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Abstract: Traumatic brain injury (TBI) is one of the main causes of disability in children and young
adults, as well as a significant concern for elderly individuals. Depending on the severity, TBI can
have a long-term impact on the quality of life for survivors of all ages. The primary brain injury can
result in severe disability or fatality, and secondary brain damage can increase the complexities in
cellular, inflammatory, neurochemical, and metabolic changes in the brain, which can last decades
post-injury. Thus, survival from a TBI is often accompanied by lifelong disabilities. Despite the
significant morbidity, mortality, and economic loss, there are still no effective treatment options
demonstrating an improved outcome in a large multi-center Phase III trial, which can be partially
attributed to poor target engagement of delivered therapeutics. Thus, there is a significant unmet
need to develop more effective delivery strategies to overcome the biological barriers that would
otherwise inhibit transport of materials into the brain to prevent the secondary long-term damage
associated with TBI. The complex pathology of TBI involving the blood-brain barrier (BBB) has limited
the development of effective therapeutics and diagnostics. Therefore, it is of great importance to
develop novel strategies to target the BBB. The leaky BBB caused by a TBI may provide opportunities
for therapeutic delivery via nanoparticles (NP). The focus of this review is to provide a survey of
NP-based strategies employed in preclinical models of TBI and to provide insights for improved
NP based diagnostic or treatment approaches. Both passive and active delivery of various NPs
for TBI are discussed. Finally, potential therapeutic targets where improved NP-mediated delivery
could increase target engagement are identified with the overall goal of providing insight into open
opportunities for NP researchers to begin research in TBI.
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1. Introduction

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with
approximately 2.87 million annual reported deaths, hospitalizations, and emergency room visits
in the United States alone [1]. This is estimated to result in a $76.5 billion annual economic loss [2–4].
These substantial head injuries are caused by either a non-penetrating blow to the head, which
results in bruising of the brain as well as tearing of axons, or a penetrating injury, which causes
physical disruption to the brain. This primary injury is then followed by secondary injury, which can
spread into the surrounding normal brain and is the target for therapeutic development. The adverse
physiological change following a TBI is a complex process caused by calcium release, accumulation of
reactive nitrogen species (RNS) and reactive oxygen species (ROS), glutamate toxicity, mitochondrial
dysfunction, and neuroinflammation, which can lead to chronic progressive neurodegeneration [5–9].
The problem lies in a vicious positive feedback loop where primary physical damage to cells results in
these biochemical derangements and damage-associated molecular patterns (DAMPS), which in turn
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leads to further cell death and the release of additional biochemical derangements and DAMPS [10,11].
Indeed, evidence of neuroinflammation has been observed up to 18 years post-injury [12], and chronic
neuroinflammation is likely a driver of progressive neurodegeneration [13]. Moreover, there is
increasing evidence of the role of secondary injury in chronic traumatic encephalopathy and other
progressive neurodegenerative diseases [14–17]. This signifies these biochemical derangements as a
primary driver of chronic secondary injury following a TBI.

The clinical management of TBI has progressed only incrementally and long-term injury is still a
significant healthcare challenge. Currently, there is little evidence that supportive care therapies protect
the surrounding brain. The spread of biochemical derangements into the surrounding brain is the
primary concern to avoid secondary injury, which could reduce the spread of neuroinflammation and
neurodegeneration. Indeed, many strategies that inhibit the effects of these biomolecules have shown
promise in preclinical models and have been tested clinically, yet none have shown efficacy in the Phase
III trial [18]. For example, the ProTECT trial sought to improve outcomes by reducing oxidative stress
based on promising preclinical and early clinical data [19]. The compounds PEG-conjugated catalase
(PEG-catalase), PEG-conjugated superoxide dismutase (PEG-SOD), and tirilazad have been used in
free-radical scavenging. It is suggested, from preclinical studies, that progesterone has neuroprotective
effects in brain injury models through multiple mechanisms, including modulating native antioxidant
activity levels [20]. However, no improvement was found for other central nervous system (CNS)
injuries treated with progesterone, and Phase III clinical trials have had limited success [21]. Cyclosporin
A is thought to stabilize mitochondrial function in neurons to reduce the excitotoxic and oxidative
stress that occurs in secondary damage, and it has shown promise in improving synaptic plasticity in
rat models [22]. A phase IIa study has been completed with cyclosporin A, with plans for a larger
phase II study (NeuroSTAT) [22].

The failures of recent clinical trials stem from an array of difficulties in treating a TBI (e.g.,
patient/biomarker selection, treatment timing, target engagement, etc.) [23], but from a fundamental
science perspective there are two key targets for improvement, as follows: (1) Poor delivery to and
retention in the brain, leading to limited therapeutic thresholds, and (2) off-target toxicity caused by
many of the therapies targeting receptors of the biochemical derangements instead of the biochemical
derangements themselves, which can result in loss-of-function in off-target cells. Therefore, there is a
significant need to safely prevent the spread of biochemical derangements at the site of damage to
prevent chronic progressive neuroinflammation and neurodegeneration.

Nanoparticles (NP) are uniquely suited to circumvent the formidable biological barriers that
prevent transport and uptake of therapies into the brain. Thus, encapsulation of therapeutics within
NPs is one of the approaches that can improve site-specific delivery, bioavailability, shelf-life, and also
circumvent any potentially deleterious effects of the delivered therapeutics. The development of NPs
for medical uses has been progressing for decades [24]. The vast majority of our knowledge of NP
interaction with the human body, or mammalian organisms, comes from the significant efforts of cancer
researchers. There is a substantial body of literature that exists which establishes a broad understanding
of how the physicochemical and molecular properties of NPs affect their behavior in tumor tissues.
For example, the enhanced permeability and retention (EPR) in tumors can be optimally exploited for
passive NP targeting with NPs that have a hydrodynamic size of around 30 nm, while sizes between
10–100 nm still provide passive targeting. Additionally, alterations in surface charge and chemistry are
known to play significant roles in NP behavior within the tumor. Cationic NPs remain on the exterior
of tumors, but are readily taken up by cells, whereas anionic NPs distribute throughout the tumor
because of the lack of interaction with the negatively charged extracellular matrix and cell membranes,
but are poorly internalized [25]. This has led to the development of charge-reversal NPs that are
initially negatively charged to promote distribution throughout the tumor, but then become positively
charged once within the tumor microenvironment to promote cancer cell internalization [26–28].
Furthermore, active targeting strategies to increase the effectiveness of NPs were found not to increase
accumulation at tumor sites, but did increase distribution throughout the tumor and promoted target



Pharmaceutics 2019, 11, 473 3 of 16

cell internalization [29–31]. This was found to be caused by the EPR effect dominating NP accumulation
at tumor sites. However, for micrometastases, where no EPR effect is apparent, active targeting is
crucial for NP delivery [32]. Minimal uptake of NPs without targeting agents on their surface was
observed in these micrometastases. Therefore, active NP targeted is necessary for accumulation in
regions without an EPR effect. The knowledge base that has been generated on NP properties and their
interaction with tumor tissue has resulted in multiple clinical trials exploring more effective treatment
strategies suggesting NPs as potentially useful treatment vehicles.

However, the delivery of NPs into the central nervous system has remained a challenge due to
the poor permeability of the blood-brain barrier (BBB) to NPs. Existing protocols have focused on the
delivery of material locally, to either cerebrospinal fluid reservoirs or the brain tissue directly. Actively
targeted NPs using the rabies virus glycoprotein (RVG)-targeting ligand have been used to specifically
accumulate in neurons across the BBB and quiet a candidate therapeutic gene near the injured area [33].
Thus, the vast nanotechnology toolbox developed, in large part, by the efforts of cancer researchers can
be utilized to establish NP-based techniques for active targeting strategies for gaining access to the
diseased brain across the BBB.

2. Blood Brain Barrier and TBI

The BBB is a restrictive barrier made up of tight junction proteins on brain endothelial cells that
prevents the passive transport of blood components, including administered therapeutics, into the
central nervous system (CNS). The BBB is part of an extensive network between endothelial cells,
neurons, and glial cells which make up the neurovascular unit (NVU). Disturbances to the NVU
caused by primary or secondary injury lead to the breakdown of the blood-brain barrier (BBB), which
itself can further accelerate the progression of neurodegeneration through the leakage of neurotoxic
molecules and reduced amyloid-β clearance. The BBB is periodically open within the first 24 h after
TBI, thereby permitting the passage of substances, including macromolecules and neuroprotective
drugs, that otherwise would be excluded from the brain [34]. The permeability of the BBB is partially
controlled by inter endothelial junctions, which are protein complexes such as adherens junctions, tight
junctions, and gap junctions [35]. Adherens junctions are protein complexes that occur at cell to cell
junctions in epithelial and endothelial tissues and are usually located at more basal than tight junctions
and control the permeability of the endothelial barrier. Tight junctions are multi-protein junctional
complexes whose general function is to sustain the permeability barrier of epithelial and endothelial
cells that control tissue homeostasis [36]. Gap junctions interconnect vascular cells homocellularly
as well as providing heterocellular coupling between vascular smooth muscle cells and endothelial
cells [37].

Following TBI, both immediate and delayed dysfunction of the BBB is observed. This reduction
in function of tight junctions results in an increase in paracellular permeability. The post-traumatic
oxidative stress, increased production of proinflammatory mediators, and upregulation of cell adhesion
molecules of the brain endothelium surface can cause an increase in the influx of inflammatory cells
into the injured brain parenchyma. Additionally, the expression of BBB associated transporters can
be altered by a TBI, which may reduce functional interactions between the endothelium and glial
cells and further reduce BBB function [38,39]. Indeed, post-traumatic changes to the functionality of
the BBB seem to be a major driver of the progression of secondary injury and the extent of neuronal
repair [40]. Nevertheless, disruption of the BBB provides an opportunity for passive NPs to target a
damaged brain.

3. Brain Delivery of NPs Across the BBB

NPs have been used in preclinical models of noncancerous neurological diseases in hopes of
improving the circulation time of delivered therapeutics and enhancing delivery into the brain [41–48].
The BBB dysfunction enables blood-borne substances that are normally restricted to enter the brain
parenchyma, either through increased paracellular leakiness or alterations in brain endothelial cell
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receptor expression, which may provide the opportunity for therapeutic delivery via NPs. The major
target for therapeutic NP delivery is to provide neuroprotection and to reduce NVU disruption by
preventing the spread of secondary injury beyond the primary contusional area. NP based applications
have been more widely explored in the cerebral ischemia field as compared to TBI, yet NP transport
across a disrupted BBB into these two brain pathologies could be similar. Transport into the brain can
be achieved either passively or actively [49]. The passive transport routes indicate energy-independent
processes, such as simple diffusion [50]. Moreover, the passive diffusion of drugs and NPs usually
applies in tumor cells via the EPR effect [51]. Brain injury may lead to better BBB permeability,
possibly due to tight junction disruption facilitated by injury-induced signaling milieu [52]. Under
such conditions, the usual passage of impermeable molecules, as well as NPs, increases across the
BBB [53]. Active transport, on the other hand, relies on energy-dependent cellular processes to bind to
a target cell surface receptor, be internalized into the target cells, and then transported either to an
intracellular site of action of a drug or transcellularly into the injured brain parenchyma.

Some of the first studies that addressed the ability of NPs to accumulate across a disrupted
BBB in the damaged brain passively found an EPR-like effect present [33,54–60]. This work was
followed by others that began to address how changes in NP size affects their accumulation across a
disrupted BBB [58,61]. NPs around 100 nm accumulated at a higher level in the damaged brain as
compared to larger NPs. At the other end of the scale, 3–5 nm dendrimers have been used to determine
the nanoscale effects on access across a disrupted BBB in brain diseases [59,62–66], as well as other
polymeric nanoparticle surface property effects in brain tissue and cellular distribution [57,61,64,67–69],
which have provided a strong foundation for engineering desirable physicochemical properties of
next-generation NPs. These studies found that the extent of dendrimer uptake is dependent on disease
severity, the extent of BBB breakdown, and the level of glial cell activation. However, retention of these
passively targeted NPs within the injured brain may be enhanced by a more active delivery approach
by attaching targeting moieties (e.g., aptamers, peptides, antibodies, etc.) to the surface of the NP.

Various studies have begun to address how to achieve active targeting in noncancerous neurological
diseases. Targeting agents included those that would increase NP uptake into neurons [33], normal
brain vasculature [70–76], and mitochondria [77]. It is also essential to assess if brain uptake is
affected by NP physicochemical properties. Findings of penetration within the brain parenchyma
generally assume the NP remains stable within the brain environment. Very few studies have begun
to address the stability of NPs within the brain microenvironment. Therefore, efforts have begun
for better understanding the influence of size, concentration, and stability of the NPs in the brain
microenvironment [67]. All of these factors could alter the function of NPs, such as diffusive capability
and cellular uptake resulting in loss of utility as an effective therapeutic platform [78].

Several nanomaterials for TBI therapy have been studied and the section below highlights recent
studies of passive and active targeting NPs for the treatment of TBI (Table 1). These mainly include
antioxidant NPs that contain functional groups that inactivate ROS into less toxic species [5,56,60,79–81].
For example, NPs bound with superoxide dismutase (SOD) were shown to significantly reduce oxidative
stress-mediated neuronal damage [82,83] and carbon NPs were shown to eliminate radical species in rat
models of TBI [79]. NP-siRNA delivery vehicles were also used to protect neurons after a TBI by knocking
down expression of the pro-apoptotic protein caspase 3 [33]. Various polyamidoamine dendrimer
derivative nanoparticles, which have provided a robust framework for assessing nanoparticle size effects
and drug delivery in improving recovery from TBI, [59,62,65,66] as well as other polymeric nanoparticle
surface property effects in brain tissue and cellular distribution [57,61,64,67–69], have provided a
strong foundation for engineering desirable physicochemical properties of next-generation NPs.
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Table 1. Summary of various nanoparticles for passive and active delivery for brain trauma applications a.

NP Components Therapeutic
Mechanism

NP
Size
(nm)

NP Zeta
Potential

(mV)

Disease
Model

Accumulation
and Retention Outcome Ref.

Nanodrug with
tetra ethylene

glycol

α-tocopherol in the
NP acts as an

antioxidant and
releases ibuprofen

to reduce
neuroinflammation

186 Not
reported

Mice
TBI: CCI

Accumulation
shown after 36 h
of intraperitoneal
and intravenous

injection

Behavior study
showed significance

for OFT (ambulatory)
after IV injection, as

compared to the
saline group and not

in IP.

[55]

Oxygen reactive
polymer

Thioether group
acts as antioxidant 8 Not

reported
Mice

TBI: CCI

Accumulated in
damaged brain
and retained for

18 h

Reduced
neurodegeneration,

astrogliosis, and
activated microglia

[56]

Core-Cross-linked
NPs

Thioether group
acts as antioxidant 16 Not

reported
Mice

TBI: CCI

Accumulation
shown within 1 h

injection with
retention for >2 h

Reduces intracellular
ROS concentration in

human astrocytes
[60]

PEGylated
hydrophilic

carbon
cluster

(PEG-HCC)

Oxygen radical
annihilation at

graphitic domains
of the carbon

particles.

50 Not
reported

Rat
mild TBI:

(CCI)

6 h determine SO
and NO levels

Restoration of CBF
normalized oxidative

radical profile (SO
and NO levels)

[79]

PLGA NPs
encapsulated with

cerebrolysin

Cerebrolysin is a
mixture of

neuroprotective
peptides

250–330 −13 mV
Mice

TBI: stab
wound

Not reported

Thwarts the edema
formation at longer

time points compared
to bolus injection

[42]

PLGA NPs with/
without 800 CW

coating
None 200 −39 mV Mice

TBI: cryolesion

Accumulation
shown within 1 h
of injection with

retention for >48 h

NPs with 800 CW
displayed preferential

binding to
intracellular proteins
of cells that have lost
membrane integrity

[72]

PLGA NPs coated
with PX with

BDNF
encapsulation

BDNF acts as a
neuroprotectant 170 Not

reported

Mice
TBI: closed
head injury
weight drop

Not reported

Significantly
increased BDNF

delivery and
improved

neurological and
cognitive deficits

[41]

Polysorbate 80
PBCA NP HRP or

EGFP
None 150 Not

reported
Rat

TBI: FPI Not reported

HRP or EGFP
delivered via PBCA
NPs cross BBB and

distributed near
injury region

[84]

Porous silicon
NPs conjugated
with targeting

peptide (CAQK)
loaded with

siRNA against
GFP

Not reported 20 Not
reported

Mice
TBI:

penetrating
brain injury

Accumulated in
brain for 2 h

Higher accumulation
with 70% silencing of

GFP expression
[85]

Targeted peptide
from RVG, porous

silicon NP
graphene oxide

(GO) coating with
siRNA

None 190 +22.1 mV

Mice
TBI:

penetrating
brain injury

Not reported

Increased (2.5-fold)
delivery of siRNA via

GO coated NPs
compared to

non-coating NPs

[86]

a TEG (tetra ethylene glycol), CCI (controlled cortical impact), OFT (open field test), i.v. (intravenous),
i.p. (intraperitoneal), PEG (polyethylene glycol), FPI (fluid percussion injury), MMP (matrix metallopeptidase),
CBF (cerebral blood flow), NO (nitrate radical), PLGA (poly(lactic-co-glycolic acid)), PX (poloxamer 188), BDNF
(brain derived neurotrophic factor), PBCA (polybutylcyanoacrylate), HRP (horse radish peroxidase), GFP (green
fluorescent protein), EGFP (enhanced GFP), RVG (rabies virus glycoprotein).

3.1. Lipid Based NPs

Liposomes were the first NP drug delivery system developed and are made of one or more vesicular
bilayers (lamellae) that are composed of amphiphilic lipids with an internal aqueous compartment.
Liposomes are biocompatible and can both trap and protect hydrophilic molecules in their internal
water compartment as well as hydrophobic into the membrane. They also can provide a unique
opportunity to deliver pharmaceuticals into cells or cellular compartments. Liposomes have been
extensively utilized for brain drug delivery [87], including the treatment of cerebral ischemia [88] and
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brain tumors [89]. Solid lipid nanoparticles (SLN) contain a solid hydrophobic lipid core, which has
been shown to be able to cross the BBB [90]. Modifying the surface properties of SLNs to include
targeting ligands could improve delivery to the brain and limit RES uptake [91]. For example, Pluronic
F-68 conjugated SLN could cause steric hindrance and decrease opsonization in plasma, which could
delay the fast removal of particles from the reticuloendothelial system (RES) and extend the circulation
time of SLN [92,93]. Wang et al. synthesized 3′,5-dioctanoyl-5-fluoro-2-deoxyuridine (DO-FUdR) to
modify the limited access of the drug 5-fluoro-2,-deoxyuridine (FUdR), as well as its incorporation
into SLN [94]. The results showed that DO-FUdR-SLN (76 nm) was able to deliver to the brain at
twice the rate in vivo, as compared to free FUdR. This SLN could enhance the ability of the drug
penetration through the BBB because of the increased retention of the DO-FUdR-SLN in the brain
blood capillaries by adsorption to the capillary walls. This adsorption to the capillary walls resulted in
a higher concentration gradient that enhanced the passage across the endothelial cell and delivery to
the brain [94,95].

3.2. PBCA NPs

The first polymeric NP carrier to show drug delivery across the BBB were made of PBCA (poly
butyl cyanoacrylate) [96]. PBCA NPs (350–450 nm) coated with polysorbate 80 were shown to be
taken up more rapidly by endothelial cells [97]. Polysorbate 80 can absorb plasma apolipoprotein E
(Apo-E) and then PBCA NPs (50 ± 5 nm) coated with Apo-E-bound polysorbate 80 are recognized
as low-density lipoproteins (LDL), which are normally actively taken up by brain endothelial cells
through receptor-mediated endocytosis [98]. Moreover, the BBB-penetrating properties of PBCA NPs
have been exploited to transport numerous BBB-impermeable drugs across the BBB [98–100]. Voigt et
al. investigated the effect of size (87 to 464 nm) and surfactant (neutral or cationic) on the ability of
PBCA NPs to penetrate the BBB. They found that the surfactant (non-ionic or cationic) is the crucial
factor determining BBB passage, rather than the size of nanoparticles [101]. Among polysorbate 80,
Lutrol, Fluo-Tween, and Fluo-Lutrol, PBCA-NP with polysorbate 80 showed the highest passage across
the BBB [101,102].

3.3. PLGA NPs

PLGA (poly(lactic-co-glycolic acid)) NPs loaded with cerebrolysin were synthesized, varying their
sizes and surface properties, and applied both in normal and brain-injured rats. These PLGA NPs were
able to reduce brain pathology following traumatic brain injury [42]. These cerebrolysin-loaded PLGA
nanoparticles NPs (200 nm) were also able to reduce BBB breakdown most effectively 8 h following
concussive head injury, as shown by Evans blue albumin and radioiodine, and the effect was most
pronounced in the injured cortex as compared to the contralateral hemisphere. Cerebrolysin-loaded
NPs showed therapeutic efficacy when administered even 4 h after TBI [42]. To use NPs to visualize
the extent of the injury, PEG-coated 100 nm, 200 nm, and 800 nm PLGA NPs were synthesized and
coupled to the 800 CW imaging agent, which can reveal the extent of the TBI by binding to intracellular
proteins of cells that have lost membrane integrity [58]. It was found that 800 CW loaded 100 nm
NPs can diffuse more deeply throughout the TBI, as compared to 800 CW loaded 800 nm NPs [58],
indicating that smaller NPs should be more effective in drug delivery throughout the brain. It was also
found that PLGA NPs coated with poloxamer 188 (PX) can be delivered into the brain of TBI mice with
an improvement of neurological and cognitive deficits [41].

3.4. Dendrimer

Dendrimers are branched polymerics, similar to the structure of a tree. A dendrimer typically
contains a symmetrical structure surrounding a central core, which forms a spheroidal morphology in
water. Dendrimer NP-based delivery of therapeutics can increase accumulation in target tissue and
reduce off-target side effects through similar control of size and surface properties described above.
Albertazzi et al. showed that polyamidoamine (PAMAM) dendrimers (3.9 nm) were capable of diffusing
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into the CNS as well as penetrating into living neurons after intraventricular or intraparenchymal
injections [103]. Kannan et al. prepared different sizes of PAMAM dendrimers (3.2, 3.9, 4.3, 6.7, 13.9,
and 21 nm) for targeting neuroinflammation [62]. They found that the ability of the NPs to cross a
disrupted BBB and accumulate in target glial cells was governed by BBB impairment and the level of
glial cell activation. The cationic or anionic dendrimers neither escape the blood vessel nor extravasate
into the tissue even after 24 h administration. The 4.3 nm neutral dendrimer (G4-OH) showed a
100-fold higher accumulation in the brain as compared to the free drug, showing the importance of
zeta potential on brain delivery. Thus, dendrimer NP-mediated delivery offers significant opportunity
for development of improved delivery strategies to TBI.

3.5. Gold NPs

Gold (Au) NPs are one of many metallic colloidal NPs types with tremendous applications
because of their desirable properties, such as surface plasmon resonance, which can aid in imaging
and biosensing. To improve Au NP targeting to endothelial cell membranes, PEG-coated Au NPs
were synthesized and conjugated with a transactivator of transcription (TAT) peptide. However, both
non-targeted and TAT targeted Au NPs (21.4 ± 0.9 nm) showed passive diffusion through the BBB,
accumulating in both brain tumor and brain endothelial cells [104]. Additionally, Sela et al. found
that 1.3 ± 0.3 nm Au NPs without surface modification could still penetrate the BBB in rats [105]. The
Au NPs were uniformly distributed in both the hippocampus and the hypothalamus, indicating no
binding selectivity of Au NPs in these regions of the brain. Further work by Setyawati et al. found 10
to 30 nm Au NP-induced micron-sized gaps among the endothelial cells after 30 min exposure, which
were large enough to allow passive transport of drugs across the BBB [106]. This nanoparticle induced
leakiness of endothelial cells (NanoEL) [106–110] provides a potential mechanism for heavy core NPs
to penetrate the BBB.

3.6. Silver NPs

Silver (Ag) NPs are another type of metallic NPs used in various fields [111]. It has been
reported that Ag NPs (25 nm) could strongly interact with cerebral microvasculature and produce
a proinflammatory cascade that resulted in BBB disruption, neuronal degeneration, and astrocyte
reactivity [112]. However, inflammation and neurotoxicity caused by the Ag NPs to BBB at the cellular
level are still unknown. To study the neurotoxicity resulted from Ag NPs (7 ± 2 nm) entering the
brain, a triple co-culture BBB model of rat brain microvessel endothelial cells (rBMEC), pericytes,
and astrocytes was established [113], which can also be engineered using induced pluripotent stem
cells [114]. The altered protein and permeability of the BBB upon exposure to Ag NPs was investigated
through TEM, where ultrastructural changes in pericytes, astrocytes, and endothelial cells were
observed. Trickler et al. investigated the time-dependent effect of different sized (25, 40, and 80 nm) Ag
NPs on the proinflammatory cascade in a rBMEC in vitro model [112]. From this study, it was found
that the smaller Ag NPs showed larger effects on rBMEC at shorter time points as compared to larger
Ag NPs, which may begin to explain a mechanism of NanoEL.

3.7. Silica NPs

Silica NPs are a promising candidate in biomedicine because of the availability of silica and the
extraordinarily high surface areas of mesoporous silica NPs. Chen et al. synthesized various sizes
of silica NPs (20, 40, and 80 nm) in order to find which penetrated the BBB most effectively [115].
The chemotherapeutic doxorubicin (DOX) was loaded into these NPs and then conjugated with
cRGD peptide to improve its cancer-targeting effect. It was found that 40 nm DOX@Si NPs exhibit
enhanced permeability across the BBB while simultaneously disrupting the ability of brain cancer
cells to mimic vasculature [115]. Song et al. synthesized lactoferrin (Lf) conjugated silica NPs to test
receptor-mediated delivery across the BBB. Among the three sizes (25, 50, and 100 nm) of NPs tested,
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the highest transport across the BBB was observed for lactoferrin conjugated 25 nm Si NPs [116],
providing further evidence for the utility of smaller NPs in more effective delivery across the BBB.

3.8. Carbon Dots

Carbon dots (CDs) are carbon-based NPs that have inherently tunable fluorescence and are
non-toxic. Li et al. investigated transferrin conjugated CDs (9–12 nm) for the selective delivery of DOX
to pediatric brain cancer cells because the transferrin receptor (TfR) can be overexpressed on the BBB
as well as in cancer cells [117]. Lu et al. prepared CDs with a size of around 2.6 nm and with high
quantum yield (51%) [118]. They hypothesized that CDs could cross the BBB because of their small
size that could fit within tight junctions; however, this would also allow other small blood components
to enter the brain, so the mechanism is more likely NanoEL or minor BBB disruption caused by tumor
formation. The cytotoxicity of CDs was measured using 293 T cells and negligible cytotoxicity was
observed after 24 h incubation. Moreover, 4 h following exposure, CDs showed high accumulation
in the perinuclear region of the cells. To study the BBB-penetration ability of CDs, a biomimetic BBB
model constructed from rBMEC and astrocytes were employed. It was found that the CDs were
able to cross the BBB in a time and concentration-dependent manner, which was attributed to their
small size [118]. Moreover, when cationic PEI was attached to the surface of the CDs, enhanced BBB
penetration was observed; perhaps because of increased electrostatic interaction with the negatively
charged cell membrane in this in vitro model [118].

These various different NP types provide an array of opportunities to attach different therapeutics
including small molecule drugs, nucleic acids, and peptides. NPs that have a hydrophobic core, such as
lipid-based, PLGA, and PBCA NPs, are typically better suited for small molecule delivery as compared
to solid core NPs, which require chemical attachment to the NP surface. On the other hand, solid
core NPs such as gold, silver, and silica have an advantage in peptide delivery, owing to the ease
in surface modification such as silinization or coordination with thiol, hydroxyl, amine, or carboxyl
groups. Nevertheless, each of these NP types could be used as effective vehicles to improve delivery
into the damaged brain as long as their physicochemical properties are adequately controlled to ensure
a near neutral charge for efficient delivery into the brain and they have a small size (<100 nm) to
promote distribution throughout the injured tissue. However, the potential long-term retention of
nanomaterials in the brain is a concern especially for solid core NPs that do not degrade. Therefore,
translational studies that hope to bring nanomaterials into clinical trials should focus on NPs with
known degradation profiles. Still, the use of solid core NPs will provide crucial information on
NP-based strategies that will improve rapid and prolonged brain delivery.

4. Therapeutic Targets for NPs

The pathophysiological changes in the brain following a TBI have been well studied and
characterized by new therapeutic targets that are still being identified. Nevertheless, these findings
have yet to lead to an approved therapy for TBI, partially because of the lack of sufficient delivery into the
brain and target engagement. Therefore, NPs that can deliver therapies targeting the pathophysiological
changes may accelerate the translation of these basic science findings into widespread clinical use.
There is currently a significant lack of NP-based strategies for treating the various pathophysiological
changes following a TBI, which provides the opportunity for NP researchers to make an impact on the
neurotrauma field. Table 2 summarizes numerous therapeutic targets that NPs could be designed to
affect and exert a therapeutic benefit upon, many of which are unreported in the literature.
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Table 2. Therapeutic targets where NP-mediated delivery could provide an advantage including
references where NPs against these targets have been tested in preclinical animal models.

Therapeutic Target Pathophysiological Mechanism Therapeutic NP Refs.

Reactive oxygen species Increased oxidative stress leads to increased neurodegeneration and
neuroinflammation. [56,60,79]

Ischemia Lack of oxygen delivery to injured brain leads to ischemic brain damage. [119–124]

Mitochondrial
dysfunction Can increase oxidative stress and cell death in and around the injury. [125]

BBB breakdown Leads to accumulation of neurotoxic blood products and reduced
function of the neurovascular unit. [42]

Diffuse axonal injury Neuronal membrane disruption leads to loss of axonal conduction and
connections. [126]

Neuroinflammation
Chronic activation of resident microglia and astrocytes as well as

peripheral immune cell infiltration leads to an inflammatory milieu
preventing recovery.

[63,66,127]

Neuroprotection Direct protection of neurons from the dysregulated brain environment
during secondary injury. [33,41–43]

Lipid peroxidation
products

A cascading event where oxidation of lipids leads to formation of lipid
peroxidation products, which leads to further oxidation of lipids. None

Glutamate Release from necrotic cells leads to excitotoxicity in surrounding neurons. None

Calcium Release from necrotic cells leads to excitotoxicity in surrounding neurons. None

5. Conclusions

The understanding of mechanisms accounting for the long-term secondary progression of TBI has
led to the discovery of numerous therapeutic targets. There is a significant need for local reduction in
the biochemical derangements around the injured brain that give rise to the long-term progression
of secondary injury. However, the clinical translation of TBI therapeutics has been hindered by
limited delivery into, and especially retention in, the brain, which has extended opportunities for NP
technology to improve target engagement. Notably, the role of NP-based systems to cross the BBB,
which is periodically open within the first 24 h after TBI, and then be retained in damaged tissue is
beginning to show promise in exerting a protective effect and preventing the spread of biochemical
derangements to the surrounding healthy brain, potentially providing a significant advantage over
other tested therapies that require continuous infusion. Furthermore, NP-based systems have shown
promise in exploring novel approaches, such as detecting pre-inflammatory states to aid in early
diagnosis. There are currently several challenges in the development of NPs for TBI where low
reproducibility, poor scalability, and the high cost play a significant role in the lack of translation of
nanotechnologies into clinical use. Therefore, scalable synthesis strategies that produce NPs with a
high density of therapeutic materials, so that a relatively low concentration of the NP system remain
effective, are needed to improve the clinical translation. Additionally, a neutral zeta potential has been
shown to be critical in achieving brain delivery across a disrupted BBB, yet very few studies of NPs
in TBI report surface charge. Therefore, a more thorough characterization of NP physicochemical
properties should be included in future studies. An effective delivery vehicle would (1) greatly facilitate
the evaluation of TBI therapeutics in animal models of injury and (2) facilitate translation of TBI
therapeutics to human clinical trials. Furthermore, the multifunctionality of NPs provides a distinct
advantage in being able to monitor accumulation kinetics, retention, and distribution, both in vitro
and in vivo. Therefore, researchers must then be able to better understand the behavior of the NPs in
the CNS so that therapeutics are maintained at a therapeutic level without rapid degradation. Success
in the neurotrauma field may likely come from the implementation of nanotechnology to improve
drug delivery and target engagement and may ultimately translate into clinical use to improve the
survival and quality of life of TBI patients.
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