, the powder bed moves down while the reservoir
bed moves up to allow for the delivery of a new layer of powder on top of the previous one. The
technology was originally designed to print objects at high temperatures using metallic, ceramic or
thermoplastic materials like PA12 (Nylon) or PEEK (Polyether ether ketone) [40]. For a while, SLS
printing technology was not considered suitable for the preparation of medicines due to the potential
degradation of the drugs caused by the high energy of the CO: lasers that work in the IR region of
the spectra [15]. Nowadays, however, the use of SLS printers that use lower intensity diode lasers has
made it possible to fabricate novel drug products with no drug degradation [41]. In the
pharmaceutical field, SLS 3D printing has been recently used to prepare different types of printlets
[42], miniprintlets [43], drug delivery lattice structures [44], drug delivery devices [45] and
formulations in the form of films and printlets for quick dose verification using a rapid point-and-
shoot approach [46].

One of the potential applications of SLS technology is its ability to fabricate orally disintegrating
tablets (ODTs) [47]. The definition of ODTs in the European Pharmacopoeia defines these systems as
oral dosage forms that disintegrate in less than 3 min [48], while according to the Food and Drug
Administration (FDA), they are oral dosage forms that dissolve within 30 s when in contact with
saliva [49]. The accelerated disintegration of ODTs enhances the bioavailability and absorption of
drugs [50,51], and ODTs are more appropriate for patients with dysphagia or those who have
difficulties in swallowing e.g., children and elderly. A variety of methods are available to produce
ODTs such as freeze-drying, spray drying and direct compression. These methods, however, are
limited by high manufacturing costs and complexity, therefore, more cost-effective methods are
required [52,53].

The aim of this study was to develop new orally disintegrating printlets (ODPs) incorporating
ondansetron-cyclodextrin complexes using SLS 3D printing. Mannitol was included as a filler due to
its taste masking properties. The performance of the 3D printed formulations were evaluated and
compared to a commercial ODT formulation of ondansetron (Vonau® Flash 8 mg).
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2. Materials and Methods

2.1. Materials

Ondansetron Hydrochloride USP grade was obtained from Sun Pharma, Mumbai, India (MW
293 g/mol), B-Cyclodextrin Cavamax® W7 (MW 1135 g/mol) was obtained from Ashland, Ashland,
Diisseldorf, Germany. Kollidon® VA-64 (vinylpyrrolidone-vinyl acetate copolymers) was obtained
from BASF, London, UK. Candurin® Gold Sheen was purchased form Azelis, Hertford, UK. Mannitol
Parteck® Delta M was obtained from Merck, Darmstadt, Germany.

The commercial medicine tested in this study is Vonau® Flash (Biolab, Brasil), an ODT
ondansetron hydrochloride formulation. Its composition includes mannitol, microcrystalline
cellulose, crospovidone, magnesium stearate, silicon dioxide, strawberry flavour and aspartame. The
product is available in two strengths, 4 mg and 8 mg ondansetron.

2.2. Preparation of 1:5 Ondansetron: Cyclodextrin Complex

20 g of cyclodextrin powder was dissolved in 40 mL of ethanol, then 4 g of ondansetron was
added gradually under continuous stirring. The wet mixture was then placed in an oven at 40 °C
until the evaporation of the ethanol.

2.3. 3D Printing Process

A mortar and pestle was used to blend 100 g of a combination of the drug-cyclodextrin complex
and excipients (Table 1). In order to enhance energy absorption from the laser and facilitate
printability 3% of Candurin® Gold Sheen (colorant) was incorporated into the formulations. The final
mixture of materials were then placed into a Desktop SLS printer (Sintratec Kit, AG, Brugg,
Switzerland) to prepare the oral dosage forms. Cylindrical printlet templates were designed with
AutoCAD 2014 (Autodesk Inc., San Rafael, Ca., USA) to obtain an ondansetron dose of 8 mg in the
3D printed formulations (12.4 mm diameter x 3.6 mm height). 3D templates were transferred as a STL
format files into the 3D printer Sintratec central software Version 1.1.13 (Sintratec Kit, AG, Brugg,
Switzerland).

Table 1. Composition of the formulations (w/w).

Formulation 1:5 Ondansetron: Cyclodextrin Complex  Kollidon VA-64  Mannitol  Candurin® Gold Sheen

Formulation-I 22% 25% 50% 3%
Formulation-II 22% 15% 60% 3%

The powder mixture of excipients and drug was transferred by a sled from the platform that
contains the powder reservoir to the building platform of the printer creating a flat layer of material
[54]. The parameters surface temperature (100 °C) and chamber printing temperatures (80 °C) were
kept constant. The diode laser (445 nm, blue laser, 2.3 W) sintered the powder on to the building
platform following a particular arrangement based on the .3D model design (laser scanning speed
200 mm/s). Then, the reservoir platform moved up, the building platform moved down, and the sled
delivered a thin layer (100 um) of material on top of the previous layer. This procedure was reiterated
layer-by-layer until the object was finished. At the end, the printlets were separated from the powder
and the excess powder was removed. Printlets of each formulation were printed in batches of 6.

2.4. Thermal Analysis

Differential scanning calorimetry (DSC) was used to characterise the powders and drug-loaded
3D printed formulations (Q2000 DSC, TA instruments, Waters, LLC, New Castle, DE, USA) (heating
rate 10 °C/min, purge gas (Nitrogen) flow 50 mL/min). The calibration for cell constant and enthalpy
was done with indium (Tm = 156.6 °C, AHf = 28.71 J/g) according to the manufacturer’s instructions.
Aluminium (TA) pans and lids (Tzero) were used with an average sample mass of 7-9 mg. TA
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Advantage software (version 2.8.394) and TA Instruments Universal Analysis 2000 were used to
collect and analyse the data, respectively.

2.5. X-ray Powder Diffraction (XRPD)

Circular 3D printed films (23 mm diameter x 1 mm height) obtained from the mixtures of drug
and excipients were prepared and analysed. Raw ondansetron powder and the powder mixtures
were also tested. The X-ray powder diffraction data was obtained using a Rigaku MiniFlex 600
(Rigaku Europe, UK) with a Cu Ka X-ray source (A = 1.5418A). Intensity 15 mA, voltage applied 40
kV, angular range of data acquisition 3—60° 20, stepwise size of 0.02°, speed of 5°/min.

2.6. Characterisation of the Printlets

2.6.1. Determination of Printlet Morphology

The diameter and thickness of the printlets were measured using a digital calliper. Pictures of
the printlets were taken with a camera Nikon Coolpix 56150 (Nikon, Tokyo, Japan) with the macro
option of the menu.

2.6.2. Determination of the Mechanical Properties of the Printlets

The breaking force of each printlet type (17 = 6) was determined using a tablet hardness tester
TBH 200 (Erweka GmbH, Heusenstamm, Germany). An increasing force was applied perpendicular
to the formulation axis from opposite sides of a printlet until it breaks.

2.6.3. Scanning Electron Microscopy (SEM)

A scanning electron microscope (SEM, JSM-840A Scanning Microscope, JEOL GmbH, Tokyo,
Japan,) was used to take images of the surface and cross-section of the printlets. A thin layer of carbon
(~30-40 nm) was used to coat all the samples.

2.6.4. X-ray Micro Computed Tomography (Micro-CT)

A X-ray microcomputed tomography scanner (SkyScan1172, Bruker-microCT, Billerica, MA.,
USA) examined the internal structure, density and porosity of the 3D printed formulations (scanner
resolution: 2000 x 1048 pixels). 3D imaging was completed by rotating the object through 180° with
steps of 0.4° and 4 images were recorded at each step. NRecon software (version 1.7.0.4, Bruker-
microCT, Bruker-microCT, Billerica, MA, USA) was used for image reconstruction. 3D model
rendering and viewing were completed using the software CT-Volume (CTVol version 2.3.2.0,
Bruker-microCT, Billerica, MA, USA). The data was analysed with the software CT Analyzer (CTan
version 1.16.4.1, Bruker-microCT, Billerica, MA, USA). The density of the printlets was indicated with
different colours. Porosity values were calculated using the 3D analysis in the morphometry preview
(100 layers were chosen and evaluated at the top, central and bottom part of the printlets).

2.6.5. Determination of Drug Content by High-performance Liquid Chromatography (HPLC)

Printlets of each formulation (n=2) were dissolved in volumetric flasks containing HPLC water
(100 mL). Samples of the solution were filtered through a 0.4 um filter (Millipore Ltd., Cork, Ireland)
and the drug concentration quantified by HPLC (Hewlett Packard 1050 Series HPLC system, Agilent
Technologies, London, UK). Injecting volume: 20 pL, mobile phase A: NaH:PO: buffer (30%) and
mobile phase B: Acetonitrile (70%), column: Eclipse Plus C18 5 um, size: 250 x 4.6 mm (Restek, State
College, PA.,USA), temperature: 30 °C, flow rate: 1 mL/min, wavelength: 216 nm.

For determination of impurities, HPLC analysis was performed according to USP monograph
for ondansetron [55].

A buffer solution was prepared by dissolving 2.8 g NaH2PO+H20 in 1.00 L of HPLC water. The
pH was adjusted to 5.40 (+0.05) with a sodium hydroxide solution. Mobile phase A was prepared by
mixing 0.85 L buffer solution with 0.15 L acetonitrile. Mobile phase B was prepared by mixing 0.60 L
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buffer solution with 0.40 L acetonitrile. Formulations were dissolved into a 20 mL volumetric flask
and 2 mL hydrochloric acid (0.1 M) was added. Then the volume was adjusted with mobile phase A
to 20 mL. Samples of solution were then filtered through 0.45 um filters (Millipore Ltd., Ireland) and
degradation products assessed with high-performance liquid chromatography (HPLC) (Agilent 1100
Series HPLC system, Agilent Technologies, Germany) by an external standard method. The validated
HPLC method entailed injecting 20 uL samples for analysis using a gradient of mobile phase A and
mobile phase B (0 min: 100% mobile phase A; 20 min: 100% mobile phase B; 22 min: 100% mobile
phase B; 23 min: 100% mobile phase A until 30 min) through a spherical nitrile silica gel 5 um column,
250 x 4.6 mm (Waters, Germany) maintained at 20 °C. The mobile phase was pumped at a flow rate
of 1.5 mL/min and the eluent was screened at a wavelength of 216 nm. The limit of quantification was
0.05%. Analysis was performed in triplicate. The mean values are reported.

2.6.6. Disintegration Testing Conditions

Disintegration tests of the commercial formulation and the printlets were conducted using a USP
disintegration apparatus. The basket was filled with 650 mL of water at 37 + 0.5 °C. One printlet was
gently placed in each tube and disks were placed. The time for the printlet to completely disintegrate
was then observed. Six printlets of each formulation were evaluated.

2.6.7. Dissolution Testing Conditions

Drug dissolution profiles for the commercial and the 3D printed formulations were obtained
with a USP-II apparatus (Model PTWS, Pharmatest, Germany). The formulations were placed in 500
mL of 0.1 M HC], as indicated in the USP monograph for ondansetron ODT. USP-II was fixed at a
paddle speed of 50 rpm and at a temperature of 37 + 0.5 °C (n = 3). An in-line UV spectrophotometer
was used to determine the percentage of drug released from the printlets (Cecil 2020, Cecil
Instruments Ltd., Cambridge, UK) at 310 nm using Icalis software (Icalis Data Systems Ltd.,
Berkshire, UK).

3. Results and Discussion

Two different formulations incorporating different percentages of mannitol and the polymer
Kollidon VA-64 were initially tested to assess their printability (Table 1). The excipients were selected
with the aim of producing accelerated drug release formulations, with ultimately, the objective of
fabricating printlets with orally disintegrating characteristics. The formulations incorporated the
ondansetron as drug-cyclodextrin complexes to facilitate drug dissolution and to provide potential
taste masking properties. The presence of cyclodextrin did not affect the sintering process even
though the particle size of the complexes was not controlled.

The fabrication of the ODPs was successfully achieved at the laser scanning speed of 200 mm/s
to obtain two different types of formulations. Different laser scanning speeds were evaluated in
preliminary tests based on results from previous studies [47]. The selected scanning speed was 200
mm/s based on the mechanical properties and the dissolution characteristics of the printlets. All
formulations contained 22% w/w of ondansetron-cyclodextrin mixture (ratio 1:5) and 3% w/w colorant
Candurin® gold sheen. Candurin® gold sheen is a pharmaceutical excipient added to the formulations
to facilitate the printing process [41]. As the sintering process without the use of colorants is not
successful as the powder did not absorb the light at the wavelength of the laser of the printer. No
interactions were observed between Candurin® gold sheen and the rest of the components of the
formulations.

The printlets were cylindrical in shape, and yellow in colour due to the colorant (Figure 1).
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Figure 1. Images of the Formulation I (left) and Formulation II (right) (units are in cm).

SEM images provided visual information on the internal structure of the printlets (Figure 2). The
cross-section of the formulations showed a very porous structure that may facilitate the penetration
of liquid in the formulations leading to a rapid disintegration of the printlets. At printing
temperatures (100 °C) Kollidon VA-64 (Tg 101 °C, [56]) is on a rubbery state and following the passage
of the laser, the polymer particles connect to each other forming bridges and sintered areas. On the
other hand, mannitol has a much higher melting point (168 °C) and at printing temperatures, the
powder particles partially dissolve in the rubbery Kollidon VA-64 and the rest is trapped unmodified
within the polymer matrix. The fact that part of the mannitol remained in the powder form allowed
the manufacture of highly porous matrix printlets with fast disintegrating properties. Additionally,
mannitol is an osmotic agent [57], the presence of the osmotic sugar in the formulation, may allow
the printlet to rapidly imbibe water into its core generating an internal pressure that can break apart
the sintered bridges. Formulation I showed larger sintered areas due to the higher content of Kollidon
VA-64 (Figure 2A).

2mm 2mm

(&) (B)

Figure 2. SEM Images of the vertical cross-section of the Formulation I (A) and II (B).

X-ray micro-CT is a powerful tool to visualise the internal structure and density of the 3D printed
formulations (Figure 3) and it can be used to calculate their porosities. Closed porosity identifies the
pores of the printlets that do not have contact with the external environment. If the printlets are
immersed in the dissolution medium, the medium cannot enter into the closed pores unless the
medium dissolves the external walls of the pores. On the other hand, open porosity identifies the
empty spaces inside the 3D printed formulations that are connected with other pores and with the
external environment. In the dissolution medium a structure that contains open pores would dissolve
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quicker than the corresponding structure with closed pores. The sum of closed and open pores
defines the total porosity. In this study, both formulations showed a negligible closed porosity but a
similar high total porosity (37.2-41.5%). Formulation I showed slightly lower open porosity (36.3%)
compared to Formulation II (41.3%). The difference may be due to the higher amount of Kollidon
VA-64 in Formulation I that produce more sintered zones. Both formulations showed a similar
density, represented as comparable in colour (Figure 3). All the small red areas in the CT image
(Figure 3) represent the air (low density) indicating the presence of pores. Formulation II shows more
red areas indicating a lower degree of sintering and therefore an increased porosity.

Formulation I Formulation II

Low Density High

Formulation I Formulation II

Closed porosity (%)  0.4+0.1 Closed porosity (%)  0.2+0.1
Open porosity (%) 36.3+0.1 Open porosity (%) 41.3+0.2
Total porosity (%) 37.2+0.2 Total porosity (%) 41.5+0.2

Figure 3. X-ray micro-CT Images of the (Formulation I) and (Formulation II).

Printlets of both formulations show similar dimensions (Table 2) less than 12 mm in diameter
and around 4 mm in height. Formulation II shows the closest dimension (11.97 mm diameter x 3.78
mm height) to the designed 3D model (12.4 mm diameter x 3.6 mm height). The printlets obtained
from both formulations also show very similar weights around 215 mg (Table 2), which is needed for
a dose of 8 mg of ondansetron.

Table 2. Characteristics of the formulations.

. Mean Mass+  Diameter + Height £ Breaking % Drug Load‘mg Disintegration
Formulation SD (mg) SD (mm) SD (mm) Force (N) from Theoretical Time % SD (s)
Content + SD (%)
Formulation I 2172+42 11.7+0.1 44+02 14.7+25 98.6+£2.2 143+3.1
Formulation II 211.3+7.3 11.9+0.1 3.7+0.1 18.5+5.0 98.1+1.7 153+2.3

These formulations do not break readily during manipulation and show properties appropriate
for handling. Both formulations have similar breaking force values of 14.7 N for Formulation I and
18.5 N for Formulation II (Table 2). Even though the values are reduced, the fact that there is no
minimum requirement for the breaking force of ODT formulations would make them suitable if they
are conditioned in blister packs like most ODT formulations.

The drug loading of the printlets was quantified using HPLC, and it was very similar to the
theoretical values (Table 2). Drug degradation is a problem that could have been encountered in the
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study, therefore, we quantified the organic degradation products of ondansetron by HPLC analysis
according to the USP monograph. All detected organic degradation products of ondansetron showed
impurities below 0.2% and confirmed therefore that no degradation of ondansetron occurs during
SLS printing. The small difference in drug loading from the theoretical content may be explained by
small variations in the distribution of the drug in the excipients and due to experimental variations.
Conventional SLS printers that use CO: lasers working in the IR region of the spectra may burn and
modify the properties of the polymer and degrade the drugs, however, the desktop printer used in
this study has a blue diode laser with lower intensity working in the blue region of the spectra. Since
no degradation took place, this lower intensity together with the different wavelength has proved
safe for printing the drug ondansetron.

DSC and X-ray studies of the individual components of the formulations, of 1:5 ondansetron-
cyclodextrin complexes, of the mixture of the components before the printing process and of the 3D
printed formulations were performed to characterize the state of the drug and how it is incorporated
into the 3D printed formulations (Figures 4 and 5).

DSC data of the ondansetron pure powder indicated that it exhibited a melting endotherm at
approximately 180 °C. 1:5 ondansetron-cyclodextrin complexes showed a wide endothermic peak
indicative of water loss usually observed in amorphous form and a small endothermic peak at around
180 °C which is the melting point of ondansetron (Figure 4). Different drug-cyclodextrin complexes
were tested in the study 1:1, 1:5, 1:20 to optimise the preparation of the complexes to get the best
inclusion. The ratio 1:1 showed crystalline form of the drug indicating that most of the drug was not
included in the CD complexes (Data not shown). The 1:5 and 1:20 ratios showed very low and no
crystalline form of ondansetron respectively indicating that most of the drug was incorporated in the
drug-cyclodextrin complexes or in an amorphous state (Figure 4, shows DSC data from 1:5
ondansetron-cyclodextrin). The ratio 1:5 ondansetron-cyclodextrin was selected to prepare the
printlets because it offers the best proportion to obtain the right dose of the drug in the printlets
without increasing considerably the amount of excipients (CD) required. Although a small part of
the drug may be not incorporated into the cyclodextrin, drug-cyclodextrin complexes may be formed
“in situ” in the mouth facilitated by the saliva as a solvent. The DSC data of the formulations before
and after printing showed a sharp endothermic peak at around 168 °C which corresponds to the
melting point of the mannitol. The absence of the endothermic peak corresponding to the melting
point of the ondansetron indicates that the drug is in the amorphous form within the formulations or
that the drug percentage is so low that the crystals (if any) are not detected using DSC.

X-ray diffractograms do not provide clear information and cannot be used to confirm the results
from the DSC (Figure 5). XRPD patterns of the individual components show that mannitol and the
drug-cyclodextrin complexes have some peaks corresponding to crystalline forms. Kollidon VA 64
showed wide halos indicative of the amorphous form. Crystalline ondansetron peaks are not
observed in the drug-cyclodextrin complexes incorporated into the formulations due to the
crystallinity of mannitol. XRPD patterns of the formulations both before and after printing showed
sharp peaks which are indicative of a crystalline form of mannitol but do not provide useful
information about the state of the drug and how it is incorporated into the polymers.

Drug release profiles from the printlets were obtained using a USP II dissolution test (Figure 6).
Drug dissolution profiles for both formulations show that the drug is almost completely dissolved in
around 5 min, the formulations disintegrated and dissolved so fast that conventional USP II
dissolution tests are not useful in comparing these formulations.

The disintegration time of the printlets was determined using the compendial disintegration
equipment. The printlets completely disintegrated in around 15 s (Table 2), which agrees with the
dissolution profiles. The disintegration times are in line with the values of the commercial
formulation (14.3 + 2.7 s). As the disintegration time is lower than 30 s, these printlets would be
considered ODTs according to the European Pharmacopoeia and the FDA.

The increment of the percentage of mannitol (60% w/w) in Formulation II compared to
Formulation I did not change significantly the mechanical characteristics of the printlets although it
was expected to reduce the mechanical properties and increase the drug release rate by reducing the
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disintegration time. Only a low percentage of Kollidon VA-64 (15% w/w) was enough to obtain the
3D printed formulations and maintain the structure of the printlets. The reduction of the percentage
of Kollidon VA-64, which is the polymer that maintains the structure, to only 15% w/w in formulations
II allows the use of 82% w/w for other materials like drugs (allowing higher drug loading) or
excipients like mannitol or cyclodextrins (for taste masking effects).

6 —\F\ //—D-Mannitol
54 —— Kollidon VA 64
4 Formulation Il after printing
’\O\" \ Formulation Il before printing
S 3 \
g | \ Formulation | after printing
E 24 Formulation | before printing
©
z 4] —— 1:5 OND:CD
—— Cyclodextrin (CD)
04
—— Ondansetron (OND)
a -14
S
&
-2 T T T T T T

100 150 200
Temperature (°C)

Figure 4. DSC thermograms of pure drug, individual polymers, powder mixtures before printing and
the printlets.

The results confirm that SLS 3D printing technology can be a suitable technique for the
manufacture of ODPs incorporating cyclodextrins. The rapid disintegration time makes these
formulations comparable to commercial ODT formulations or to formulations prepared by powder
bed inkjet 3D printing formulations already available in the market [58].

SLS technology can be used with a wide variety of excipients, modifying the drug release profile
of formulations and transforming them to be amenable for ODP formulations. SLS 3D printing has
the potential to be scaled up in a similar way to powder bed inkjet 3D printing, without the potential
issue of using water in the process. The technology could be also adapted to produce 3D printed
formulations at the point of dispensing as the printlets manufactured by the solvent-free process can
by readily dispensable and would not require an additional drying step following printing. The
opportunity to manufacture this drug product in an automatic manner close to the point of
dispensing opens new opportunities in the implementation of personalised medicine as there is the
need for automatic, cost-effective and reliable systems to prepare oral medicines personalised to the
individual.
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Figure 5. X-ray powder diffractograms of pure drug, individual polymers, powder mixtures before
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Figure 6. Dissolution profiles of the commercial and the 3D printed formulations.
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4. Conclusions

SLS 3D printing was used to manufacture orally disintegrating 3D printed printlets of two
formulations of ondansetron. The formulations included ondansetron in drug-cyclodextrin
complexes and a high percentage of mannitol (up to 60%) to improve taste masking. Both printlets
types showed fast disintegration (~15 s) and released more than 90% of the drug in 5 min independent
of the mannitol content. This work demonstrates the potential of SLS 3DP to fabricate orodispersible
printlets comparable in disintegration time and drug release rate to a commercial ODT using a
manufacturing technology amenable to the preparation of personalised dose medicines.
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