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Abstract: Metronidazole (MT) is an important drug available for Helicobacter pylori infection treatment.
However, in the past few years, this drug has presented effective reduction for infection control, one of
the most important reasons is attributed to the reduction of retention time in the stomach environment.
Mucoadhesive nanostructured polyelectrolyte complexes (nano PECs) based on chitosan (CS) and
hypromellose phthalate (HP) were rationally developed using a full factorial design (21

× 21
× 31),

for the incorporation of MT based on the enhancement of the antimicrobial potential against active
Helicobacter pylori, in the stomach. Different mass ratios of CS:HP (w/w) were tested, reaching the
most promising ratios of 1:0.1, 1:0.5, and 1:1, and two methods of polymers addition (pouring-I
and drip-II) were also evaluated. From method I, the obtained particles presented a diameter in
the range of 811–1293 nm (Z-average) and a polydispersity index (PDI) between 0.47 and 0.88.
By method II, there was a significant reduction in diameter and PDI to 553–739 nm and 0.23 at
0.34, respectively. The drug incorporation also resulted in a reduction in the diameter and PDI of
the nano PECs. All samples showed positive zeta potential, about 20 mV, and a high percentage
of MT incorporation (±95%). The method factor presented a greater influence on the nano PECs
characteristics. Interactions in the system constituents were indicated by the FTIR data. Nano PECs
mucoadhesiveness was observed and the composition and charge density were responsible for this
phenomenon. MT dissolution evaluation showed the similarity of the dissolution profiles of free and
loaded MT, in which almost 100% of the drug was in the simulated gastric medium in 120 min of
testing. The in vitro antimicrobial potential against H. pylori of loaded nano PECs were measured
and the minimum inhibitory concentration observed for free MT was >2000 µg/mL, while for the
incorporated MT lower values were observed, showing an increase in the encapsulated MT activity.

Keywords: mucoadhesive nanostructured polyelectrolyte complexes (nano PECs); chitosan;
design of experiments; adsorption isotherms; in vitro dissolution test
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1. Introduction

Infections caused by Helicobacter pylori infections in stomach environment are the most prevalent
infection diseases all over the world, affecting around half of the world’s population [1]. Although a large
part of the population present this bacteria in stomach microbiota, the presence of this microorganism
can be associated with the occurrence of some gastrointestinal disorders such as gastritis, ulcers and,
in some cases, gastric cancer [2].

Several therapeutic schemes based in the use of drugs with antibacterial potential has been
employed for the treatment of H. pylori infections. One of the therapeutic strategies is the triple therapy,
consisting of a proton pump inhibitor and two antibiotics: amoxicillin, clarithromycin, or metronidazole
(MT) [3]. In some cases, the use of this drug association is effective to eradicate almost 91% of the
bacterial load [4]. Although, the triple therapy is the most efficient therapeutic approach, the bacterial
resistance to MT is more prevalent than with other antibiotics. In England, between 2000 and 2005,
the MT resistance was reported in 25% of the evaluated clinical cases [5].

MT is a drug from the imidazole class, in which important therapeutic profiles are presented, such as
antiparasitic, antifungal, and antibacterial [6]. This drug has a low molecular weight (171,156 g·mol−1)
with pKa = 2.38. MT is classified as class I in the Biopharmaceutical Classification System; high solubility
(in water, 11,000 mg·L−1 at 25 ◦C) and high permeability, a limiting property for the local therapy. In addition,
the high solubility and permeability associated to the oral administration, can result in systemic adverse
effects, such as pain in the stomach area, nausea, vomiting, diarrhea, metallic taste in the mouth, swelling,
redness, and rare but serious neurotoxicity [7,8].

The antibacterial action of MT is based on the reduction reaction, catalyzed by bacterial enzymes,
in which the nitro group is reduced to a nitroanion radical, resulting in damage to the bacterial
DNA. In contrast, the bacterial resistance mechanism to the MT is related to the inactivation or lesser
expression of the genes responsible for the enzymes rdxA production (encodes an oxygen-insensitive
NADPH nitroreductase) and frxA (encodesan NADPH flavin oxidoreductase), which are responsible
for the reduction reaction [6,9]. Additionally, studies have presented that efflux pumps can act in the
MT concentration reduction in the bacteria, which promotes the decrease of therapeutic efficiency [10].

In this context, the nanoencapsulation of MT into a mucoadhesive system can be an interesting
alternative for MT delivery in areas colonized by bacteria, increasing the drug retention and
internalization, minimizing the microbial resistance and side effects of the therapy.

Several studies show that nanostructured systems are easily internalized to improve the drug
performance, due to properties related to the surface charge and the administered area [11–15].
Safarov and colleagues reported that the nanosized systems can specifically interact with target
microorganisms through surface receptors, transporting the antibacterial agent through these structures.
These authors also proposed that the particles can be adsorbed to the region and/or in the bacterial
surface, releasing the drug continuously and punctually [16].

The efficiency of nanosystem based on the approaches for MT encapsulation has been continuously
reported in important studies. Yeh et al. (2020) demonstrated the potential of different types of
nanocarriers to convey different drugs and active substances, including MT, and the ability in the
treatment of H. pylori infections was reported. Among the systems presented, some of those that
stood out were those produced based on chitosan (CS), due to the cationic charge and, consequently,
the bacterial interaction ability and the mucous membranes [17].

The mucoadhesiveness is a property that can allow the prolongation of the nanocarriers residence
time in the action site, promoting a closer contact with the permeation barrier, favoring the interaction
in the nano-biointerface and the local drug concentration improvement [18,19].

The use of natural or semisynthetic polymers in the development of nanocarriers is an advantageous
tool due to the wide variety of structures of these materials, such as the presence of hydrophilic groups
and surface charge that allow their chemical and/or physical modification, forming new materials
with specific properties for a specific use [20]. The choice of polymers association, with particular
characteristics such as mucoadhesiveness, enzymatic degradation resistance, and solubility affected
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by pH changes can result in the development of nanostructures with modulated properties, able to
improve the therapeutic efficacy in diseases caused by bacterial species, especially in the treatment of
H. pylori infections [21–24].

In this work, CS and hypromellose phtalate (HP) were selected for the nanostructured
polyelectrolyte complexes (nano PECs) construction.

The CS and HP are safe, biocompatible, biodegradable, and hydrophilic polymers. CS is a
polysaccharide, derived from chitin, mainly extracted from crustacean exoskeleton that, in acidified
aqueous media, becomes cationic, due to the protonation of its amino groups. Its ability to establish
electrostatic interactions with the mucin sialic acid residues, makes CS material with important
mucoadhesive properties [25–27].

The HP is a cellulose derivative, widely used in the pharmaceutical industry for enteric coating
films creation in solid dosage forms. Their use is able to promote a marked porosity in the systems matrix,
swelling capacity and buoyancy being important parameters for gastric retention phenomena [28].
In addition, previously studies performed in our research group suggested that HP is able to be
modulated by the drug methotrexate permeability and cellular accumulation, allowing the local action
of the drug [29]

Due to the presence of functional groups, in CS and in HP (Figure 1), it is possible to create
interactions in the oppositely charged polymers to obtain supramolecular complexes. This technique is
known as polyelectrolytic complexation, and has important technological advantages, such as avoiding
the use of organic solvents and high energy, in addition being a relatively low cost technique [30,31].
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Figure 1. Molecular structures. (A) Representation of monomeric units forming chitosan,
N-acetyl-d-glucosamine, and predominance of d-glucosamine, with acetamide and amine groups in red.
(B) Representation of monomeric units of 2-hydroxypropylmethyl ether, phthalic acid ester (HPMCP),
with substitute groups in red, indicated by the arrow. (C) Metronidazole.

Despite polyelectrolyte complexation being a technique widely used for nano PECs production,
few studies explore the influence of physical-chemical parameters in the formation process.
Some studies can provide valuable information in order to standardize the methodologies for nano
PECs obtention, as well as the control of experimental variables, thus creating particles with desirable
and reproducible characteristics.

The aim of this study was to evaluate the process variables, using experimental design,
which influences the formation of CS and HP-based nano PECs, containing MT. Nano PECs
characterization and in vitro assay against H. pylori were performed in order to evaluate the efficacy of
the developed system.
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2. Materials and Method

2.1. Materials

Low molecular weight chitosan (120 kDa; deacetylation degree of 90–95%, Sigma Aldrich®,
St. Louis, MO, USA), hypromellose phthalate (75 kDa; phytalyl content of 31%, Shin-Etsu®,
Tokyo, Japan), Müeller Hinton agar plus 5% sheep blood; Müeller Hinton broth supplemented with
50% fetal bovine serum; Helicobacter pylori bacterial strain (ATCC 4354); metronidazole (Henrifarma®,
São Paulo, Spain); mucine type II (Sigma Aldrich®); resazurin (Sigma Aldrich®). All the other materials
used were of analytical grade and obtained from commercial suppliers. Milli-Q grade water (Millipore,
Molsheim, France) was used for sample preparation and the assays.

2.2. Methods

2.2.1. Evaluation of Polymeric Ratio, MT Association, and Method Influence on the Formation and
Physical-Chemical Characteristics of Nano PECs

Nano PECs were prepared by polyelectrolytic complexation method [19]. The HP dispersion
(2 mg·mL−1) in sodium hydroxide (0.1 mol·L−1) was added into the CS dispersion (4 mg·mL−1)
in acetic acid (0.1 mol·L−1), under magnetic stirring (Magnetic Stirrer-Fanem® 258) for 60 min,
at room temperature. The pH of both dispersions was adjusted to 5.5 before the obtainment process.
Systems were prepared with different CS:HP ratios (w/w), as presented in the Table 1.

Table 1. Code and composition of the systems.

Sample Polymer Ratio (CH:HP w/w)

HP 1 1:0.1
HP 2 1:0.2
HP 3 1:0.3
HP 4 1:0.4
HP 5 1:0.5

HP 5.5 1:0.55
HP 7.5 1:0.75
HP 10 1:1

HP 12.5 1:1.25
HP 15 1:1.5

Two obtainment methods were proposed to evaluate the influence of the polymer addition in the
physicochemical characteristics of the loaded nano PECs. Method I: different concentrations of MT
were added in the CS dispersion and homogenized under a magnetic stirring for approximately 1 h,
afterwards, the dispersion pH was adjusted to 5.5. Then, the HP dispersion was slowly dispensed over
the CS-MT solution, maintaining the magnetic stirring for an additional 60 min. Method II: the HP
dispersion was dripped with a syringe (0.076 mm needle) in the CS-MT dispersion, and the system
was kept under magnetic stirring for 60 min. The addition of MT in different mass ratios (0.1, 0.3,
and 0.5) in relation to the mass of the polymers was also tested.

After particles selection with lower diameter and polydispersity index (PDI) and higher zeta
potential, a full factorial design (21

× 31
× 21) × 3 was employed to evaluate (quantitatively) the

influence of HP proportion, MT association, and addition method on the diameter, PDI, and zeta
potential of nano PECs (Minitab® Statistical Software).

The factors method and HP proportion were selected based on the parameters presented in Table 1,
and were studied at two levels. The addition method factor was evaluated as categorical factors,
namely as 1 and 2 for method I and method II, respectively, and HP proportions as continuous factor
at 0.1 and 0.5 levels, for 0.1 and 0.5 mg·mL−1, respectively. MT association at different concentrations
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was also studied at 0.1, 0.3, and 0.5 for 0.1, 0.3, and 0.5 mg·mL−1. Twelve experiments were performed
in triplicate totaling 36 assays.

2.2.2. Nano PECs Characterization

Diameter, PDI, and Zeta Potential Analyses

The analyses of nano PECs hydrodynamic diameter average, polydispersity index (PDI), and zeta
potential were evaluated by dynamic light scattering (DLS) and electrophoretic light scattering
techniques, in a Zetasizer Nano ZS® equipment, at 25 ◦C with detection angles of 173◦ and 13◦ for size
and zeta potential, respectively. Particles were analyzed in dispersion, under dilution in ultra-purified
water (1:100, v/v), after production. The measurements were performed in triplicate and the results
were expressed by the average of 10 measurements and the standard deviation.

These parameters of characterizations are important because they have a direct impact on the
physiological behavior of the systems and the delivery profile [31,32].

FTIR Characterization

In order to evaluate the polymer–polymer and polymer–drug interactions, the Fourier transform
infrared spectroscopy was performed for the free polymers (CS, HP) and drug (MT). For the load and
free nano PECs analyses, the dispersion was previously lyophilized during 24 h (Micro Module 115,
Thermo). The test was performed on a Bruker spectrometer Vertex 70 (Billerica, MA, USA) and ATR
accessory, by the attenuated total reflection method (diamond crystal). For each sample 64 scans were
recorded, between 4000 and 400 cm−1.

Evaluation of MT Loading Efficiency

To determine the percentage of MT loaded into the nano PECs, samples were previously frozen
at −80 ◦C and lyophilized during 24 h. An amount of 10 mg of lyophilized nano PECs were
dispersed in 10 mL of water and stirred in an Ultra-turrax mixer IKA (Staufen, Germany) for 1 min.
Subsequently, samples were centrifuged at 3500 rpm for 10 min and the drug dissolved in the
supernatant was quantified using a previously validated method, in a UV spectrophotometer (Agilent
Technologies—Cary 60®) at 320 nm (y = 0.0663x + 0.0859 and r2 = 0.9965).

The drug loaded was calculated according to Equation (1):

%AE = (Qd/Td) × 100 (1)

where %AE is the percentage of MT loaded to the system or efficiency; Qd is the quantified drug and
Td is the total drug added.

2.2.3. In Vitro Mucin Interaction Assay

A total of 10 mg of lyophilized nano PECs were added in 10 mL of mucin solutions in different
concentrations (50, 100, 150, and 200 µg·mL−1). The dispersions were homogenized by vortexing and
incubated in a thermostated bath at 37 ◦C, for 60 min. Subsequently, the dispersions were centrifuged
(Heraeus Fresco 17®) during 5 min at 8000 rpm. The supernatant was collected (1 mL) and 1 mL of
Lowry’s reagent was added [33]. Then, 0.5 mL of the Folin–Ciocalteu’s reagent was added and the
reaction was maintained for an additional 30 min under the same conditions. The absorbance was
measured by visible spectrophotometry at 749 nm, in duplicate. The entire procedure was performed
in a dark room.

The amount of free mucin was calculated using the analytical curve of the previously determined
standard, described by the equation y = 0.0085x + 0.0741 and the determination coefficient r2 = 0.997.
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The amount of mucin adsorbed was determined from the quantification of free mucin in the supernatant,
according to Equation (2).

Qadsorbed mucin = Qadded mucin − Q f ree mucin (2)

where Qadsorbed mucin is the amount of mucin adsorbed; Qadded mucin is the amount of mucin added,
and Q f ree mucin is the amount of mucin free.

The obtained results from the interaction of the mucin with the Nano PECs were adjusted and
linearized according to the Freundlich (Equation (3)) and Langmuir (Equation (4)) equations:

Cads = KC1/n
e (3)

Cads =
aCe

b + Ce
(4)

where Cads is the concentration of mucin adsorbed at equilibrium (mg·L−1) per unit of mass and Ce is
the concentration of free mucin at equilibrium (mg·L−1). For the Langmuir equation, 1/Cabs was plotted
against 1/Ce and for the Freundlich equation, the Cabs log was plotted against Ce to obtain the different
constants (k, n, a, b).

2.2.4. In Vitro Dissolution Test

The in vitro dissolution test of MT was measured using a dialysis bag and buffer HCl/NaCl
(pH 1.4) media, in a Hanson SR8-Plus equipment (Chastworth, CA, USA), equipped with 150 mL
vessels and apparatus I (basket). The dialysis membrane of 14,000 Da cut-off was hydrated and
pretreated to remove the glycerol and other metal traces. The analyses were performed with the loaded
nano PECs and the free drug. According to the sink conditions, 2 mL of MT solution (1 mg·mL−1) and
2 mL of nano PECs dispersions, were introduced into the dialysis bag which was immersed in 100 mL
of the media at 37 ± 0.5 ◦C and continuous stirring at 30 rpm. Aliquots of the media were collected
at nine times intervals, during 8 h, and the same volume of fresh media was replaced. The amount
of drug released was determined using the validated method (UV spectrophotometer, at 320 nm).
Different mathematical models (First order, Weibull, Higuchi, Korsmeyer-Peppas, and Hixon and
Crowell) were applied to the in vitro dissolution data, using the Sigma Plot 10.0 software, to evaluate
what best represented the dissolution kinetics of MT and its release mechanism [34].

2.2.5. Anti-H. pylori Activity Determination

A standard strain of H. pylori (ATCC 43504) was obtained from American Type Culture Collection to
be used as reference strain in the activity potential determination. The minimal inhibitory concentrations
(MIC) of loaded and unloaded metronidazole were measured by microdilution technique according to
the protocol M100-S16 from Clinical Laboratory Standards Institute (CLSI) with modifications [35].
Initially, the microplates (96 wells) were filled with 80 µL of Mueller Hinton broth (MHB) supplemented
with fetal bovine serum and 100 µL of the evaluated substances were added in the first well and
2-fold dilutions were performed to create different concentrations (free metronidazole: from 1000 to
7.8 µg·mL−1; HP1MT5: from 1670 to 1304 µg·mL−1; HP5MT5: from 1000 to 7.8 µg·mL−1; HP5MT3:
from 600 to 4.6 µg·mL−1; HP5MT1: from 200 to 1.5 µg·mL−1) and 20 µL H. pylori suspension at
6 × 107 CFU·mL−1 were deposited in each well. The microplates were incubated at 37 ◦C during 72 h
in an incubator with 10% of CO2 and humidity.

At the end of the incubation period the MIC values were measured by addition of 30 µL of a
resazurin solution (100 µg·mL−1) followed by 2 h of incubation in the same incubation parameters as
described previously in which the presence of blue color represents the absence of bacterial growth
and of pink color, the presence of bacterial growth [36]
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The control of the culture medium, bacterial growth, positive inhibition control with amoxicillin,
sterility samples controls, and negative control (solvent and free nanostructured systems) were
also performed.

2.2.6. Statistical Analysis

The results were treated by one-way analysis of variance to assess the significance of the differences
between data. Tukey–Kramer post-hoc test was used to compare the means of different treatment data
(Origin 7.0 software). Results with p < 0.05 were considered statistically significant. A full factorial
design (21

× 31
× 21) × 3 was applied to the data (Minitab® Statistical Software).

3. Results and Discussion

3.1. Evaluation of the Polymeric Ratio and Method on the Nano PECs Obtention

The samples prepared by method I, HP 12.5 and HP 15, in which the mass of HP was higher
than the CS mass (Table 1, Section 2.2.1), the formation of large aggregates and phase separation was
observed. Possibly, the higher proportion of HP results in the reduction of particles zeta potential,
due to the charges annulment from the protonated amine groups (NH3

+) of CS and the carboxylate
group (COO–) of HP. This reduction in the zeta potential, near to zero, should result in a reduction in
the electrostatic repulsion of the particles and, consequently, in their attraction and aggregation [37].

Samples HP 1, HP 5, and HP 10 showed an opalescent visual aspect [19]. This opalescent aspect
is the result of the Tyndall effect, due to the interference in the light passage through the system.
The observation of the Tyndall effect in the systems indicates the nanostructured particles formation [38].
Samples HP 1, HP 5, and HP 10 were selected for characterization according Section 2.2.2 and the
results are shown in Table 2.

Table 2. Particle diameter, zeta potential, and polydispersity index (PDI) as a function of the CS:HP ratio.

Sample Diameter Z-Average (nm) PDI Zeta Potential (mV)

HP 1 795.4 ±12.8 0.60 ± 0.01 25.7 ± 1.1
HP 5 810.8 ± 108.8 0.78 ± 0.19 21.1 ± 1.4
HP 10 734.0 ± 70.9 0.88 ± 0.10 17.5 ± 0.9

The nano PECs diameter ranged from 734 to 810.8 nm. The diameter is one characteristic
responsible for the cellular uptake, smaller particles tend to be more easily internalized by cells [39].

Nano PECs showed positive surface charge between +17.5 and +25.7 mV (Table 2), it means that
the zeta potential of nano PECs is more strongly influenced by CS. Modular zeta potential values
around 25–30 mV are desirable for the physical stability of the system, due the interparticle electrostatic
repulsion [31,32]. The positive charge is also interesting to favor the interaction with the anionic group
of lipids of the cell membrane or to the mucous, formed by monosaccharide sialic acid [40].

By Table 2, it was also possible to observe that with the increase in the HP ratio from 0.1 to 1,
the zeta potential of the nano PECs decreases from +25.7 to +17.5 mV.

This reduction in zeta potential may occur because the HP molecules preferably associate more
closely in the external region of the particle, due to their more rigid and bulk chain. The HP chains
must have difficulty interpenetrating the formed precomplex, remaining more in the external region,
giving a less positive character to nano PECs [41,42].

The analysis of PDI shows values in the range of 0.60–0.88. PDI represents the deviance of the
particles size distribution, PDI < 0.4 indicates that the particles present low defiance in size [43].

According Table 2, nano PECs obtained by higher proportions of HP presented higher PDI values
and consequently, the size distribution is less homogeneous.

This may be related to the polymeric dilution regime in the medium. With more polymer chains
competing for solvent in the medium (concentrated regime), the probability of thermodynamically
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oriented arrangements are less, the kinetically oriented arrangements prevailing due to the reduction
mobility in the medium, as well as the conformational limitations of the chains in unfolding [44].

Nano PECs were formed in regions with high polymer concentrations (center of the container) to
have larger polymer clusters and regions with lower concentrations of these polymer chains (periphery
of the container). In these regions with lower polymeric density there is greater configurational and
conformational freedom, for more uniform and thermodynamically oriented arrangements of the
polymer chains.

Following the studies, the load of MT and the complexes obtainment was performed according
to the two methodologies mentioned in Section 2.2.1, and the characteristics of these nano PECs as
presented in Table 3.

Table 3. Particle size, zeta potential, and PDI of nanoparticles containing MT prepared by method I.

Sample Mass Ratio
(CS:HP:MT)

Diameter
Z-Average (nm) PDI Zeta Potential (mV)

HP 1 1:0.1:0 795.4 ± 12.8 0.60 ± 0.01 25.7 ± 1.1
HP1MT1 1:0.1:0.1 916.3 ± 50.1 0.47 ± 0.07 29.7 ± 1.7
HP1MT3 1:0.1:0.3 878.8 ± 115.9 0.49 ± 0.07 27.2 ± 1.4
HP1MT5 1:0.1:0.5 871.1 ± 59.7 0.51 ± 0.02 28.0 ± 0.9

HP 5 1:0.5:0 810.8 ± 108.8 0.78 ± 0.19 21.1 ± 1.4
HP5MT1 1:0.5:0.1 1292.7 ± 155.8 0.49 ± 0.08 22.2 ± 0.9
HP5MT3 1:0.5:0.3 1087.0 ± 22.3 0.52 ± 0.09 21.4 ± 1.1
HP5MT5 1:0.5:0.5 1085.3 ± 9.6 0.47 ± 0.05 22.4 ± 1.4

HP 10 1:1:0 734.0 ± 70.9 0.88 ± 0.10 17.5 ± 0.9
HP10MT1 1:1:0.1 927.8 ± 83.4 0.77 ± 0.03 16.9 ± 0.3
HP10MT3 1:1:0.3 981.6 ± 167.2 0.87 ± 0.05 16.6 ± 0.4
HP10MT5 1:1:0.5 953.2 ± 126.9 0.77 ± 0.04 16.8 ± 0.4

According to Table 3, the association of MT resulted in an increase in the average diameter of
nano PECs, compared to the empty nano PECs, with some samples reaching the micrometric size
(>1000 nm). Probably, when MT was added, it interacted with the polymers in order to decrease
the probability of CS-HP interactions, which is an organized association, forming a more disordered
matrix, with higher dimension.

Results in Table 3 also showed that for HP 1 and HP 5 the drug association resulted in a reduction
in the PDI value from 0.60 and 0.78 to values between 0.47 and 0.52. This effect was not observed
for sample HP 10, with a 1:1 ratio of CS: HP, which even after the drug association the higher PDI
values were maintained (>0.80). For samples composed by higher polymeric proportions (1:1) the
polymer–polymer interactions are favored due to the high probability of the polymer chains being
found, becoming less sensitive to the influence of MT addition. In conditions where the likelihood of
encounters between polymer chains is low, interactions between MT–polymer are favored, in order to
alter the formation of nano PECs [45].

As the HP10 sample showed a high PDI value and decreased zeta potential, which may be
indicative of low physical stability, it was discarded from the test of obtainment by method II (dripp).

Seeking better results in diameter and PDI, the nano PECs were obtained by dripping (method II).
The results of nano PECs obtained by method II are shown in Table 4. The gradual and slow

addition of the polymer allows the conditions of thermodynamic equilibrium to be established to
a greater extent, as in this case the system has greater conformational and configurational freedom,
which should result in more intense interactions between CS and HP, resulting in smaller and
homogeneous particles [44].
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Table 4. Particle size, PDI, and zeta potential of loaded nano PECs prepared by method II (drip) as a
function of HP and MT proportions.

Sample Mass Ratio
(CS:HP:MT)

Diameter
Z-Average (nm) PDI Zeta Potential (mV) EA (%)

HP1MT1-2 1:0.1:0.1 644.8 ± 83.1 0.32 ± 0.06 22.5 ± 0.7 99.7
HP1MT3-2 1:0.1:0.3 739.1 ± 38.6 0.31 ± 0.01 25.7 ± 0.7 99.6
HP1MT5-2 1:0.1:0.5 664.0 ± 28.0 0.34 ± 0.07 26.3 ± 1.9 99.5
HP5MT1-2 1:0.5:0.1 586.8 ± 10.7 0.27 ± 0.03 19.2 ± 0.3 99.7
HP5MT3-2 1:0.5:0.3 644.2 ± 12.2 0.26 ± 0.01 18.7 ± 0.2 99.8
HP5MT5-2 1:0.5:0.5 553.0 ± 26.3 0.23 ± 0.01 19.5 ± 0.9 99.6

For all the samples analyzed, practically all the mass of MT added in the system was incorporated
into the structure of the nano PECs and the association efficiencies were greater than 95%. Through the
analysis of the content of drug associated, it was possible to infer the efficiency of the developed
system. From the results obtained, nano PECs are classified as systems with high capacity for drug
incorporation, showing itself as a promising system in the MT delivery. Regardless of the HP and MT
amount, the selected nano PECs had a high association capacity.

From the data obtained in the experiments, method I proved not to be suitable for obtaining
particles on a nanometric scale with homogeneous size distribution.

Among the nano PECs obtained by method II, the HP 1 and HP 5 systems presented the most
suitable characteristics for the application, such as reduced diameter, low PDI, and high ZP values.

Then the values of polymeric ratios and drug were used together with the mixing method to
compose a full factorial experiment (21

× 31
× 21) as shown in Table 5, with the aim to assess the

influence and effect of the interaction of these factors on the size, PDI, and ZP of the nano PECs.

Table 5. Design of experiments with codified factor levels for the full factorial design.

Method I Codified Level Method II Codified Level

HP1MT1-I −1:−1:−1 HP1MT1-II −1:−1:1
HP1MT3-I −1:0:1 HP1MT3-II −1:0:1
HP1MT5-I −1:1:−1 HP1MT5-II −1:1:1
HP5MT1-I 1:−1:−1 HP5MT1-II 1:−1:1
HP5MT3-I 1:0:−1 HP5MT3-II 1:0:1
HP5MT5-I 1:1:−1 HP5MT5-II 1:1:1

The analysis of each factor’s influence and their interactions with the nano PECs characteristics
are shown in Figures 2–4. They contain a bar for each effect, sorted from most significant to least
significant. The length of each bar is proportional to the standardized effect. A vertical line is drawn at
the location of the 0.05 critical value for the statistical test.

The results observed in Table 4 together with the data in Figure 2A, reinforce the fact that the
average diameter of the nano PECs is mainly dependent on the method and the interaction between
the method and the HP proportion. In Figure 2B it is possible to verify the strong influence of the
obtainment method on the average diameter of the nano PECs. While method I formed particles with
average sizes varying between 871 and 1292 nm, method II (drip) formed particles with diameters
between 553 and 664 nm, concluding that quantitatively method II is the most suitable for the formation
of smaller nano PECs.
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Figure 2. Graphic representation of factor influences on average size of particles. (A) Standardized 
Pareto chart estimating the effect of mass ratio HP, mass ratio MT, method, and their interaction on 
the size of the particles. The red dashed vertical line represents the 0.05 critical value for ANOVA. All 
bars extending to the right of this line indicate that the effects are statistically significant at 5% 
significance level. (B) Isolated analysis of the factors, HP/MT concentration, and method (on X-axis), 
and their influence on the size of the nanoparticles (on Y-axis). 
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Figure 2. Graphic representation of factor influences on average size of particles. (A) Standardized
Pareto chart estimating the effect of mass ratio HP, mass ratio MT, method, and their interaction on the
size of the particles. The red dashed vertical line represents the 0.05 critical value for ANOVA. All bars
extending to the right of this line indicate that the effects are statistically significant at 5% significance
level. (B) Isolated analysis of the factors, HP/MT concentration, and method (on X-axis), and their
influence on the size of the nanoparticles (on Y-axis).
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Figure 3. Graphic representation of factor influences on average PDI of particles. (A) Standardized
Pareto chart estimating the effect of mass ratio HP, mass ratio MT, method, and their interaction on the
PDI of the particles. The red dashed vertical line represents the 0.05 critical value for ANOVA. All bars
extending to the right of this line indicate that the effects are statistically significant at 5% significance
level. (B) Isolated analysis of the factors, HP/MT concentration, and method (on X-axis), and their
influence on the PDI of the nanoparticles (on Y-axis).
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Figure 4. Graphic representation of factor influences on average zeta potential of particles.
(A) Standardized Pareto chart estimating the effect of mass ratio HP, mass ratio MT, method, and their
interaction on the zeta potential of the particles. The red dashed vertical line represents the 0.05
critical value for ANOVA. All bars extending to the right of this line indicate that the effects are
statistically significant at 5% significance level. (B) Isolated analysis of the factors, HP/MT concentration,
and method (on X-axis), and their influence on the PDI of the nanoparticles (on Y-axis).

In Figure 3, is possible to observe the influence of method, HP ratio, and MT in the PDI of nano
PECs. A similar result to that of diameter, the method strongly influenced the PDI of nano PECs,
in which the average values obtained by method I were ±0.49 while the average observed by method II
was ±0.26, showing a homogeneity of particle diameter distribution, when it was obtained by dripping.
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They indicate that the method II was more efficient in reducing the average particle diameter, as well
as, the PDI.

Finally, the influence of the factors tested on the zeta potential of the nano PECs was evaluated and
the results showed in the Figure 4, once again, a significant influence of the method and HP proportion
were observed. As was discussed previously, the HP contributes to the lower positive charge density
of nano PECs, due to it anionic nature and its conformation during the nano PECs formation.

A possible explanation for the differences in zeta potential, observed between the nano PECs
obtained by the different methods, may be the fact that in method I, large amounts of HP were added
to the reaction medium, containing QS-MT, this favored the formation of larger particles, as there was
no sufficient time for the complete dispersion of HP in this medium and the electrostatic interactions,
Van der Waals forces, and hydrogen bonds between the nearby chains, of both polymers, were quickly
established, forming particles containing polymeric tangles, with discontinuous and interstice regions
containing MT. Thus, it can be considered that the formation process of these nano PECs by method
I was governed kinetically. As it is a dynamic and kinetically controlled process, the lack of control
when adding the HP dispersion, would promote the formation of nano PECs with varying diameters,
impacting in the PDI [44].

In the systems obtained by drip method II, in which the addition of HP was carried out in a
controlled and slow manner, the process would be governed thermodynamically, since smaller amounts
of HP were introduced in the medium, allowing this material to disperse and interact with the nearby
CS chains, slowly and initially due to strong, electrostatic interactions. As these interactions occurred,
the loads of these complexes would become smaller and CS chains with higher loads would interact
with the new available HP chains, dripped in the medium, so that the formation of these complexes
would be associated with the reduction of the system’s overall energy by reducing polymer loads.
These complexes would present smaller PDI values and smaller particle diameters as well, since in
these cases the interactions would be much more governed by electrostatic interactions than other
types of interactions, a fact evidenced by the low values of zeta potential (Tables 3 and 4). Based on all
the results and discussion, method II was selected to obtain the nano PECs. Thus, all samples analyzed
in the subsequent tests were obtained using this method.

3.2. Fourier-Transform Infrared Spectroscopy (FTIR)

Figure 5A shows the absorption spectra of CS, HP, and MT in the infrared region. In the MT
spectrum, bands in the regions from 1300 to 1600 cm−1 are assigned to the NO2 group. The bands at
2900 and 3100 cm−1 represent stretching of sp3 and sp2 carbons, respectively. The bands in the regions
of 3200–3600 cm−1 are attributed to the stretch of the O–H group [46].

In the CS absorption spectrum, bands were observed in the regions from 1650 to 1665 cm−1,
which can be attributed to the C=O stretch from the secondary amide group. The bands from 1560
to 1610 cm−1 are attributed to the axial deformation of the NH2 group in the plane, the bands from
1200 to 1000 cm−1 are attributed to the CO stretching, and the bands from 3350 to 3180 cm−1 to the
stretching of the NH2 group [47]. In the HP absorption spectrum, bands from 3500 to 3200 cm−1 were
noted, attributed to the stretching of the O–H group. The band observed at 2800 cm−1 is attributed to
the methoxy group (C–CH3) and at 1725 cm−1 it is attributed to the stretching of the C=O group of the
ester group; from 1600 to 1550 cm−1 attributed to the aromatic ring and 740 cm−1 attributed to the
monosubstituted aromatic ring [48].
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 Figure 5. (A) Infrared spectra of MT and polymers. (B) Infrared spectra of nano PECs of groups HP 1
and HP 5 and empty NP.

Figure 5B shows the absorption spectra of empty and drug-containing nano PECs. It is possible to
notice in the loaded nano PECs the presence of the characteristic band of the MT between 1200 and
1400 cm−1, which is not noticed in the empty samples. Between 3500 and 3100 cm−1 referring to NH2
and OH, it can be noted that there was a displacement of the bands in all samples, when compared
to CS, HP, and MT, which may indicate the interaction of protonated amino groups of CS with the
carboxylic groups HP, as well as the MT NO and OH groups of CS and the C=O, C–O, and OH groups
in HP through dipole–dipole interactions and hydrogen bonds. In addition, the differences found in
the 500–1700 cm−1 bands of the samples, in relation to the free polymers, can also suggest an interaction
between them.

It is possible to see two bands, one at 1200 and the other at 1250, only in systems with MT.
These bands are related to stretching of the C-N bonds, abundant in MT. One observation that confirms
this statement is the fact that both bands are becoming less intense as the concentration of MT in the
systems is reduced [49]. At 1650 cm it is possible to identify an intense band in loaded nano PECs
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spectra, which is low in the empty nano PECs spectrum. This increase in the intensity of the C=C
carbonyl band, already present due to the double bonds of the aromatic rings of the HP, may be related
to the presence of a C=C bond in the imidazolidinic ring [49,50]. At 1550 cm−1, related to NH2 stretch,
abundant in CS, it is possible to observe the reduction in the intensity of this band, which is quite
intense in the empty nano PECs, and becomes progressively less intense, as the incorporations of MT
occur. This observation may indicate that there are interactions between the NH2→NH3

+ groups of
chitosan with the NO− groups present in metronidazole [51]. In Table 3, it is possible to see that the
addition of MT in the nano PECs leads to a reduction in the system’s PDI. The reduction in the PDI
value can be associated with the fact that MT may be interacting with CS, forming more monodispersed
systems. The effect of adding MT on the systems stems from the fact that MT can interact more with
polymers, especially with CS, as evidenced in the FTIR spectrum, forming larger particles, however,
despite the particles having a larger diameter, with a greater probability of interaction, we will have
more uniformly distributed particles [52].

3.3. In Vitro Mucin Interaction Assay

Figure 6 shows the results of mucin adsorption on nano PECs. It was observed that for all
samples the amount of adsorbed mucin increased with the increase in the amount of added mucin,
highlighting the high mucoadhesiveness of the nano PECs.
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added (±SD).

The nano PECs mucoadhesion derives from the fact that CS, predominant in nano PECs
composition, in acidic media, such as the stomach, present protonated amino groups. Mucus is
mainly composed by mucin (pKa-2,6), a glycoprotein and its sialic acid residues, in acid pH values,
are ionized presenting negative charge. Electrostatic interactions and Van der Waals forces must be
established between the system surface and the mucin, favoring the adsorption [52,53].

To the mucin adsorption data, Freundlich and Langmuir models were applied and the results are
shown in Table 6.
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Table 6. Constants obtained by linearizing the Freundlich and Langmuir equations.

Sample Zeta Potential
Freundlich Isotherm (a) Langmuir Isotherm (b)

k 1/n r2 A b r2

HP1MT5 26.3 0.4928 0.6221 0.9864 0.0082 0.5101 0.9972
HP5MT1 19.2 2.0687 0.8572 0.991 0.0031 0.3662 0.9704
HP5MT3 18.7 0.8894 0.6937 0.9983 0.0063 0.4405 0.993
HP5MT5 19.5 0.1086 0.5124 0.9953 0.0143 0.8343 0.9918

log Qe = log k + 1
n x log Ce (a)

1
Ce = a + b x 1

Ce (b)

The Freundlich model describes the adsorption of a single solute, on the adsorbent, in multiple
layers and in a reversible way, assuming that the solid surface is irregular and heterogeneous [54].
Langmuir’s model considers the adsorption on a homogeneous surface, in monolayer, over the entire
surface of the adsorbent, in which the adjacent molecules of the solute do not interact with each other,
remaining in solution [20].

For HP1MT5 the adsorption was better adjusted to the Langmuir model, this particle presented a
greater positive zeta potential. Therefore, the adsorption must be governed by electrostatic interactions,
between its surface and mucin, which adsorb quickly due to electrostatic attraction. These interactions
are strong and are established at shorter distances, must be able to form a homogeneous mucin layer,
and closely adhered to the particle surface [55]. In this case, the system has better adhesivity and
more force of adhesion to the negative surfaces, like cells and mucous layers. We believe that mucin
adsorbed in the surface of positive nano PECss it actuate as a repulsive layer, not leaving other nano
PECs to approximate the negative mucin negative and adsorb to that, forming multiple absorption
layers (particle-mucin) [56].

The other systems listed in Table 6 are more fitted to the Freundlich model. A possible explanation
for this is the fact that these systems also have positive zeta potential, although, relatively lower
<+20 mV. Possibly, the interactions that occur between mucin and these system surfaces also are
majority electrostatic type, however, some weaker interactions such as hydrogen bonds and Van
der Waals forces, are established at a greater distance than when compared to the HP1MT5 system,
making this type of adsorption less intense [56].

In addition, the lower zeta potential allows interactions between nano PECs, making it possible to
establish adsorption in multilayers, that is, nano PECs already with mucin adsorbed on its surface can
interact with other nano PECs, increasing the number of layers on the adsorbent surface [57].

Regarding the n coefficient, it indicates the intensity of mucin adsorption with the surface of
the particles, n values greater than 1.0 represent favorable conditions for adsorption [58,59]. Thus,
all particles, even with higher concentrations of MT, showed strong adsorption interaction. The k
coefficient is related to the adsorption capacity. For HP1MT5, with a lower ratio of HP and HP5MT5
with a higher concentration of MT, the values found were lower, which may indicate that the addition
of drug reduces the adsorption capacity, perhaps due to the formation of a more compact matrix and
less positive residual load, which makes it difficult to interact with mucin molecules [60].

3.4. In Vitro Dissolution Test

Based on the data found for the adsorption isotherms and zeta potential values, samples HP1MT5
and HP5MT3 were chosen to perform the in vitro dissolution test. These systems were also chosen
because they have higher and lower zeta potential values, respectively, and variations on the release
profile can be justified by some of these physical-chemical characteristics. Free MT was also tested,
to evaluate the influence of nano-compartmentalization on the drug dissolution rates.

The results in Figure 7 suggest that both the free MT and the MT incorporated in the HP1MT5
system present statistically similar dissolution profile and release rates.
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Around 100% of the MT was released at 120 min (Figure 7). This may be associated with the fact
that in strongly acidic media (stomach pH = 1.5–3.5), CS quickly becomes protonated. The extensively
protonated CS chains electrostatically repel, consequently, the matrix swelling allowed the diffusion of
medium to the particle structure, dissolving the drug and favoring the diffusion to the dissolution
medium. In addition, the proton-rich solvent accesses the HP chains by neutralizing their charges,
this event can culminate in the disruption of the particle matrix, also favoring the rapid release of
the drug.

The best model that represented the dissolution kinetics of MT was the Korsmeyer–Peppas
(Equation (5)).

F = (Mt/M) = k× tn (5)

where F is the total drug concentration in the medium, Mt is amount of released drug in at time “t”,
M is amount total drug in the system k is the constant of incorporation of structural modifications and
geometrical characteristics of the system (also considered the release velocity constant), and n is the
exponent of release (related to the drug release mechanism) as a function of time t [61,62].

In all systems, a value of n greater than 0.5 and lower then 1.0 (Table 7) was observed, such experimental
data indicate that the observed release profile can be classified as anomalous, in which the drug release was
controlled by a combination of many processes, including the swelling and dissolution of the polymeric
matrix, diffusion and drug dissolution, as discussed above [63].

Table 7. Constants of Korsmeyer–Peppas adjusted model.

System k n R R2

HP1MT5 0.0039 0.5930 0.9286 0.8623
HP5MT3 0.0075 0.5628 0.9187 0.8439

The results indicate that the system did not allow a prolonged release of the drug. However,
considering the high mucoadhesive capacity of the developed system, in the physiological environment
a large number of nano PECs can adhere to the mucous layer, resisting gastric emptying, since due
to the small diameter the nano PECs behave similarly to liquids and may remain in the stomach for
less time, resulting also in a close contact with H. pylori [64]. In addition, with the nano PECs matrix
erosion, the polysaccharides can interact with the bacteria membrane, resulting in destabilization
and, consequently, in the greatest internalization of the drug [64] and/or acting in the inhibition of
membrane efflux pumps.
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3.5. Anti-H. pylori Activity

The results of the antibacterial activity of free metronidazole and loaded into nanostructured
systems are presented in Table 8.

Table 8. Antibacterial activity of free metronidazole and loaded into nanostructured systems against.
H. pylori ATCC 43504.

Sample Max Analyzed Concentration MIC Values *

MT 2000 >2000
HP1MT5 1670 835
HP5MT5 1000 >1000
HP5MT3 600 >600
HP5MT1 200 >200

Amoxicillin 2000 0.007
Free nanostructured systems - -

* Values expressed in µg·mL−1; (-): no interference; MTZ: free metronidazole; HP1MTZ5, HP5MTZ5, HP5MTZ3,
and HP5MTZ1: metronidazole loaded into nanostructured systems.

The MIC found for the formulation that showed antibacterial activity (HP1MT5) was 835 µg·mL−1.
This sample, compared to the others analyzed, contained a higher concentration of MT in relation
to HP, a factor that can substantiate the result obtained. Another important aspect to be taken into
account is related to the data obtained for the mucoadhesion mechanism, in which the HP1MT5 system
is better adjusted to the Langmuir isotherm, a phenomenon attributed to its high zeta potential. As it
is able to establish stronger electrostatic interactions, compared to the other systems, these nano PECs
are likely to interact with the bacterial surface forming a monolayer adsorbed to the cell, allowing the
drug to be internalized more efficiently [65]. Another sample that demonstrated an interesting result
was HP5MT5

4. Conclusions

Nano PECs based on CS and HP were successfully obtained by the polyelectrolytic complexation
technique. By the results, HP proportion and the obtaining method were the parameters that directly
influenced the characteristics of the nano PECs. Lower ratios of HP and the slow polymer addition by
dripping (method II), demonstrated to be the most appropriate conditions for obtaining particles with
diameters smaller than 700 nm, PDI lower than 0.4, and zeta potential higher than 19 mV. The nano
PECs showed a high capacity for incorporating MT, but no ability to control the drug release rates
in an acidic medium was observed. However, the nano PECs mucoadhesiveness was proven by
mucin adsorption assay, and this property can be favorable to the system overcoming the challenge
of rapid drug release. HP1MT5 system was shown to be the most promising in relation to in vitro
anti-Helicobacter pylori activity, presenting antibacterial performance, when compared with the other
systems and free MT. Thus, the incorporation of MT in mucoadhesive delivery systems presents a
promising system for the treatment of gastric infections caused by H. pylori. Based on this information,
in vivo studies should be conducted seeking to deepen the study of the biological behavior of the
developed system.
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Abbreviation

AE Association efficiency
ATCC American Type Culture Collection
ATR FTIR-attenuated total reflectance Fourier transform infrared
CS Chitosan
H. pylori Helicobacter pylori
HP Hypromellose phthalate
METD Method
MHB Mueller Hinton broth
MT Metronidazole
Nano PECs (NP) Nanostructured polyelectrolyte complexes
PDI Polydispersity index
ZP Zeta potential
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