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Abstract: Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell
types. Recently, an enormous number of studies have been published on the potential of EVs as carriers
of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity
and higher engineering potential. Here, we review the most relevant publications addressing
the potential and use of EVs as a drug delivery system (DDS). The information is divided based
on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources
and isolation methods of EVs. We address the administration routes that have been tested in vivo
and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant
challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as
alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is
performed. Although the application of EVs in the clinical practice is still at an early stage, a high
number of studies in animals support their potential as DDS. Thus, better treatment options could be
designed to precisely increase target specificity and therapeutic efficacy while reducing off-target
effects and toxicity according to the individual requirements of each patient.
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1. Introduction

1.1. The Need for Advanced Drug Delivery Systems

The therapeutic efficacy of any pharmacological treatment depends on achieving an optimal
drug concentration at the site of action. This is strongly influenced by the absorption, distribution,
metabolism and excretion of therapeutic agents. Moreover, these processes do not exert a constant
and predictable influence on the drug concentration at the site of action, but, on the contrary, are subject
to a dynamic regulation. Exposure to other xenobiotics, changes in the diet and metabolism, and disease
states may affect, for instance, the expression and activity of drug transporters and metabolizing
enzymes and, ultimately, influence the concentration of a drug at its active site and thus, its therapeutic
efficacy [1,2]. In this regard, selectively surpassing the physiological mechanisms responsible for
limiting drug absorption, and more importantly, those mediating drug clearance, may increase drug
bioavailability. Furthermore, the fine-tuning of drug delivery to particular tissues and to particular
cells, constitutes a strategy not only to enhance the availability of a drug at the required site but also to
reduce the chemical burden to other tissues.
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EV-based therapies could offer a significant advantage in the delivery of drugs to specific targets.
This would contribute to the already on-going shift from the old paradigm of one treatment for
all the patients with the same disease to a new paradigm where each patient receives a tailored
therapy based on individualised parameters. This potential is reflected in the immense expansion of
knowledge within this field in the past years, with high impact papers being continuously released
and showing the diverse possibilities offered by EVs in different animal models. In this article,
we review the latest (i.e., published in the last 5 years) and most sound studies on this novel application
of EVs as a drug delivery system (DDS). Reviewed articles comprise publications describing the use
of EVs as drug carriers and studies where EVs represented the therapeutic agent, as important
information on the biodistribution and tissue specificity can also be gained from the latter studies.
Information is presented based on the logic work-flow followed towards designing an EV-based
therapy. First, the techniques for isolation and purification of EVs will be presented. Afterwards,
different strategies to load EVs with therapeutic agents will be discussed. Following, we will describe
possible administration routes for EV-based therapy and how tissue specificity and bioavailability can
be enhanced. These different phases of an EV-based therapy are summarized in Figure 1.
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Figure 1. Conceptual overview of the different phases of EV-based therapy. EVs are produced and can
be isolated from a wide range of cell types. EVs could be isolated from tissue biopsies, body fluids, as
well as from animal and plant materials. To be used as a DDS, EVs can be isolated, for example, by
ultracentrifugation or chromatography, depending on the type of EV and the source. In the second
stage, the therapeutic agent will be loaded into the EVs. With pre-loading methods, the agent will be
encapsulated into the EV in a natural way (i.e., using the machinery of the cell of origin). Post-loading
approaches consist of physical or chemical methods, in which a disruption of the cell membrane of
the already purified EV is induced. To improve the efficacy of the therapy, EVs can be modified, for
instance, to increase the expression of certain receptors on the membrane, and this way its interaction
with specific target cells or to avoid phagocytosis by the mononuclear phagocytic system. Finally,
EVs are administered to the patients. The use of a proper route of administration may improve
the pharmacokinetics of the drug by avoiding clearance or accumulation in off-target sites.

1.2. Extracellular Vesicles

EVs comprise a heterogeneous group of nanoparticles surrounded by bilayered phospholipidic
membranes, which are released by eukaryotic and prokaryotic cells into the extracellular
microenvironment [3]. In eukaryotic cells, EVs can be classified based on their mode of biogenesis and release
into exosomes, microvesicles and apoptotic bodies [4]. Since several isolation and characterization techniques
do not allow for a clear distinction between different types of EVs, and according to the position paper of
the International Society for Extracellular Vesicles [5], the term extracellular vesicle (EV) will be preferred
throughout this article, even in those cases where the original literature may refer to the vesicles as exosomes.

EVs carry proteins, nucleic acids, lipids and small molecules, whereby their specific cargo depends
on the microenvironment and the pathophysiological state of the cell [6]. The transfer of EVs between
cells may affect cell physiology but also play a role in the mechanisms of several diseases [7,8]. Besides
their role in health and disease, EVs are considered as a rich source of biomarkers for the diagnosis
of several diseases. More recently, the use of EVs as a new DDS, as well as a vehicle to deliver other
therapeutic agents (e.g., oncolytic viruses) to specific tissues started to be investigated.

EVs offer several advantages in comparison to other carriers. Although synthetic particles such as
liposomes already entered the market more than 20 years, their use exhibits significant disadvantages,
such as high toxicity [9], high clearance and immunogenicity [10]. On the contrary, besides exhibiting
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lower toxicity [11], EVs may undergo less phagocytosis by macrophages and can therefore remain in
circulation and in the tissues for a longer time. In this regard, EVs from antigen presenting cells carry
both classes of the major histocompatibility complex (MHC) molecules at relatively high expression
and can therefore stimulate CD8+ and CD4+ T-cells [12,13]. However, the T-cell stimulatory effect
of these free EVs is 10–20 times less efficient compared with parent antigen presenting cells [14,15].
This would explain the lower capability of EVs of stimulating naïve T-cells and, this way, their
low immunogenicity. Furthermore, T-cell activation requires more than only the presence of MHC
molecules but also co-stimulation and T-cell receptor cross-linking, for which not all the required
components are available at the surface of the EV [12,16]. Furthermore, EVs may avoid the endosomal
pathways and lysosomal degradation more effectively than synthetic carriers do [17].

2. Isolation and Production of EVs

2.1. Sources of EVs

In vitro cell culture represents a common source of EVs for therapeutic purposes. Different
cell types can be targeted by EVs from this origin and different effects may be observed.
For instance, preclinical data from a mice study showed that intravenous injection of EVs from
bone marrow mesenchymal stem cells (MSCs) suppressed hypoxia-induced pulmonary inflammation
and ameliorated pulmonary hypertension [18]. Also, EVs from dendritic cells prevented allograft
rejection in a model of renal transplantation in mice [19]. In addition, macrophage-derived EVs loaded
with two types of chemotherapeutic agents showed positive results against triple negative breast
cancer cells in both in vitro and in vivo mouse models [20]. These findings clearly exemplify that EVs
isolated from cultured cells may have an effect on different target cells in vivo. Furthermore, this also
highlights the potential of this type of EVs to be loaded with therapeutic agents with the aim of their
delivery to particular target cells once administered to a whole organism.

Tumor cells represent another source of EVs, particularly promising in the field of cancer therapy.
So far, one of the major limitations of cancer treatment is the enhanced chemoresistance exhibited
by tumor cells [21], making it imperative to develop novel therapeutic strategies. In this regard,
tropism of cancer-derived EVs could be useful. However, this tropism is not uniform for all types
of EVs. In fact, some types of EVs are taken up by tissues or cell types different than the ones they
originate from [22]. For instance, it was demonstrated that there is a heterologous and cross-species
tumor-tropism for cancer-derived EVs. The uptake of lung cancer-derived EVs by colon carcinoma cell
lines and vice versa was demonstrated in in vitro and in vivo models. Also, EVs derived from human
lung cancer cells were taken up by breast tumors in a mice model [23]. This suggests that there could
be a general tropism of cancer EVs for other neoplastic tissues. Towards, providing a personalized
treatment strategy, special effort should be directed towards targeting the treatment to a particular cell
type and reducing off-target effects. In this regard, the applications of EVs on cancer treatment have
been extensively reviewed by Burgio et al. [24].

Regarding EV production from cell culture, it is important not only to carefully define the best
cell source, but also the media, growth conditions, sera, type of culture (e.g., 2D or 3D), metabolic
preconditioning and other culture conditions [25]. In this regard, a recent study described the difference
between cells grown in a soft 3D matrix in comparison with those grown in a 2D plastic surface.
Noteworthy, cytospin-A, an important cytoskeleton protein was described to regulate the softness
of the EVs. The physical softness of the EVs from tumor-repopulating cells obtained from a 3D
culture makes them more capable to penetrate and extravasate into the tumor parenchyma in a higher
concentration and deliver more efficiently chemotherapeutic drugs. Therefore, cytospin-A could be
a crucial player to improve the in vivo transport of EVs isolated from 3D cultures, eventually, leading
to a better treatment outcome [26].

Cancer EVs can be isolated from fluids such as plasma [27–29]. For prostate cancer [30] and bladder
cancer [31] urine may also constitute a source of vesicles. Also, gastric juice has been reported as
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a source of EVs in gastric cancer patients [32]. Finally, cancer cells cultured in vitro represent another
useful source of EVs [33]. With the aim of treatment with autologous EVs, a tumor biopsy may
be obtained as a source for the generation of the EVs. This approach may bear the advantage of
delivering a higher number of specific cancer cell-derived EVs, than when vesicles are isolated from
other biofluids.

Besides cancer cell EVs, other types of EVs can also be isolated from blood. Different types of
therapeutic agents have already been loaded into blood-derived EVs like miRNAs [34], curcumin [35],
or dopamine [36]. Serum derived EVs have demonstrated to deliver molecules in a more efficient
manner than macrophages cell-derived EVs. Especially, foetal bovine serum-derived EVs were able to
enter both the macrophage- and T cell-zones within lymph nodes, also displaying an increased delivery
of stimulating biomolecules [37]. Other accessible fluids are urine [38] and saliva [39]. While the use of
urinary EVs as a DDS has been briefly evaluated [40], the possibilities of saliva-derived EVs in a DDS
are yet not known.

Furthermore, EVs can be isolated from vegetables, fruits and milk. EVs derived from bovine milk
can be used to deliver anti-cancer drugs in rats and mice without toxic effects. Furthermore, this source
of EVs may allow for scaling up production in a cost-effective way [41]. Similarly, ginger roots were
used as EV source for administration in mice [42]. An extensive summary of all sources of EVs that
have being used, including those used for in vivo administration, can be found in Tables 1 and 2.

2.2. Isolation of EVs

So far, no universal isolation protocol has been established and different applications may require
different types of EVs and, therefore, different isolation techniques. Currently available methods
are based on ultracentrifugation, size chromatography, immunoaffinity capture and precipitation,
whereby variable purity and yield can be obtained. Different isolation methods for EVs as well as
their advantages and disadvantages have been reviewed elsewhere [43]. A frequent limitation of
techniques based on size and centrifugation is the frequent overlap between different types of EVs,
such as microvesicles and exosomes [44,45]. Thus, the use of these isolation methods requires multiple
characterization assays before it can be concluded that a specific subset of EV was isolated [5].

Aqueous two-phase systems consisting of two mixed polymers with or without a salt solution have
been described as an alternative to isolate EVs. For instance, polyethylene glycol (PEG) and dextran
(DEX) were dissolved into urine and centrifuged at 1000× g. This resulted in the separation of
the two polymers resulting in a top phase containing the PEG-rich solution and a bottom DEX-rich
phase containing the EVs [46]. In comparison with the earlier mentioned techniques, the purity
and the efficiency are higher and no specialized equipment is required, thus suggesting the potential
of this approach to be scaled for bulk production.

2.3. Loading of EVs with Therapeutic Agents

2.3.1. Post-Loading Approach

This strategy is based on the loading of the therapeutic agent to EVs previously isolated from cells
or another source of vesicles. It can be used, mainly, for synthetic molecules or small biomolecules.
EV loading can take place passively or actively. The concept of passive loading is that isolated EVs
are incubated with the therapeutic molecules, which will permeate into the EVs without additional
stimulation. Active loading techniques are based on the application of a stimulus or adjuvant and can
be divided into physically- and chemically-induced loading. Physically active methods such as
electroporation, sonication, or extrusion disrupt the EV membranes to transfer the drug into the EV.
Chemicals like saponin or transfection reagents can also be used to penetrate the membrane of the EV.
A summary of the different post-loading methods as well as the therapeutic agents incorporated in
each case is presented in Table 1.



Pharmaceutics 2020, 12, 1006 6 of 37

2.3.2. Pre-Loading Approach

In the pre-loading approach, the cellular machinery is used to load a therapeutic agent into the EVs
during the vesicle biogenesis. As a result, secreted EVs will carry the therapeutic agent. One pre-loading
alternative is the transfection or transduction of genetic material codifying a product of interest into
EV-producing cells. As a consequence, the product will be overexpressed and encapsulated in the EVs.
An example of this type of loading was described by Yuan et al. [47]. In this study, the genetic
sequence of the tumor necrosis factor-related apoptosis inducing ligand (TRAIL) was transduced with
a lentivirus and expressed in mesenchymal stromal cells. The secreted EVs from these cells carried
TRAIL and induced apoptosis with high efficiency and selectivity in three different cancer cell lines.
Noteworthy, with this type of loading method, it may be difficult to control the concentration that is
loaded into the EVs as they may depend on multiple factors including transfection or transduction
efficiency and cell viability. Hereby, models stably expressing the product of interest may represent
an advance towards obtaining a more standardized pre-loading into the EVs. For the pre-loading
of EVs with a protein cargo, an innovative approach is the technique called ‘exosomes for protein
loading via optically reversible protein-protein interactions’ (EXPLORs) [48]. The principle is based
on two different proteins. Cryptochrome 2 (CRY2) is fused covalently to the intended cargo protein.
The second component is the exosome-associated tetraspanin CD9 bearing a special variant of
cryptochrome-interacting basic-helix-loop-helix 1 (CIBN). The fusion between these two structures is
induced by excitation with blue light (488 nm). Following the formation of EVs, the light source is
removed. Thus, the CIBN complex detaches from the CD9 and results in the release of the cargo protein
of interest into the intraluminal space. This approach may be particularly useful to enrich the EVs
with therapeutic proteins which are not loaded into the EVs under physiological conditions [48].
The EXPLOR method is graphically depicted in Figure 2.
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Figure 2. Principle of the EXPLORs technique. The binding between the CD9 complex and the CRY2
coupled to the therapeutic protein is induced in the donor cell by exposure to blue light (488 nm).
Within 15 s, the cargo-protein is guided to the inner surface of the cell membrane and binds to the CIBN.
The secreted EVs can be isolated, purified, and used for therapeutic purposes. Abbreviations: CIBN:
truncated version of CRY-interacting basic-helix-loop-helix 1 (CIB1) protein; CRY2: Cryptochrome 2.

The preloading strategy may also be applied to load vesicles aimed at delivering oncolytic
viruses. Although this type of viruses can selectively infect and kill cancer cells, the host immune
system may detect their presence and neutralize them, thus interfering with the desired effect [49].
Gould et al. [50] described the use of EVs as a virus carrier. Virus-loaded EVs induced infection
in cancer cells, which also led to the infection of other autologous cancer cells. This principle was
also tested in vivo in a lung cancer xenograft model and also combined with the chemotherapeutic
agent paclitaxel. The combination showed a significantly higher antitumoral efficacy in comparison to
the virus alone [51].
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Table 1. Strategies for the loading of EVs with therapeutic agents. Detailed are different studies describing the loading of EVs with therapeutic agents. The specific
loading method, the source of EVs as well as the therapeutic agent or experimental cargo are mentioned. Subsequently, the method used to evaluate the loading
efficiency, if known, is indicated. Finally, the model where the generated EVs were applied is indicated. Abbreviations: DNA-CH: cholesterol-coupled DNA; dsDNA:
double stranded DNA; EXPLORs: exosomes for protein loading via optically reversible protein-protein interactions; hESC: human embrionary stem cell; HPLC:
High-performance liquid chromatography; HUVEC: human umbilical vein endothelial cell; miRNA: micro RNA; LC-MS: Liquid chromatography–mass spectrometry;
MRSA: Methicillin-resistant Staphylococcus aureus; MSC: mesenchymal stem cell; siRNA: small interfering RNA; ssDNA: single-stranded DNA; TAMEL: Targeted
and modular EV loading; t-PA: tissue-plasminogen activator; UPLC: Ultra-Performance Liquid Chromatography.

Loading Method EV Source Therapeutic Agent or
Experimental Cargo Loading Efficiency Model Ref.

Passive incubation

Cell culture
(LIM1215 cells) Doxorubicin Spectrofluorometry Cell culture, mice tumor xenograft [52]

Cell culture (HEI-OC1 cells)

Aspirin, arachidonic acid,
eicosapentaenoic acid,

docosohexaenoic acid, linoleic acid,
lipoxin, resolvin D1

[53]

Cell culture (HEI-OC1 cells) Dexamethasone [54]

Cell culture (HEK293T cells) siRNA and rhodamine Spectrofluorometry [55]

Cell culture (LNCaP and PC-3 cells) Paclitaxel UPLC Cell culture [56]

Cell culture (LL/2, MC-38, A549 cells),
liver tissue Oncolytic adenovirus Cell culture and mice with colon

adenocarcinoma xenograft [23]

Cell culture (MDA-MB-231, MSCs, hESCs,
HUVECs) Different porphyrins Cell culture [57]

Cell culture (MSCs) Doxorubicin Spectrophotometry Cell culture [58]

Cell culture (MSC) miR-210 Mice [59]

Cell culture (MSC) Nanoparticles loaded with
curcumin Spectrophotometry [60]

Cell culture (Neuro2A, dendritic cells) siRNA Spectrofluorometry Cell culture [61]

Cell culture (Raw 264.7 cells) Linezolid HPLC Mice with MRSA infection [62]

Cell culture (Raw 264.7 cells) Paclitaxel, doxorubicin HPLC Cell culture, different xenograft
mouse models [20]

Cell culture (Raw 264.7 cells) Paclitaxel, doxorubicin HPLC MDCK-MDR1 cells; mice [63]

Cell culture (Raw 264.7 cells) Catalase Catalase enzymatic
activity Cell culture, mice [64]

Cell culture (THP-1) Doxorubicin, t-PA, photosensitizer
molecules Spectrofluorometry Cell culture [65]

Cell culture (U87 cells) Paclitaxel HPLC Cell culture [66]
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Table 1. Cont.

Loading Method EV Source Therapeutic Agent or
Experimental Cargo Loading Efficiency Model Ref.

Passive incubation

Platelets Doxorubicin Spectrofluorometry Cell culture [67]

Bovine milk Withaferin, anthocyanidins,
curcumin, paclitaxel, docetaxel Spectrophotometry, UPLC Rats, mice with different

xenograft variants [41]

Bovine milk and cell culture Curcumin Cell culture [68]

Blood Dopamine LC-MS Mice [36]

Electroporation

Cell culture (Dendritic cells) Let-7-miRNA and siRNA qPCR Mice with breast tumor xenograft [69]

Cell culture (HEI-OC1 cells)

Aspirin, arachidonic acid,
eicosapentaenoic acid,

docosohexaenoic acid, linoleic acid,
lipoxin, resolvin D1

[53]

Cell culture (HEK293T cells) Doxorubicin Spectrofluorometry Cell culture, mice with breast
tumor xenograft [70]

Cell culture (HEK293T cells) siRNA, rhodamine Spectrofluorometry [55]

Cell culture (HEK293T cells) siRNA Spectrofluorometry Cell culture [71]

Cell culture (HEK293T cells) siRNA Cell culture [72]

Cell culture (HEK293T cells) Doxorubicin Spectrofluorometry Cell culture [73]

Cell culture (HEK293T cells, HUVECs) dsDNA Spectrophotometry Cell culture [74]

Cell culture (MDA-MB-231, MSCs, hESCs,
HUVECs) Different porphyrins Cell culture [57]

Cell culture (MDA-MB-231 cells) Superparamagnetic iron
nanoparticles and olaparib

Cell culture, mice with breast
tumor xenograft [75]

Cell culture (MSCs) Doxorubicin Spectrofluorometry Mice with multiple xenograft
variants [76]

Cell culture (Normal intestinal fetal
human cells) miRNA-128-3p qPCR Cell culture, mice with colon

tumor xenograft [77]

Cell culture (Raw 264.7 cells)
Superparamagnetic iron

nanoparticles loaded
with curcumin

Spectrophotometry Mice bearing glioma cells [78]

Cell culture (Raw 264.7 cells) Paclitaxel, doxorubicin HPLC MDCK-MDR1 cells; mice [63]

Cell culture (3T3 and A549 cells) siRNA Cell culture [79]

Plasma and cell culture Curcumin, siRNA, DNA-CH,
miR-145 mimics Mice with lung tumor xenograft [35]

Plasma miR-31-5p, miR-451a Cell culture, [34]

Serum Tyrosinase-related-protein-2 Spectrofluorometry Cell culture [80]
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Table 1. Cont.

Loading Method EV Source Therapeutic Agent or
Experimental Cargo Loading Efficiency Model Ref.

Sonication

Cell culture (HEI-OC1 cells) Dexamethasone [54]

Cell culture (HEK293T, MCF7 cells) siRNA, miRNA, ssDNA Cell culture [81]

Cell culture (IC21 cells) Tripeptidyl peptidase-1 Enzymatic activity Cell culture, mice [82]

Cell culture (J774A.1 cells) Doxorubicin Cell culture [83]

Cell culture (Human fetal lung fibroblast 1) Erastin HPLC Cell culture [84]

Cell culture (Raw 264.7 cells) Catalase Catalase enzymatic
activity Cell culture, mice [64]

Cell culture (Raw 264.7 cells) Paclitaxel HPLC Cell culture, mice [85]

Cell culture (Raw 264.7 cells) Paclitaxel, doxorubicin HPLC MDCK-MDR1 cells; mice [63]

Cell culture (Raw 264.7 cells) Paclitaxel, doxorubicin HPLC Cell culture, mice with breast
cancer xenograft [20]

Cell culture (U937 cells) Dexamethasone HPLC Cell culture, mice [86]

Cell culture (U87 cells) Paclitaxel HPLC Cell culture [66]

Lipofection Bovine milk siRNA Zebrafish and mice [87]

Transfection

Cell culture (A172 cells) siRNA RT-PCR Mice [88]

Cell culture (HEK293T cells) Anti-miR-214 Cell culture, mice [89]

Human peripheral blood cells miR-21 Cell culture, mice [90]

Saponin
permeabilization

Cell culture (IC21 cells) Tripeptidyl-peptidase-1 Enzymatic activity Cell culture, mice [82]

Cell culture (MDA-MB-231, MSCs,
hESCs, HUVECs) Different porphyrins Cell culture [57]

Cell culture (Raw 264.7 cells) Catalase Catalase enzymatic
activity Cell culture, mice [64]

Serum Tyrosinase-related-protein-2 Spectrofluorometry Cell culture [80]

pH-gradient Neutrophils Piceatannol HPLC Cell culture, mice [91]

Extrusion

Cell culture (MDA-MB-231 cells, MSCs,
hESCs, HUVECs) Different porphyrins Cell culture [57]

Cell culture (Raw 264.7 cells) Catalase Catalase enzymatic
activity Cell culture, mice [64]

Freeze-thaw cycles Cell culture (Raw 264.7 cells) Catalase Catalase enzymatic
activity Cell culture, mice [64]
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Table 1. Cont.

Loading Method EV Source Therapeutic Agent or
Experimental Cargo Loading Efficiency Model Ref.

Hypotonic dialysis
and extrusion

Cell culture (MDA-MB-231 cells, MSCs,
hESCs, HUVECs) Different porphyrins Cell culture [57]

Transfection

Cell culture (HEK293T cells) miR-21 sponge RT-qPCR Cell culture, rats [92]

Cell culture (HEK293T cells) miR-199a-3p RT-qPCR Mice [11]

Cell culture (HEK293T cells) miR-199a-3p RT-qPCR Cell culture [93]

Cell culture (HEK293T cells) Cre recombinase RT-qPCR Cell culture [94]

Cell culture (IC21 cells) Tripeptidyl-peptidase-1 Enzymatic activity Cell culture, mice [82]

Cell culture (Normal intestinal fetal
human cells) miRNA-128-3p qPCR Cell culture, mice with colon

tumor xenograft [77]

Cell culture (MSCs) Anti-miR-222/223 Mice with breast tumor xenografts [95]

Cell culture (4T1, SKBR3, HepG2 cells) Anti-miR-21 Fluorescence microscopy Cell culture [96]

TAMEL Cell culture (HEK293T cells) RNA Cell culture [97]

ExPLORs Cell culture (HEK293T cells) Recombinant luciferase Luciferase activity Cell culture, mice [48]
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3. Administration and Biodistribution

Different routes have been evaluated for EV administration in experimentation animals
(Table 2). Intravenous administration constitutes the most frequent route and has been reported
for the administration of vesicles isolated from different sources, whereby mesenchymal stem cells
(MSCs) constitute the most common one [98,99]. EVs obtained from this source have been more
extensively studied for their potential in regenerative medicine (reviewed by Campanella et al., [100]).
However, they may also be used for the treatment of other disorders. Intravenous administration
of MSC-derived EVs resulted in the presence of EVs or in the observation of EV-related effects in
a wide range of organs and tissues. Noteworthy, the delivery of therapeutic agents to the central
nervous system (CNS) constitutes a challenge due to the structural properties of the blood brain
barrier as well as the presence of drug extruding transporters in the brain endothelial cells, impairing
the penetration of xenobiotics [101]. Hereby, intravenous administration of EVs from MSCs has
been repeatedly successful towards the delivery of EVs, for instance, carrying different miRNAs, to
the CNS [59,102–104]. Similarly, other studies described the intravenous delivery to the CNS of EVs
isolated from adipose tissue stem cells [105], HEK293T cells [106], urinary stem cells [40], dendritic
cells [107] and rat serum [108]. However, it is worth mentioning that most of these did not evaluate
whether the same experimental approach may result in effects in other tissues. In this regard, other
studies described the intravenous delivery of EVs from MSC and adipose stem cells to other tissues such
as such as pulmonary vasculature [109], carotid artery [110], heart [111], lungs [112], pancreas [113],
liver [114] and colon [115]. Based on this evidence, intravenous administration of EVs from MSC or
adipose stem cell does not appear to provide enough specificity to target one particular tissue or organ.
For this purpose, further refinements of the production strategy may be required, for example vesicle
engineering (see Section 5).

Alternatively, intravenous administration of EVs isolated from sources with a closer relation to
the target tissue may be a possibility towards obtaining a higher specificity. Recent reports described
the delivery of urinary EVs to the kidney [116], EVs from Schwann cells to peripheral nerves [117],
serum EVs from mice with acute lung injury to the lungs [118] and EVs from cardiac progenitor cells
to the heart [119–121]. Also, intravenous delivery to the CNS has been observed for vesicles isolated
from microglial cells [122,123] and mouse brain endothelial cells [124].

The intravenous route has been also reported to be useful in the delivery of cancer-derived EVs to
tumoral tissue [125]. Interestingly, administration of tumor exosome-based nanoparticles loaded with
doxorubicin resulted in a reduction in tumor volume and increased survival time in mice xenograft
models for hepatocellular carcinoma and for breast cancer, when compared to other therapeutic
alternatives. Importantly, for hepatoma xenografts, the antitumoral effect of the nanoparticles was
even higher than that of intravenous free doxorubicin. In addition, the use of the same nanoparticles
resulted in a reduction in lung metastasis in a mice xenograft model for melanoma. Importantly,
the systemic toxicity of the nanoparticle-based strategy was lower than for the administration of
free doxorubicin [126]. Conversely, it is well-acknowledged that EVs, as key players in cell-cell
communication, may play a role in cancer pathogenesis, promoting initiation and progression [127].
Further research should aim at elucidating the safety of EV-based cancer therapy approaches, especially
in long-term studies. Furthermore, a deeper knowledge of the role of EVs in cancer pathogenesis
and the components of the cargo responsible for the tumor-stimulatory effects, may also contribute to
the engineering and design of effective and safe EV-based therapeutic strategies for cancer.

Intranasal administration represents the second most frequently reported route. Delivery of
MSC-derived EVs to the CNS has been described in several studies [128–132]. In line with these
findings, Scholl et al., [133] described the intranasal delivery of glioma-derived EVs obtained in vitro
to glioma tissue in rats. The advantages of this administration route may be particularly important
in the treatment of neurodegenerative disorders [134]. Also, successful intranasal EV delivery to
the lungs has been reported [135,136]. To date, comparative evidence of the intranasal route versus other
administration routes is limited. In a recent report, Bonafede et al., [105] compared the administration of
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adipose stem cell-derived EVs intranasally and intravenously in a murine model of amyotrophic lateral
sclerosis. Most protective effects were achieved similarly both for the intravenous and the intranasal
administration. On the contrary, the intranasal administration was more effective in reducing astrocyte
activation [105].

The subcutaneous administration of EVs has been described for the generation of a systemic
immune response in mice administered with vesicles isolated from Echinostoma caproni [137]. Also,
subcutaneous administration of EVs from adipose stem cells resulted in an alleviating effect in a mice
model of atopic dermatitis. Here, comparative experiments were performed and similar results were
observed for the intravenous and the subcutaneous pathways [138]. Systemic effects have also been
reported for the intramuscular administration of EVs in chicken [139]. In addition, the intramuscular
injection of EVs resulted in the delivery of vesicles to the kidneys [140]. As expected, also local effects
of the vesicles at the muscular level were observed [141,142].

A comparative study from Brossa et al., [99] described, however, a reduced accumulation of MSC
and liver stem cells derived EVs in subcutaneous renal tumors following intraperitoneal administration
respect to the accumulation after intravenous administration. Also, Zhou et al. [143] compared both
administration routes and observed an enrichment of intravenously-administered EVs in liver, spleen
and lungs. Intraperitoneal administration resulted in a more disperse distribution pattern, whereby
visceral adipose tissue displayed a significant accumulation of vesicles. Based on these findings, this
strategy could be used in the treatment of diseases associated to visceral adipose tissue (e.g., metabolic
syndrome).

Oral administration was described for EVs from bovine-milk in a mice model. Six hours
post-administration, the vesicles were localized in the liver, heart, spleen, lungs and kidneys [144].
Furthermore, a comparative study between oral and intravenous administration of bovine-milk EVs
described an enrichment of intravenously administered vesicles in the spleen, liver and, to a lower
extent, lungs of mice. Conversely, the enrichment took place primarily in the liver, when the same
EVs were administered orally [145]. These findings highlight the oral route as a possible strategy to
simplify the use of EVs as DDS, without requiring specialized healthcare personnel.

Local injection of EVs may reduce the off-target delivery and increase the exposure of the target
tissue and reduce the clearance of the vesicles, compared to systemic administration. For instance,
intraocular and subconjunctival injection of MSC-derived EVs resulted in the delivery of the vesicles to
the retina in a rabbit model of diabetes-induced retinopathy [146]. Intramyocardial injection has also
been used for MSC-derived EVs, in a rat model of acute myocardial infarction [147]. Also, intrathecal
injection was described for the delivery of EVs to peripheral nerves in rats [148]. Likewise, intratumoral
administration resulted in a clear enrichment of EVs in the tumor, absence of EVs in liver and spleen
and reduced clearance, compared with the intravenous administration [149].

In addition to the route of administration, EV size is an additional factor that could influence
the biodistribution profile. For example, larger EVs accumulated in higher concentrations in bones
and lymph nodes compared to smaller EVs. Nonetheless, the contribution of the molecular compositions
of the EVs to this accumulation profile cannot be excluded [150].

An extensive summary of the individual studies performed, highlighting the source of EVs, their
route of administration and the tissues affected under each treatment strategy can be found in Table 2.
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Table 2. Administration routes for EVs in vivo. Detailed are different studies using in vivo models where EVs were administered. Described are the administration
routes, the experimental model, the source of EVs, the therapeutic cargo (when known), and the target tissue of the EVs or the EV-related effects. While in some cases
a therapeutic cargo was known, in other cases the EV itself was the therapeutic agent and no particular component of the cargo was specified as responsible for
the effect observed. Abbreviations: AdSC: adipose tissue-derived stem cells; CNS: central nervous system; miR: micro RNA; MSC: mesenchymal stem cells.

Administration Route Experimental Model Source of EVs Therapeutic Cargo Target Tissues Reference

Intravenous

Mice

Plasma Liver [151]

Serum miR-124 CNS [152]

Serum Lung [118]

Serum Systemic effects [153]

Mice serum, supernatant of
cultured myotubes miR-21 Kidney [154]

Blood Dopamine CNS [36]

Urine Klotho Kidney [116]

Milk Liver, spleen, heart, lungs [145]

MSC Paclitaxel Subcutaneous tumors and distant metastases [155]

MSC Heart [111]

MSC Liver [156]

MSC miR-210 Brain [59]

MSC miR-let7 Atherosclerotic plaque [157]

MSC miR-125b Heart [158]

MSC Bone marrow [159]

MSC CNS [160]

MSC, liver stem cells Subcutaneous tumor [99]

AdSC miR-199ª Orthotopic tumor [161]

AdSC CNS [105]

AdSC miR-17 Liver [114]

AdSC Skin [138,162]

Bone marrow stromal cells Liver, lungs, bone [163]

HEK293T cells Anti-miR-214 Subcutaneous tumor [89]
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Table 2. Administration routes for EVs in vivo. Detailed are different studies using in vivo models where EVs were administered. Described are the administration
routes, the experimental model, the source of EVs, the therapeutic cargo (when known), and the target tissue of the EVs or the EV-related effects. While in some cases
a therapeutic cargo was known, in other cases the EV itself was the therapeutic agent and no particular component of the cargo was specified as responsible for
the effect observed. Abbreviations: AdSC: adipose tissue-derived stem cells; CNS: central nervous system; miR: micro RNA; MSC: mesenchymal stem cells.

Administration Route Experimental Model Source of EVs Therapeutic Cargo Target Tissues Reference

Intravenous

HEK293T cells Curcumin, miR-143a Tumor cells [164]

HEK293T cells miR-199a-3p Subcutaneous tumor [165]

HEK293 cells Mammary tumor [166]

Dendritic cells Spleen [167]

Dendritic cells siRNA Brain [107]

Immature dendritic cells Doxorubicin Mammary tumor [168]

Mouse brain endothelial cells miR-126 CNS [124]

Endothelial colony forming cells miR-486-5p Kidney [169]

Gastric epithelial cells Aorta [170]

Neural primary stem cells CNS [171]

BMD2a cells Lungs, liver, spleen, brain [172]

Liver miR-130a-3p Systemic effects [173]

Schwann cells Peripheral nerves [117]

Astrocytes CNS [174]

Microglial cells miR-124-3p CNS [122]

Breast cancer cells miR-126 Lung cancer cells [125]

Tumor-cell exocytosed-exosome
biomimetic porous silicon
nanoparticle

Doxorubicin Tumor cells [126]

Gastric cancer cells Blood myeloid-derived suppressor cells [175]

Pancreas carcinoma cells Liver, spleen, lungs [176]

Macrophages Brain-derived
neurotrophic factor CNS [177]

L929 cells Methotrexate Glioblastoma tissue [178]

Ginger roots siRNA Subcutaneous tumor [42]
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Table 2. Administration routes for EVs in vivo. Detailed are different studies using in vivo models where EVs were administered. Described are the administration
routes, the experimental model, the source of EVs, the therapeutic cargo (when known), and the target tissue of the EVs or the EV-related effects. While in some cases
a therapeutic cargo was known, in other cases the EV itself was the therapeutic agent and no particular component of the cargo was specified as responsible for
the effect observed. Abbreviations: AdSC: adipose tissue-derived stem cells; CNS: central nervous system; miR: micro RNA; MSC: mesenchymal stem cells.

Administration Route Experimental Model Source of EVs Therapeutic Cargo Target Tissues Reference

Intravenous Rats

Serum CNS [108]

MSC miR-544 CNS [102]

MSC CC chemokine receptor
type 2 CNS [179]

MSC CNS [180]

MSC CNS [181]

MSC miR-17-92 cluster CNS [104]

MSC Pulmonary vasculature [109]

MSC Colon [115]

MSC Vein graft [182]

MSC Heart [183]

MSC Lungs [112]

MSC miR-29b Spinal cord [184]

MSC Pancreas [113]

MSC Carotid artery [110]

MSC Bone [185]

AdSC Penile tissue [186]

AdSC miR-126 CNS [187]

AdSC Brain, spleen [188]

AdSC Systemic effects [189]

AdSC CNS [190]

Human urinary stem cells miR-26a CNS [40]

Human fetal amniotic fluid
stem cells Heart [191]

Cardiac progenitor cells miR-146a Heart [119]

Cardiac progenitor cells Cardiomyocytes [120]

Cardiac stem cells Heart [121]
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Table 2. Administration routes for EVs in vivo. Detailed are different studies using in vivo models where EVs were administered. Described are the administration
routes, the experimental model, the source of EVs, the therapeutic cargo (when known), and the target tissue of the EVs or the EV-related effects. While in some cases
a therapeutic cargo was known, in other cases the EV itself was the therapeutic agent and no particular component of the cargo was specified as responsible for
the effect observed. Abbreviations: AdSC: adipose tissue-derived stem cells; CNS: central nervous system; miR: micro RNA; MSC: mesenchymal stem cells.

Administration Route Experimental Model Source of EVs Therapeutic Cargo Target Tissues Reference

Intravenous
Rats

Human iPSCs Bone [192]

Urinary stem cells Kidney [193]

Aortic adventitial fibroblasts miR-155-5p Aorta and mesenteric artery [194]

HEK293T cells miR-21 antisense CNS [106]

HEK293T cells siRNA CNS [195]

Human renal tubular cells Kidney [196]

Renal cells Kidney [197]

Patients with COVID-19 MSC Systemic effects [198]

Monkeys MSC CNS [199]

Intravenous (in utero) Ovine fetuses MSC Brain [200]

Intranasal

Mice

MSC CNS [201–203]

AdSC CNS [105]

ESC Curcumin CNS [204]

Astrocytes siRNA Microglia [88]

Amnion epithelial cells Lungs [205]

Macrophages Lungs [135,206]

EL4, 3T3L1, 4T1, CT26
and A20 cells Curcumin, JSI-124 CNS [132]

Bronchoalveolar lavage fluid Lungs, systemic effects [136,207]

Rats

MSC CNS [128,130,
131,208]

MSC siRNA CNS [129]

C6 Glioma cells Glioma [133]

Human teeth stem cells CNS [134]

Intraperitoneal Mice Liver stem cells, MSC Subcutaneous tumor [99]

Intramyocardial Rats MSC Heart [147]
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Table 2. Administration routes for EVs in vivo. Detailed are different studies using in vivo models where EVs were administered. Described are the administration
routes, the experimental model, the source of EVs, the therapeutic cargo (when known), and the target tissue of the EVs or the EV-related effects. While in some cases
a therapeutic cargo was known, in other cases the EV itself was the therapeutic agent and no particular component of the cargo was specified as responsible for
the effect observed. Abbreviations: AdSC: adipose tissue-derived stem cells; CNS: central nervous system; miR: micro RNA; MSC: mesenchymal stem cells.

Administration Route Experimental Model Source of EVs Therapeutic Cargo Target Tissues Reference

Subcutaneous Mice
AdSC Skin [138]

Echinostoma caproni Systemic immune response [137]

Intramuscular
Mice

Primary mouse satellite cells miR-29 Kidney, muscle [140]

Cardiac stem cells Muscle [141]

Human iPSCs Muscle [142]

Chicken Serum Systemic immune response [139]

Intrathecal Rats MSC Peripheral nerves [148]

Oral Mice Bovine milk Liver, spleen, heart, lungs, kidney [144]

Intraocular Rabbit MSC Retina [146]

Subconjunctival Rabbit MSC Retina [146]
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4. EV Clearance

One of the key mechanisms involved in the clearance of EVs is their uptake by the mononuclear
phagocytic system. Intravenously administered EVs have shown to be rapidly cleared from blood
circulation, followed by hepatic, splenic and lung accumulation [209]. Interestingly, the intravenous
administration of EVs carrying an siRNA against the clathrin heavy chain reduced EV uptake by
the liver and the spleen and increased accumulation in the cardiac tissue [210]. In another approach,
tumor derived nanovesicles were taken up by Kupffer cells and prevented the phagocytosis of
doxorubicin-loaded liposomes, which instead were efficiently delivered to the lungs [211]. Similar
strategies could be used to prevent the phagocytosis of EVs loaded with therapeutic agents.

Surface proteins may also be engineered to overexpress particular surface proteins and,
thus, increase EV bioavailability. For instance, cluster domain (CD) 47 is an integrin-associated
transmembrane protein that protects EVs from phagocytosis and thereby increase their time of
circulation. In a pancreatic ductal adenocarcinoma model, EVs with the higher expression of CD47
had a longer half-life time in circulation than particles with lower CD47 [212].

5. Tissue Specificity

Although several studies have shown a successful delivery of therapeutic agents via EVs (Table 2),
EVs could still be engineered not only to become more invisible to the host’s immune system but also
to increase tissue- or cell-specificity. In fact, the accumulation of EVs at off-target sites can induce
unwanted effects, thus influencing the efficacy and safety of the treatment. Coating EVs with synthetic
materials or increasing the expression of certain surface proteins have been proposed as strategies
to enhance the tissue specificity of the vesicles. This could ultimately lead to a more personalized
treatment strategy.

PEG-coating of EVs increased the vesicle bioavailability as well as their extravasation ability,
thus increasing the accumulation in tumoral tissue [213]. Kooijmans et al., [214] described the use
of pegylated-targeting ligands. In particular, coating of the EVs with PEG-EGFR increased their
bioavailability and enhanced the EV binding to EGFR-overexpressing tumor cells, while decreasing
non-specific interactions. Similarly, coating macrophage-derived and paclitaxel loaded EVs with
PEG-aminoethylanisamide, which targets the sigma receptor (usually overexpressed in lung cancer
cells), was effective delivering EVs to pulmonary metastases in mice [85].

Streptavidin can be used in combination with PEG as an anchor point, and biotinylated-components
(e.g., antibodies, homing peptides) targeting cells of interest can be then conjugated to the EV
surface. This rather simple approach increased the uptake of EVs by cardiac fibroblasts, myoblasts
and cardiomyocytes exposed to ischemic conditions, suggesting that it could be a promising strategy
to increase cell-specificity not only in the heart but also in other organs [215].

Finally, the use of magnetic fields to direct EVs to a particular target has also been reported. This
approach was applied to direct superparamagnetic iron oxide nanoparticle-covered EVs loaded with
an experimental peptide to pancreatic islet cells to increase insulin secretion. Interestingly, the peptide
loaded in the EVs showed increased plasma half-life and stronger glucose-lowering effects than the free
peptide [216]. Following, the most common approaches to engineer the EV surface and thus modulate
target specificity, will be discussed.

5.1. Homing Peptides

The display of homing peptides has been used to direct intravenously administered EVs to
the CNS. Here, the cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide, which exhibits high affinity for an integrin
highly expressed in ischemic brain, was added to the EV surface via click-chemistry. This strategy
resulted in a significant enrichment of EVs carrying curcumin in the brain compared to non-decorated
EVs [217]. A similar strategy was effective to direct EVs carrying miR-210 to ischemic brain areas [59].
Another peptide used for the same purpose is a short sequence of the rabies virus glycoprotein (RVG),
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which has been expressed in the EV-generating cells coupled to the exosomal protein Lamp2b. This
resulted in the generation of EVs exhibiting a higher tropism for the central nervous system [218].
The same strategy was used to direct HEK293T EVs to the mouse brain [219]. A similar RVG peptide
was used by Cui et al., [220], although by chemical coupling with dioleoylphosphatidylethanolamine
N-hydroxysuccinimide to anchor the peptide to the surface of the vesicle. Noteworthy, another study
described the presence of intravenously administered EVs displaying the same RVG peptide but in
muscle and kidney tissues [140]. Therefore, although this approach appears to increase the EV affinity
for brain tissues, binding to other organs cannot be ruled out.

Homing peptides have also been used to direct EVs to cardiac tissue. This was reported
by conjugating a cardiac homing peptide to the surface of EVs isolated from cardiac stem
cells via a dioleoylphosphatidylethanolamine N-hydroxysuccinimide (DOPE-NHS) linker [121].
These decorated EVs exhibited an increased uptake of EVs by cardiomyocytes. However, the use of
cardiac stem cell-derived EVs may have also contributed to this observation. Also, the decoration
of EVs with another cardiac targeting peptide coupled to the EV membrane via Lamp2b increased
the delivery to cardiac tissue in a mice model [221].

Peptides have also been used to increase delivery to tumor cells, such as triple negative
breast cancer cells. In this case, a peptide targeting the mesenchymal-epithelial transition factor
(c-Met) was conjugated to the surface of doxorubicin-loaded EVs via a 1,2-distearoyl-sn-glycero
-3-phospho-ethanolamine-N-[methoxy(polyethylene glycol)-2000] link. After intravenous administration,
the peptide-coated EVs exhibited a significant enrichment in the tumor tissue and displayed higher
antitumor efficacy as compared to other nanoparticles or even free-doxorubicin [222]. It must be noted,
however, that coated-EVs were also detected in other tissues (e.g., spleen, liver, lungs). The same principle
was applied in another study where the EGFR-specific peptide GE11 was used to direct intravenously
administered EVs to a mammary tumor in nude mice. Here, the coating was performed through
overexpression in the EV-generating cells. A significant enrichment in the tumoral tissue was observed for
GE11-EVs compared to control vesicles. Furthermore, the authors demonstrated the absence of significant
damage to other organs, thus pointing towards the safety of this strategy [166]. Similarly, Tian et al., [168]
demonstrated a higher antitumor efficacy of doxorubicin-loaded EVs in mice bearing MDA-MB-231 cell
tumors when the EVs were coated with the iRGD peptide coupled to Lamp2b. The effect can be attributed
to the specific interaction iRGD with the αv integrin in the tumoral cells. No cardiac damage was
detected. This observation could be beneficial in terms of developing therapeutic strategies to minimize
the cardiotoxicity usually associated to the treatment with doxorubicin.

This strategy was also used as therapeutic alternative for glioblastoma multiforme. Both
the blood-brain-barrier and glioma cells overexpress the low-density lipoprotein receptor on their
surface. EVs were loaded with the anti-cancer agent methotrexate and conjugated with a peptide that
targets the overexpressed lipoprotein receptor. Glioblastoma-bearing mice that were treated with these
modified EVs showed a longer median survival period compared to the control groups including
methotrexate alone and EVs loaded with methotrexate but without coating [178]. Noteworthy, no
lesions or damage to other tissues were observed. This strategy, as an example of increased delivery to
the CNS, is summarized is Figure 3.
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with a surface peptide targeting the LDL receptor. In a mice model, administration of these modified
EVs resulted in longer survival period and no damage of other tissues, as frequently observed with
conventional chemotherapy strategies [178].

5.2. Protein Ligands

Surface proteins play a key role in the interaction between EVs and target cells. For instance,
intravenous injection of EVs from cardiac progenitor stem cells overexpressing the C-X-C chemokine
receptor type 4 (CXCR4) improved cardiac function in a rat model of ischemia/reperfusion injury
when compared with control EVs without CXCR4 overexpression [120]. Additionally, the interaction
of the integrin LFA1 on the surface of the EVs with ICAM1 on the cell surface appears to play a key
role in the vesicle uptake by brain endothelial cells [177]. Also, the interaction between fibronectin
on the vesicle surface and heparan sulfate on the cell surface mediates the interaction between EVs
and myeloma cells [223].

Another related strategy is the addition of antibodies to the EV surface. For instance, the display
of an anti-HER2 antibody on the surface of the vesicles increased the delivery of EVs to HER2+ breast
cancer cells when administered intraperitoneally to mice [224]. A similar antibody-based approach
was used in a mouse model of colorectal cancer where doxorubicin was delivered to tumor cells via
EVs. In this case antibodies against the A33 antigen were used. Noteworthy, the antibodies were not
added directly to the surface of the EVs but to superparamagnetic iron nanoparticles, thus allowing
a magnetically-directed delivery to the tumor region while increasing also the specificity for tumor
cells. Again, no cardiac damage was observed, as compared to the strategies without A33 antibody
addition or to free doxorubicin [52]. Similarly, intravenous administration of EVs displaying an HIV-1
specific monoclonal antibody and loaded with curcumin resulted in a higher growth inhibition of solid
tumors expressing the HIV-1 envelope protein (Env) in mice. Since most HIV-1 infected cells display
viral proteins on their surface, this strategy bears an enormous potential for precision HIV antiviral
therapy [164].

5.3. Nucleic Acids

DNA and RNA molecules displayed on the cell surface may also be used to increase target
specificity. For instance, a DNA aptamer displayed on EVs from bone marrow stromal cells was
used to enhance the delivery of EVs to the bone in mice which received EVs intravenously [163].
Synthetic RNA nanoparticles can be added to the surface of the EVs as a platform to incorporate further
tissue-specific ligands. This was described for folic acid. When the EVs were loaded with a therapeutic
siRNA against survivin, coupling to folic acid resulted in a higher inhibition of the tumor growth in
a mice xenograft model for human epidermoid carcinoma, as compared with vesicles without folic
acid on their surface. The increased specificity could be explained based on the interaction between
folic acid on the EV surface and the folate receptor in the tumor cells [42].

5.4. EV-Surface Glycosylation

The glycosylation of surface proteins plays an important role in EV-cell interaction. It was described
that the treatment of EVs with neuraminidase, which removes the terminal sialic acid residues of
surface proteins, affects the distribution of EVs after administration to mice. A higher enrichment in
the lungs was observed when neuraminidase-treated EVs were administered intravenously respect
to the untreated EVs. Similarly, when neuraminidase-treated EVs were administered into the hock,
the distribution among the lymph nodes displayed a different pattern respect to untreated EVs [225].

A different strategy is modifying the surface of the EVs with cationized pullulan, a polysaccharide
that consists of maltotriose-units. Tamura et al., [226] used cationized pullulan to enhance
the electrostatic interaction and uptake of EVs by liver cells. After administering pullulan-modified
EVs to a mouse model of liver injury, there was an improved anti-inflammatory and tissue-regenerative
effect in comparison with the original vesicles. The effects could be explained in terms of the interaction
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between pullulan and asialoglycoprotein [226]. Similarly, decoration of doxorubicin-loaded EVs
with hyaluronan-PEG resulted in a differential uptake of the vesicles to breast cancer and lung
adenocarcinoma cells in vitro. Notably, the vesicle-based strategy led to a higher inhibition of
cell growth respect to the treatment with free doxorubicin. These findings could be explained
at the molecular level due to the interaction between hyaluronan and CD44, overexpressed in
the surface of cancer cells [227]. Similarly, serum-derived exosomes incorporating mannose-conjugated
PEG-1,2-distearoyl-sn-glycero-3-phosphoethanolamine in their lipid bilayer showed high accumulation
in mannose-receptor expressing dendritic cells and lymph nodes [228].

6. Clinical Grade Production

Translation of the previously described findings, mostly obtained in experimentation animals, to
the clinical practice requires standardized good manufacturing practices (GMPs). Several challenges
arise at all the steps of the production and have been recently reviewed by Wiest et al., [229].
The selection of the cellular sources and the characterization of the vesicles represent one of the first
challenges. Here, adhering to the position paper of the ISEV on the minimal information for studies
of extracellular vesicles 2018 (MISEV 2018) should be the starting point for defining production
strategies [5]. Furthermore, clinical grade production requires adherence to strict quality and safety
regulations. Hereby, the International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICH) develops guidelines on quality, safety and efficacy. Regarding
regulatory requirements for EV based therapeutics, considering the complexity and challenges
associated with EVs, a case by case regulatory approach seems more plausible for the evaluation of
EVs as DDS rather than an all-purpose approach. Currently there are no specific regulatory guidelines
for EVs, although they have to be filed and regulated as drugs and biological products according
to the Food and Drug Administration (FDA), depending on the origin, isolation procedure, route
of administration, active substance, or mechanism of action, and are subjected to premarket review
and approval. Further discussion on the regulatory challenges to perform clinical trials using EVs can
be found in a recent position paper from the ISEV [230] and have been reviewed elsewhere [231].

So far, only a few studies described the production and characterization of clinical-grade EVs
following GMPs. Previously, Kamerkar et al., [212] highlighted the potential of EVs loaded with
an siRNA against the mutated form of the RAS kinase. In a more recent study of the same group,
the generation of clinical-grade EVs following GMPs from the selection of the donor to the isolation
and loading was presented [232]. Here, the authors not only succeeded in the upscaling of the loading
electroporation protocol to higher sample volumes but also demonstrated the efficacy of the preparation
in a mouse-model. Also, importantly, the authors confirmed the stability of the EVs (i.e., number
and size distribution) after freezing at −80 ◦C for 45 days or 6 months. Storage at room temperature or 4
◦C for 2 or more days resulted in a decrease in the therapeutic efficacy assessed in vitro. The successful
design and validation of this strategy led to the register of a clinical trial (NCT03608631, see Section 7).
The replacement of animal materials in the production process is an important requirement for clinical
grade EVs. In this regard, FCS can be replaced by human platelet lysates depleted of EVs [233].

Production of large volumes of high purity EVs is an important challenge. Here, a combination
of tangential flow filtration (TFF) and size exclusion chromatography (SEC) exhibited significant
advantages respect to other isolation methods [234]. EVs carrying the heterodimeric interleukin-15
were isolated from HEK293 cells cultured in hollow fiber bioreactors. The combination of both isolation
techniques resulted in a lower contamination with proteins without decreasing the yield. Similarly,
a comparative study between TFF and ultracentrifugation highlighted the higher batch-to-batch
reproducibility in the size distribution of EVs isolated by TFF. Moreover, removal of protein
contaminants was not only 40 times higher using TFF but also exhibited less variability than
ultracentrifugation. Noteworthy, EV suspensions obtained by TFF also tested negative for mycoplasma,
bacteria and endotoxin [235]. The successful use of TFF for the production of EVs from bone marrow
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MSCs and ASCs was also reported [236,237]. Altogether, TFF appears as a useful tool in terms of
obtaining high purity clinical grade EV suspensions with high reproducibility between batches.

The previous studies established production pipelines for clinical grade EVs and provide
a proof-of-concept on the feasibility of different processes. Other studies described extensive quality
controls (QCs) that would be required for industrial production. For instance, the study of Andriolo
et al., describing GMP-compliant EV production from cardiac progenitor cells, described exhaustive
QC tests. First, the stability of the cell source was controlled by establishing a post-production cell
bank (i.e., cells at the limit of the time, in which they are suitable for production) only for QC purposes.
Comparisons between this cell bank and the master cell bank using in the regular production constitute
an important QC. Furthermore, the authors perform an extensive QC on two batches of EVs in terms
of sterility, presence of endotoxin, particle concentration and size, expression of exosome markers
and total protein. Also, functional checks (e.g., proangiogenic activity) displaying comparable results
with both lots of EVs were presented [238]. Likewise, another study analyzed the batch-to-batch
variability of EVs obtained from ASCs through TFF. High reproducibility was registered in terms of
size and surface markers and purity [239].

Hitherto, a wide variety of vesicles have been used to target different tissues and organs in
experimentation animals. However, only a few of these vesicle types have been validated for clinical
grade production. One critical aspect that needs special attention is, besides those presented above,
the effect of interindividual variability of the cell donors on the batch-to-batch variability of the produced
EVs. In addition, while GMP-grade culture media and supplements and TFF-mediated isolation led to
the production and validation of different EV suspensions, it is yet unclear whether this constitutes
a cost-effective alternative. Finally, more comparative studies addressing the impact of the different
strategies for the preparation and storage of clinical grade EV formulations on their safety and potency
are also required.

7. Clinical Trials

Different high-quality studies performed in animal models support the potential of EVs as
a DDS from the point of view of the safety and efficacy at the preclinical level. At the clinical level,
the application of EVs is still at a very early stage. So far, 18 clinical trials involving therapeutic use of
EVs have been registered at the NIH website [240] (Table 3). Noteworthy, two studies evaluate the use
of EVs as DDS. In particular, the study NCT01294072 plans to evaluate the use of plant-derived EVs
for curcumin delivery to normal and colon cancer, while the NCT03608631 study plans to evaluate
the delivery of a therapeutic siRNA to pancreas cancer tissue. Although the rest of the studies do not
foresee the use of vesicles as drug carriers, they could provide information concerning the tolerability
of EV administration, suitability of different administration routes (e.g., topical, intravenous, oral,
inhalation) and use of different sources of EVs (plasma, plants, MSCs, adipose tissue stem cells).
Although no results of the current studies are yet available, this information may later be used towards
optimizing the use of EVs for delivering therapeutic agents in clinical practice.
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Table 3. Clinical trials registered at clinicaltrials.gov using EVs for therapeutic purposes. Studies using EVs as a drug delivery system are highlighted in bold.
Abbreviations: AdSCs: adipose tissue stem cells; MSCs: mesenchymal stem cells; SARS-CoV-2: several acute respiratory syndrome coronavirus 2.

EVs Disease or Condition Route of Administration NCT Number

Plant EVs loaded with curcumin Colon cancer Oral NCT01294072

MSCs EVs loaded with KRAS G12D siRNA Pancreas cancer Intravenous NCT03608631

MSCs Healthy individuals Inhalation NCT04313647

MSCs SARS-CoV-2 Inhalation NCT04276987

MSCs Acute ischemic stroke Stereotaxic injection NCT03384433

MSCs Macular holes Intravitreous injection NCT03437759

MSCs Dystrophic epidermolysis bullosa Topical NCT04173650

MSCs Depression, anxiety, neurodegenerative disorders Intravenous NCT04202770

MSCs Bronchopulmonary dysplasia Intravenous NCT03857841

MSCs Type 1 diabetes mellitus Intravenous NCT02138331

MSCs SARS-CoV-2 Inhalation NCT04491240

MSCs Alzheimer disease Intranasal NCT04388982

MSCs SARS-CoV-2 Intravenous NCT04493242

AdSCs Periodontitis Local injection NCT04270006

Plasma Cutaneous wounds Topical NCT02565264

Not specified Craniofacial neuralgia Epineural injection, intravenous NCT04202783

Not specified Acute myocardial infarction Intracoronary NCT04327635

Plant Oral mucositis associated
with chemoradiotherapy Topical NCT01668849

clinicaltrials.gov
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8. Future Perspectives and Conclusions

In the last ten years, the understanding of the role of EVs in cell communication and their potential
as a source of biomarkers have been acknowledged and further explored. More recently, there has
been an increase in the body of evidence addressing EV secretion, biodistribution and specificity.
These findings point to a significant potential of EVs to be used as a DDS. This novel delivery strategy
shows high promise, although many questions remain unanswered regarding EVs, along with technical
and experimental challenges that hinder the translation from the laboratory to clinical trials.

One still remaining challenge is assuring the safety of EV-based treatments. Although several
studies in animal models indicate a high tolerability and ongoing clinical trials will evaluate this in
humans, further research should be performed to rule out potential deleterious effects of the carrier EVs
in cell-cell communication. Hereby, the use of plant EVs may have an advantage by carrying a natural
cargo less related to human EVs. While the delivery potential would still be present, the chance of
triggering physiological or pathophysiological responses (e.g., immune response) may be lower.

Another challenge regarding EV research, is target specificity. So far, several engineering
possibilities have been evaluated. Unfortunately, while many studies nicely describe an increased
targeting of certain organs and tissues, off-target delivery is not always evaluated. Furthermore,
future research regarding surface molecules mediating the interaction between EVs and target cells
will contribute towards increasing the delivery specificity for EVs. Hereby, the characterization of
the surface proteome of the EVs and the surface glycan profile of target cells could significantly improve
EV target specificity.

In summary, the design of therapeutic strategies using EVs as a DDS will require the optimization
of all the steps of involved in the EV pipeline. Safe and efficient sources of EVs, along with isolation
and loading techniques that are cost-efficient and allow to scale production, in combination with
the validation of proper administration routes and EVs that are specific for a particular target, remain
the cornerstone in EV research. In this way, EVs could be proposed as a new alternative in precision
medicine, aimed at increasing therapeutic efficacy and decreasing side effects, resulting in improved
quality of life for the patients.
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