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Abstract: The lack of optimal methods employing nanoparticles to administer local anesthesia
often results in posing severe risks such as non-biocompatibility, in vivo cytotoxicity, and drug
overdose to patients. Here, we employed magnetic field-induced hyperthermia to achieve localized
anesthesia. We synthesized iron–gold alloy nanoparticles (FeAu Nps), conjugated an anesthetic
drug, Lidocaine, and coated the product with gelatin to increase the biocompatibility, resulting in a
FeAu@Gelatin–Lidocaine nano-complex formation. The biocompatibility of this drug–nanoparticle
conjugate was evaluated in vitro, and its ability to trigger local anesthesia was also evaluated in vivo.
Upon exposure to high-frequency induction waves (HFIW), 7.2 ± 2.8 nm sized superparamagnetic
nanoparticles generated heat, which dissociated the gelatin coating, thereby triggering Lidocaine
release. MTT assay revealed that 82% of cells were viable at 5 mg/mL concentration of Lidocaine,
indicating that no significant cytotoxicity was induced. In vivo experiments revealed that unless
stimulated with HFIW, Lidocaine was not released from the FeAu@Gelatin–Lidocaine complex.
In a proof-of-concept experiment, an intramuscular injection of FeAu@Gelatin–Lidocaine complex
was administered to the rat posterior leg, which upon HFIW stimulation triggered an anesthetic
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effect to the injected muscle. Based on our findings, the FeAu@Gelatin–Lidocaine complex can
deliver hyperthermia-induced controlled anesthetic drug release and serve as an ideal candidate for
site-specific anesthesia administration.

Keywords: lidocaine; hyperthermia; anesthesia; nanoparticles; iron–gold nanoparticles

1. Introduction

Nanoparticles have been at the forefront of the pharmaceutical industry for the last two decades,
revolutionizing the field of biomedicine [1]. A diversity of metallic nanoparticles such as gold [2,3],
silver [4], silicon [5], and polymeric materials [6] have found applications in cancer targeting,
as antibacterial agents or in the field of immune-labeling. In addition, metallic oxide nanoparticles
such as titanium dioxide and cerium oxide have found applications in drug delivery [7] or cancer
therapy [8]. However, the most interesting of applications stem from alloy nanoparticles such as
iron–nickel [9], iron–platinum [10], etc. with the property to generate heat upon magnetic stimulation
owing to their superparamagnetic nature. Nanotechnological advancements have also enabled the
engineering of cancer detection platforms [11,12]. The applications of iron oxide nanoparticles has been
widely reported, and numerous studies have found oxide nanoparticles trigger inflammatory response,
making them unattractive for in vivo applications [13]. Iron gold alloy nanoparticles have shown
tremendous promise for applications in biomedical engineering. The iron component is responsible
for the generation of heat upon magnetic stimulation [14,15], while gold increases the biocompatibility
of the entire complex [16]. Thus, as shown by previous studies, magnetic hyperthermia can also be
employed to precisely control the amount of drug release [17,18]. However, the prospect of using
iron–gold alloy nanoparticles for drug release remains unevaluated.

While a plethora of applications of magnetic nanoparticles have been proposed in biology;
however, their utilization in the field of anesthesiology is still in its infancy. A recent study by
Mantha et al. reported that magnetite nanoparticles can be conjugated to anesthetic drugs such
as Ropovacaine to deliver site-specific anesthesia [19]. Furthermore, iron oxide nanoparticles have
also been employed as a drug delivery carrier [20]. However, as the nanoparticles are not coated
with any biocompatible material, the cytotoxic effects of nanoparticles alone cannot be avoided.
We have previously demonstrated that chemodrug release to target cancer cells is achievable using
hyperthermia [21]. Further, we used the iron–gold core–shell nanoparticles toward Magnetic Resonance
Imaging (MRI) and Optical coherence tomography (OCT) imaging using photostimulation, showing a
multitude of nanoparticle properties that can be exploited in biomedicine. In our previous studies
that focused on stimulating magnetic nanoparticles to generate hyperthermia, the drug nanoparticle
conjugates were uncoated, and thus, a minute cytotoxicity owing to the nanoparticles was observed.
An interesting yet unexplored possibility would be coating the drug–nanoparticles conjugate with a
biocompatible material. The presence of a biocompatible coating is logically expected to reduce the
toxic side effect of nanoparticles [22], increasing the scope of their application for drug release in vivo.

The engineering of nanofilms for anesthetic applications has also been demonstrated [23].
However, practical applications of substrate-based delivery platforms are often not feasible. Recent
studies have reported issues such as circulation of the anesthetic drug to unwanted areas of the
body, causing side effects [24]. Thus, the issue of limiting the anesthetic drug at the site of action
has received critical attention. Surprisingly, no studies have dealt with this issue so far. Strategies
such as encapsulating the drug nanoparticle conjugate in a biocompatible material seem more
scientifically accurate, where the amount of heat generated precisely controls the amount of drug
released. For instance, Wannaphatchaiyong et al. used gelatinized starch films as anesthetic platforms,
highlighting the possible use of biocompatible polymeric films for clinical applications [25]. In an ideal
scenario, the magnetic nanoparticles can be localized at the intended site of anesthesia by using external
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magnets, followed by the stimulation via an applied magnetic field (AMF) triggering hyperthermia
and leading to the anesthetic drug release in a controlled fashion.

The ability to achieve anesthetic drug release via magnetic field-stimulated hyperthermia in situ
is the main hypothesis to this study. Herein, we report the fabrication of FeAu alloy nanoparticles
to achieve hyperthermia-mediated anesthetic drug release and explore its applications in the field of
therapeutic anesthesia. Briefly, Lidocaine, an anesthetic drug, was conjugated to FeAu nanoparticles.
The drug–nanoparticle conjugate was coated with gelatin to improve the overall biocompatibility
of drug-conjugated nanoparticles. The cytotoxicity of the FeAu@Gelatin–Lidocaine complex was
evaluated in vitro. Furthermore, the ability of FeAu nanoparticles to generate heat in a dose-dependent
manner is explored. By using an in vivo rat model, the efficacy of an AMF to stimulate iron–gold alloy
nanoparticles (FeAu Nps) to generate hyperthermia, leading to the dissociation of gelatin coating and
effective release of anesthetic drug, is demonstrated.

2. Materials and Methods

2.1. Materials

Ferrous sulfate hepta-hydrate, acetone, and toluene were purchased from Echo Chemicals,
Taiwan. Dodecyl dimethyl ammonium bromide, chloroauric acid, 3-mercapto-1-propanesulfonic acid,
absolute ethanol, 300 bloom (Type A gelatin), and glutaraldehyde were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Xylocaine (2% Lidocaine) was purchased from AstraZeneca. All other chemicals of
analytical grade or higher were purchased from either Sigma-Aldrich or Merck (Kenilworth, NJ, USA).

2.2. Synthesis and Characterization of Iron Gold Alloy Nanoparticles (FeAu)

The FeAu alloy nanoparticles used in this study were synthesized by the thermal pyrolysis process
as previously reported [26]. First, 0.08 mM of dodecyl dimethyl ammonium bromide was dissolved in
10 mL of toluene, poured into a 3-necked flask, and placed on an electric heating plate equipped with a
stirrer. The temperature was raised to 110 ◦C, and the mixture was stirred for 15 min. Then, 0.01 mM
ferrous sulfate heptahydrate was dissolved in 0.5 mL of deionized water (DI water), mixed thoroughly,
and then slowly injected into the 3-necked flask containing the mixture of dodecyl dimethyl ammonium
bromide and toluene. The color of the solution changed from clear to cloudy. After 2 min, 1.5 mL
of 0.015 M sodium borohydride was added, and a black suspension was observed in the solution.
The mixture was stirred for 20 min. Then, 0.6 mM of 3-mercapto-1-propane sulfate was dissolved in
0.013 M tetra chloroauric acid, and the color of tetra chloroauric acid changed from yellow to clear and
then to colorless. Then, 1.5 mL of 0.015 M sodium borohydride was injected into the 3-necked flask,
and the color of the solution was observed to change from reddish purple to bright red. The mixture
was stirred for 30 min after which 0.5 mL of 0.015 M sodium borohydride was again added and the
solution temperature was adjusted to 84 ◦C, stirred for 3 h, and then allowed to cool down. Then,
the solution was centrifuged at 9000 rpm for 10 min. A 4000 Gauss magnet was used to collect the
magnetic nanoparticles, dispersed in anhydrous alcohol (ethanol), and added to the centrifuge tube,
and the solution was ultrasonicated to uniformly disperse the magnetic nanoparticles. The solution
containing nanoparticles was again centrifuged at 9000 rpm for 10 min. This centrifugation step
was repeated thrice to remove any trace of bis-dodecyl dimethyl ammonium bromide left behind.
The supernatant was discarded, and nanoparticles were dried under vacuum to obtain a dark green
powder. The synthesized FeAu were characterized using Transmission Electron Microscopy (TEM,
HT-7700, Hitachi, Japan), dynamic light scattering (DLS, ZS90 Plus, Malvern, UK), X-ray Diffractometer
(XRD, X’Pert3Powder, Malvern Panalytical, UK) and Fourier Transform Infrared Spectroscopy (FTIR,
FT720, JASCO, Easton, MD, USA). Magnetic properties of FeAu were analyzed using superconducting
quantum interference device (SQUID, MPMS7, Quantum Design, San Diego, CA, USA).
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2.3. Synthesis and Characterization of Gelatin-Coated Iron–Gold Alloy Nanoparticles Containing Lidocaine
Hydrochloride

First, 100 mL of DI water was preheated to 45 ◦C and 5 g of type A gelatin was added to it and
dissolved. The solution was stirred at 45 ◦C for 30 min. Then, 100 mL of acetone was added to it and
stirred. The color of the solution was observed to change from light yellow to white turbid, indicating
that gelatin had precipitated. Then, the solution was kept in the refrigerator for 30 min, after which
100 mL of pre-heated water (45 ◦C) was added to it to dissolve the precipitated gelatin. Three centrifuge
tubes were taken and weighed. Then, 1 mL of the gelatin solution was transferred into each of the
3 centrifuge tubes and placed in a 75 ◦C oven to let it dry for 3 days and then they were weighed again.
The difference in weights of the centrifuge tube in the first instance and the second indicates the weight
of gelatin/mL. Gelatin solution was diluted to a 2% (w/w, pH = 2) solution and heated to 45 ◦C. One mL
of this was added to a 10 mL glass vial and placed in the water bath for 45 min. One mg of iron–gold
alloy nanoparticles were dissolved in 1 mL of Lidocaine Hydrochloride (1 M) solution. The mixture
was ultra-sonicated to homogeneously disperse FeAu nanoparticles. The glass vial containing gelatin
was placed at 45 ◦C, stirred at 800 rpm, and the solution containing Lidocaine and FeAu was added
to it and allowed to mix evenly for 10 min. Then, the heater was turned off, and 3.5 mL of acetone
was injected into the solution at the rate of 1.5 mL/minute. The solution was observed to become
cloudy. Then, 0.105 mL of glutaraldehyde was added to achieve a concentration of 0.4% in the solution.
The solution was further stirred for 3 h. Acetone was extracted using a vacuum pump. The solution
was centrifuged at 5000 RCF for 30 min, and the pH was adjusted to 2. The filtrate was taken out,
and the amount of Lidocaine present was evaluated by high performance liquid chronography (HPLC).
TEM was used to visually observe the gelatin coating over FeAu. DLS was performed to measure the
modulation in size and zeta potential in order to confirm the coating of FeAu by gelatin, while FTIR
was used to confirm the successful loading of Lidocaine in FeAu and its encapsulation by gelatin.

2.4. Characterization of Lidocaine-Containing FeAu Coated with Gelatin

FTIR was used to confirm the conjugation of Lidocaine with gelatin-coated FeAu Nps. Furthermore,
to study the gelatin weight loss as a function of temperature, 1 mL of Lidocaine containing gelatin-coated
FeAu Nps was placed at −80 ◦C for overnight. The next day, the conjugated FeAu nanoparticles were
vacuum freeze dried. The sample was weighed, and 10 mg of it was taken for Thermogravimetric
Analysis (TGA). The samples were heated from 50 to 800 ◦C, and derivative TGA curves were plotted
to express the gelatin weight loss as a function of temperature. All experiments were performed in
triplicates. Furthermore, before carrying out HPLC for the estimation of amount of drug released,
a variety of concentrations of glutaraldehyde (0.1 to 0.4%) were tested for ideal drug coverage.

2.5. Estimation of Amount of Lidocaine Release upon High-Frequency Induction Wave (HFIW) Stimulation

To test the efficacy of FeAu in generating heat upon stimulation with high-frequency induction
waves (HFIW), 3 experimental sets were prepared, each containing 0.5 mg, 1 mg, or 2 mg FeAu.
The temperature was measured at the beginning of the experiment and an applied magnetic field
(AMF; 700–1100 KHz) was turned on. The temperature of all experimental sets was measured every
60 s. To determine the relationship between the FeAu concentration and amount of heat generated,
the elevation in temperature was plotted against time. Furthermore, to determine the combined effect
of the surrounding temperature and HFIW, 2 experimental sets were prepared. Experimental set 1 was
subjected to a water bath, maintained at 37 ◦C, and then exposed to HFIW, while the experimental
set 2 was subjected to an elevated temperature of 40 ◦C alone. The percentage of FeAu released
(as determined through HPLC) was plotted against different experimental conditions.
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2.6. Cell Culture

L929 (mouse fibroblast, ATCC, USA) cells were cultured in DMEM supplemented with 10% FBS,
100 U/mL penicillin and 100 µg/mL streptomycin. Cell cultures were maintained in an incubator at
37 ◦C, 95% humidity and 5% CO2 atmosphere.

2.7. In Vitro Cytotoxicity Analysis Using MTT Assay

To evaluate the cytotoxicity of FeAu@Gelatin–Lidocaine and Lidocaine alone at various
concentrations, L929 fibroblasts were seeded in a 96-well plate at a density of 104 cells/mL for
24 h. FeAu@Gelatin–Lidocaine was sterilized under UV light for 30 min in advance and then added to
DMEM. The cells were then incubated in different concentrations of either varying concentrations of
pure Lidocaine (20, 10, 5 mg/mL) or with FeAu@Gelatin–Lidocaine (10, 5, 2.5 mg/mL). 0.1 g of Teflon
was used as a negative control, and 0.1 g latex was used as a positive control. Finally, 1 mL of each
experimental set was added to the cells for 24 h and cell viability was assessed using MTT assay.

2.8. In Vivo Rat Model for Evaluating Anesthetic Efficiency of FeAu@Gelatin-Lidocaine

Five Sprague-Dawley (SD) rats were randomly used for the in vivo tests (male, weighted
275 ± 25 g). The rats had ad libitum access to standard chow and water at all times. All procedures
were performed with prior approval of the Institutional Animal Care and Use Committee of Mackay
Memorial Hospital under the number MMH-A-S-106-18. To evaluate the Lidocaine release from
the FeAu@Gelatin–Lidocaine conjugate in the absence of HFIW, drug–nanoparticle conjugates were
prepared containing a varying amount of Lidocaine (10, 5, and 2.5%) and intravenous injections of
drug-conjugated nanoparticles were administered to the tail vein of the rats. The blood was allowed to
circulate for 10 min within the body, after which the blood was collected from the heart and the serum
was tested for the presence of Lidocaine. Furthermore, to test the efficacy of HFIW in releasing Lidocaine
from the FeAu@Gelatin–Lidocaine conjugate and inducing anesthesia, 1 mL of drug–nanoparticle
conjugate was administered to the posterior right thigh via an intra-muscular injection. A 4000 Gauss
magnet was used to localize the magnetic nanoparticles, and the specific site was subjected to an AMF
for 10 min. Then, the treated leg was observed for any visible anesthetic symptoms.

2.9. Statistical Analysis

All experiments were performed in triplicates. Datasets different from one another were
determined using one-way ANOVA, and the level of significance was set as p < 0.05. Data were
expressed as mean and standard deviations. Significant experimental values were expressed with
a * depicting a p value ≤ 0.05, while highly significant experimental values were expressed with **
depicting a p value of ≤ 0.01 or *** depicting a p value of ≤ 0.001.

3. Results and Discussion

3.1. Characterization of FeAu Nanoparticles

In this study, the morphology of FeAu Nps was characterized using TEM, while the composition
and size were analyzed through energy-dispersive X-ray spectroscopy (EDS) and dynamic light
scattering (DLS), respectively. TEM analysis revealed that FeAu Nps were spherical in shape (Figure 1a),
while DLS analysis showed that spherical FeAu Nps had a mean size of 7.2 ± 2.8 nm (Figure 1b).
EDS analysis confirmed that the alloy nanoparticles were comprised mainly of iron and gold (Figure 1c).
The nanoparticles synthesized in this study were spherical in shape. It will be interesting to observe how
the heating ability changes when the nanoparticles are oval or rod-shaped. The effect of nanoparticle
shape on its heating power has been the subject of interest for some studies [27]. Another parameter
affecting the magnetic properties of nanoparticles is their size. Studies have reported different heating
efficiency from differently sized nanoparticles. However, for the sake of simplicity of the experimental
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designs, we decided to only study the heating efficiency of single-sized nanoparticles in this study.
The EDS data showed that the nanoparticles comprised mainly of gold and iron. The presence of Fe
and Au in FeAu Nps was further confirmed through XRD, which showed distinct 2θ peaks at 38.6, 44.8,
and 64.4◦ that correspond to the (111), (200), and (220) planes of face center cubic (FCC) of gold and the
2θ peaks at 43.9 and 64.8 that correspond to the (110) and (200) planes of body-centered cubic (BCC) in
iron, thereby further confirming the presence of Fe and Au in FeAu Nps (Figure 1d). These results
were firmly consistent with our previous study as well as with those of Krishnamurthy et al. [21,28],
thereby confirming the formation of FeAu Nps.
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3.2. Confirmation of the Formation of FeAu@Gelatin–Lidocaine Drug-Nanoparticle Conjugate

TEM was performed to visually confirm the presence of gelatin around FeAu Nps, which revealed
the presence of a dark covering encompassing the FeAu Nps indicating the presence of gelatin over
FeAu Nps (Figure 2a). To elucidate this further, DLS was performed to investigate any increment in the
size of assumable gelatin-coated nanoparticles. As expected, after incubation of the nanoparticles with
gelatin, the average size of the entire complex rose to 348 nm (Supplementary Figure S1). The zeta
potential of the complex was maintained at 22 mV (Supplementary Figure S2). The increment in
the size confirmed the presence of gelatin around the FeAu nanoparticles. Furthermore, the effect
of pH on the size of the FeAu@Gelatin–Lidocaine was also elucidated. At pH 2, the size of the
FeAu@Gelatin–Lidocaine complex was measured to be 348 nm; however, when the environmental
pH was raised to 7.4, the size of the complex was elevated to 546 nm (Supplementary Figure S3,
Table 1). Expectedly, the corresponding zeta potential was observed to be close to 0. This increase
can be explained on the basis of the isoelectric point of Type A gelatin, which ranges between pH 7
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and 9, thereby leading to the aggregation of gelatin molecules and resulting in the size increase.
This observation was also made by Bergo et al. [29]. To further confirm the encapsulation of Lidocaine
and FeAu nanoparticles (Figure 2b) in gelatin, Fourier Transform Infrared Spectroscopy (FTIR) was
performed. The FTIR of gelatin alone displayed a band at 1241.1 cm−1 that can be attributed to weak
C–N stretch or the N–H bend of Amide I, while the band at 1549 cm−1 can be attributed to the N–H
deformation (Figure 2c). The band at 1654 can be attributed to the strong C=O stretching of Amide I,
while the band at 2822 cm−1 can be due to =C–H, and finally, the band at 3330 cm−1 can be attributed
to N–H and O–H stretching [30]. The gelatin-coated FeAu–Lidocaine was again subjected to FTIR
analysis, which displayed the same bands as gelatin (Figure 2d). The resultant FTIR spectra displayed
additional peaks pertaining to Lidocaine [31], indicating the successful conjugation of gelatin with
FeAu nanoparticles.
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Table 1. FeAu@Gelatin-Lidocaine size and zeta potential measurement using DLS.

Experimental Group pH Zeta Potential (mV) Size (nm)

FeAu@Gelatin-Lidocaine 2 22 mV 348
FeAu@Gelatin-Lidocaine 7.4 0 546

3.3. Magnetic Properties of FeAu Nps

To investigate the magnetic properties of FeAu Nps, superconducting quantum interference
device (SQUID) was used, and the hysteresis loop was analyzed. The induced magnetization was also
measured between 5 and 350 K using a fixed magnetic field of 100 Oe. The zero field cooled (ZFC)
curve maximized at 300 K (blocking temperature), which indicates the initiation of heat inactivation
(Figure 3a). Further, since the blocking temperature is below the room temperature, the nanoparticles
are expected to be superparamagnetic in nature. The magnetization was measured between −20,000 G
and 20,000 G at 300 K, and the saturation magnetization was found to be 5.5 emu/g (Figure 3b).
In addition, no hysteresis was observed. Interestingly, the saturation magnetization observed in our
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previous study was 3.5 emu/g [26] as compared to 5.5 emu/g in the current study. The observation
highlights an interesting aspect that the magnetic properties may be affected by the addition of
accessory coatings around nanoparticles.Pharmaceutics 2020, 12, x 8 of 14 
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3.4. Thermogravimetric Analysis for the Degradation of Gelatin for Drug Release

To evaluate the degradation of gelatin for efficient release of the drug from the
FeAu@Gelatin–Lidocaine complex, thermogravimetric analysis (TGA) was performed. The TG
thermogram showed that the degradation of gelatin started at a temperature close to 50 ◦C and
continued until the temperature reached 550 ◦C and then remained constant until 800 ◦C. Our results
are firmly consistent with those of Rahman et al. [32]. Consequently, 97.8% decrease in the mass
of the sample was observed when the temperature reached 550 ◦C, indicating that 95% of the
FeAu@Gelatin–Lidocaine complex was composed of gelatin as the outer layer (Figure 4a). Thus,
it can be hypothesized that the drug would be effectively released upon degradation of the outer
gelatin coating. In order to perform HPLC analysis for the estimation of Lidocaine release in the
subsequent experiments, a standard curve was plotted. Then, a 20% Lidocaine Hydrochloride solution
was used to prepare the standard solution. A calibration curve with 15, 10, 5, 2.5, and 1.25% Lidocaine
was plotted using HPLC (r2 = 0.9999, Figure 4b). Then, a FeAu@Gelatin–Lidocaine complex was
dissolved in different concentrations (0.1 to 0.4%) of glutaraldehyde (GA) since gelatin coated NPs
were cross-linked in these GA concentration, and HPLC was again performed to evaluate the best
encapsulation percentage of the FeAu@Gelatin–Lidocaine complex. The encapsulation percentage
using 0.1% glutaraldehyde was the highest: close to 22%. Therefore, 0.1% of glutaraldehyde was used
in the following HPLC experiments.

3.5. Confirmation of Hyperthermia Properties of FeAu Nanoparticles

In order to confirm whether FeAu nanoparticles have the ability to generate heat when subjected
to a magnetic field, three experimental sets, each containing 0.5, 1, or 2 mg FeAu, were prepared and
subjected to HFIW (700–1100 KHz). The samples containing 0.5 or 1mg Fe Au nanoparticles started
showing a significant elevation in the temperature only after 100 s in contrast to the samples containing
2 mg FeAu, which triggered a rise in temperature as soon as they were subjected to HFIW (Figure 5a).
Furthermore, no significant difference in the temperatures raised by 0.5 or 1 mg was seen until 5 min,
indicating that either concentration can be used to achieve similar heating affects. The temperature
was maintained at 26.5 and 27.5 ◦C by 0.5 and 1 mg FeAu nanoparticles after 10 min of HFIW exposure.
In contrast, the temperature rose to 31 ◦C when 2 mg FeAu nanoparticles were exposed to HFIW,
indicating the superior heating effect of the nanoparticles. The increment in temperature with the
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nanoparticle concentration has also been shown by our previous study [26]. The concentration of
nanoparticles used in that study was more than 10-fold higher than the one used in the current
study; therefore, the corresponding temperature rise (to 40 ◦C) is justified. Nevertheless, the rise
in temperature with nanoparticle amount is ubiquitous. Since different drugs can be conjugated
to these nanoparticles in the future, requiring different amounts of energy for their release (in the
form of heat), thus, these results indicate that the amount of heat needed for drug release can be
well controlled by modulating the amount of conjugated nanoparticles. While the ability of these
nanoparticles to generate heat upon magnetic field stimulation was established, the amount of drug
released upon exposure to HFIW was still unevaluated. Therefore, in the next step, a varying amount
of FeAu@Gelatin–Lidocaine was exposed to HFIW, while Lidocaine release was evaluated using HPLC
and expressed as a percentage. Surprisingly, the amount of drug released after exposure to HFIW for
10 min was merely 5%, indicating the subpar drug release (Figure 5b). Some studies in the past have
also aimed to achieve the physiological temperature-triggered release of drugs [33,34]. In order to
achieve optimal drug release from the drug–nanoparticle conjugate in these studies, the temperature
is allowed to rise to 41 ◦C. However, an increase in temperature beyond 37 ◦C is expected to trigger
cellular apoptosis. Since the intended use of these drug-conjugated nanoparticles is finally in vivo,
therefore, 2 mg of FeAu@Gelatin–Lidocaine conjugates were dipped in the water bath maintained at
37 ◦C or 40 ◦C, which are close to physiological temperature (37 ◦C), subjected to HFIW for 5 min,
and then taken for HPLC analysis, which revealed that the amount of drug released was close to 98%,
indicating that warming of the drug–nanoparticle conjugate prior to HFIW exposure assists in the
efficient drug release (Figure 5c). The stimulation of drug release at the physiological temperature also
ensures minimal cytotoxic effects to the healthy stroma at the site of anesthesia.
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3.6. In-Vitro Cytotoxicity Analysis

In the next step, to evaluate the cytotoxicity of the FeAu@Gelatin–Lidocaine complex, L929
fibroblasts were seeded in 96-well plates, and MTT assay was performed, which revealed that all
cells died in the experimental groups containing 20 mg/mL pure Lidocaine. Viability was maintained
close to 4% in both groups containing a lower dosage of Lidocaine (10 and 5 mg/mL). Similar
observations were made by Kuan et al. who showed that after merely 24 h of incubation of cells
with 0.75% Lidocaine concentration [35], viability dropped to below 10%. One of the most striking
results to emerge in this study was a 9-fold increase in cell viability when the same concentration of
Lidocaine (10 mg/mL) was encapsulated in gelatin, indicating the efficiency of gelatin to effectively
encapsulate Lidocaine, thereby reducing its cytotoxic effects (Figure 6). A dramatic 20-fold increase
was observed when the concentration of Lidocaine encapsulated in gelatin was further decreased
(5 mg/mL). These results are conclusive that gelatin successfully shields the cells from coming in direct
contact with Lidocaine. A slight decrease in cell viabilities was still observed in experimental groups
treated with gelatin-coated drug, which can be attributed to gelatin alone, as the intrinsic properties
of gelatin such as charge, molecular weight, and Bloom strength have been seen to modulate its
biocompatibility [36]. Nevertheless, it is inarguable that the coating of drug-conjugated nanoparticles
with gelatin increases the overall biocompatibility of the complex.

3.7. Intravenous Injection and Evaluation of Drug Release in an In Vivo Rat Model

A substantial difference between in vitro and in vivo experiments lies in the presence of diverse
biochemicals in the blood, which may account for the degradation of drug–nanoparticle coating.
Therefore, in the next step, the FeAu@Gelatin–Lidocaine complex was administered to rats intravenously
(tail vein), and the possibility of Lidocaine release was explored. Notably, no HFIW stimulation was
provided at this instance. After 10 min of circulation in the body, blood was collected and subjected
to HPLC analysis. The retention time of Lidocaine Hydrochloride is close to 6 min (Supplementary
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Figures S4 and S5). The absence of any convincing peak close to 6 min in the HPLC chromatogram
confirmed that no Lidocaine was released from the FeAu@Gelatin–Lidocaine complex. Furthermore,
the efficiency of gelatin coating in resisting degradation in a physiological environment, thereby
preventing Lidocaine release, was also confirmed.Pharmaceutics 2020, 12, x 11 of 14 
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3.8. Intramuscular Injection and Evaluation of Lidocaine Release on HFIW Stimulation In Vivo

Studies have shown in the past that the subcutaneous administration of Lidocaine to the rats
reduces response to chemical stimuli, tail flicking, and paw-licking. A multitude of anesthetic
effects of Lidocaine are observed, as the drug is not localized to a specific area [37]. The results
of our previous experiments demonstrated that the FeAu@Gelatin–Lidocaine complex is stable
in the physiological environment in vivo when no HFIW stimulation provided. However, in the
current study, we hypothesized that the hyperthermia generated by FeAu Nps upon magnetic field
stimulation can be utilized to trigger anesthetic drug (Lidocaine) release through gelatin degradation.
Therefore, in the proof-of-concept experiment, we administered an intramuscular injection containing
the FeAu@Gelatin–Lidocaine complex to the rat thigh and localized it with a 4000 Gauss magnet.
Then, the area of injection was subjected to HFIW stimulation for 10 min, and the rat was unrestrained.
As visible in the Supplementary Video S1, the rat can be seen to drag the posterior leg, which was the
site of injection. Furthermore, the rat can only be seen to turn left. No right leg movement or turning
can be observed, confirming that the injected leg had been anesthetized, restricting the rat from sensing
and thereby using it.

4. Conclusions

The present study was designed to determine the possibility of using hyperthermia to release
Lidocaine from the FeAu@Gelatin–Lidocaine nano-complex and deliver local therapeutic anesthesia
effect. We were also interested to elucidate if gelatin coating increases the biocompatibility of the
overall system. Our results show that upon exposure to an AMF, the superparamagnetic nanoparticles
generated heat in a dose-dependent fashion. In vitro experiments showed that the gelatin coating
significantly reduced the cytotoxicity of FeAu@Gelatin–Lidocaine. The drug-conjugated nanoparticles
can also be magnetically localized in the targeted area owing to their magnetic properties. The in vivo
results showed that upon magnetic stimulation, hyperthermia triggered the Lidocaine release from
FeAu@Gelatin–Lidocaine, causing anesthesia at the site of nanoparticle localization. The results
also suggested that the amount of Lidocaine release can be controlled by modulating the amount of
nanoparticles conjugated to the drug. This study highlights an alternate way to exploit hyperthermia
to achieve optimal drug release for therapeutic anesthesia. We anticipate potential applications of
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this platform in orthopedics and in the fields of biomedical engineering, targeted drug delivery,
drug development, and physiology.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/11/1097/s1,
Figure S1: Analysis of FeAu@Gelatin size using DLS. The size of gelatin coated nanoparticles increased to 348 nm,
indicating successful coating of gelatin; Figure S2: Analysis of FeAu@Gelatin zeta potential using DLS. The results
show that the zeta potential of the FeAu@Gelatin complex was 22.0 mV; Figure S3: Analysis of FeAu@Gelatin size
using DLS. The results show an increment in size of nanoparticle–gelatin complex in response to the pH variation;
Figure S4: HPLC analysis of rat blood before intravenous injection of FeAu@Gelatin–Lidocaine; Figure S5: HPLC
analysis of rat blood after intravenous injection of FeAu@Gelatin–Lidocaine in the absence of an external magnetic
field. The image shows the absence of peaks pertaining to Lidocaine, confirming that without AMF stimulation,
Lidocaine is not released. Video S1: Rat with local anesthesia.
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