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Abstract: Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous
system (CNS) through neurodegeneration and demyelination, leading to physical/cognitive disability
and neurological defects. A viable target for treating MS appears to be the Transient Receptor Potential
Ankyrin 1 (TRPA1) calcium channel, whose inhibition has been shown to have beneficial effects
on neuroglial cells and protect against demyelination. Using computational drug discovery and
data mining methods, we performed an in silico screening study combining chemical graph mining,
quantitative structure–activity relationship (QSAR) modeling, and molecular docking techniques
in a global prediction model in order to identify repurposable drugs as potent TRPA1 antagonists
that may serve as potential treatments for MS patients. After screening the DrugBank database with
the combined generated algorithm, 903 repurposable structures were selected, with 97 displaying
satisfactory inhibition probabilities and pharmacokinetics. Among the top 10 most probable inhibitors
of TRPA1 with good blood brain barrier (BBB) permeability, desvenlafaxine, paliperidone, and
febuxostat emerged as the most promising repurposable agents for treating MS. Molecular docking
studies indicated that desvenlafaxine, paliperidone, and febuxostat are likely to induce allosteric
TRPA1 channel inhibition. Future in vitro and in vivo studies are needed to confirm the biological
activity of the selected hit molecules.

Keywords: transient receptor potential channels; QSAR; molecular docking; data
mining; drug-repurposing; neurodegeneration; demyelination; antinociception; desvenlafaxine;
paliperidone; febuxostat

1. Introduction

Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system (CNS). This
complex pathology is characterized by local inflammation, demyelination, and axonal loss mediated
mainly by reactive lymphocytes that enter the CNS [1]. Although MS affects a vast number of young
adults worldwide, the pathogenesis underlying its development is not fully understood [2].

Several pathological mechanisms promote the generation of CNS lesions in multiple sclerosis. T
lymphocytes cross the blood brain barrier (BBB) and are activated by antigen presenting cells, including
B cells, macrophages, microglia, and dendritic cells, thus initiating the adaptive immune response.
Moreover, B cells produce antibodies and proinflammatory cytokines, triggering inflammation in
the CNS [3]. Neuroinflammation is present during neurodegeneration and demyelination, which
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leads to chronic microglial activation, oxidative stress, mitochondrial injury, excitotoxicity, and axonal
damage [4]. Unfortunately, multiple sclerosis is a pathology that does not benefit from a vast
array of therapeutic solutions, unlike other CNS diseases. Available disease modifying therapies
include interferons beta 1a and 1b, peginterferon 1a, glatiramer acetate, mitoxantrone, teriflunomide,
fingolimod, dimethyl fumarate, cladribine, azathioprine, cyclophosphamide, natalizumab, ocrelizumab,
and alemtuzumab [5–7]. However, most MS treatments require frequent parenteral administration,
which has a negative impact on patients’ quality of life. Natalizumab, ocrelizumab, and alemtuzumab
are monoclonal antibodies with high treatment costs, prescribed only as a medication for extremely
active or relapsing-remitting MS that could not be managed with first-line adequate immunomodulatory
therapeutics [8,9]. The antineoplastic agents (mitoxantrone, cyclophosphamide) used as second-line
medication for patients with extremely debilitating pathology and unavailable therapeutic alternatives
have a vast spectrum of adverse reactions [6]. Some drugs from other therapeutic classes are used for
treating MS symptomatology, such as the antidepressant amitriptyline for neuropathic pain, baclofen
(miorelaxant), and gabapentin (anticonvulsivant) for muscle spasms, painkillers, antidepressants,
or anxiolytics [10–12]. Since current small molecule drugs have limited efficacy and fail to prevent
relapsing in the long run, the medical scientific community is in a continuous pursuit of developing
new, accessible MS medications with high efficiency and safety profiles [13].

TRPA1 is a member of the Transient Receptor Potential (TRP) superfamily of ion channels that acts
mainly as a sensor for noxious stimuli and temperatures [14]. TRPA1 is a nonselective cation channel
with high permeability for Ca2+, which either potentiates or inactivates the chemically activated
receptor [15]. TRPA1 is expressed in several tissues, such as dorsal root ganglia, rodent cortex, caudal
nucleus, urinary bladder, colon innervations, and pancreatic beta cells [16–21]. Furthermore, TRPA1 is
present in rodent hippocampal astrocytes, contributing to basal calcium levels regulation, inhibitory
synapse efficacy, and long-term potentiation [22,23]. A recent study showed that TRPA1 genetic
ablation reduced mature oligodendrocytes apoptosis in the murine cuprizone model of demyelination,
concluding that astrocytic TRPA1 regulates apoptosis through mitogen-activated protein kinase
pathways, transcription factor c-Jun, and expression of Bak [24].

TRPA1 is a tetrameric receptor that forms a single pore and is structurally characterized by
14–16 N-terminal ankyrin repeats, which are motifs that mediate protein–protein interactions with
cytoskeletal proteins [25,26]. The transmembrane subunits contain six alpha helices, an intracellular
C-terminal domain, and an intracellular N-terminal domain, the latter containing reactive lysines
and cysteines [26]. Several endogenous ligands that act as activators have been identified: oxidized
lipids (4-hydroxy-2-nonenal, 5,6-eposyeicosatrienoic acid, prostaglandins), nitrated lipids, small
reactive oxygen species, and 7-dehydrocholesterol [27–30]. Exogenous agonists can either form
covalent adducts with lysines and cysteines within the intracellular N-domain (cinnamaldehyde,
allicin, acrolein) [26,31,32] or induce activation in a non-covalent manner (menthol, thymol, carvacrol,
nicotine, clotrimazole, nifedipine, diclofenac) [33].

Discovery of TRPA1 antagonists can be a promising tool in treating various diseases, including
neuropathic pain, inflammation, and multiple sclerosis [26,34]. In a pursuit for discovering novel
pharmacological agents for pain relief, several TRPA1 antagonists with proven in vivo efficacy
have been developed by the pharmaceutical industry and academia: xanthine derivatives [35,36],
trichloro(sulfanyl)ethyl benzamides [37], phtalimides, and related structures [38]. The gold standard
TRPA1 inhibitor A-967079 was reported to bind to the receptor through an induced fit mechanism
and produces subtle changes in the binding pocket conformation [39]. A molecular docking study
indicated that a series of new indazole TRPA1 antagonists inhibit the cation channel by forming
non-covalent bonds with residues Ser873 and Thr874 in the transmembrane (TM) domain 5 [40], which
was previously shown to play an impactful role in TRPA1 activity [41,42]. Moreover, published data
revealed that residues Val951 and Glu966 are relevant for propofol induced activation of TRPA1 [43],
while a xanthine derivative antagonist (HC-030031) forms a hydrogen bond with Asn855 in the
TM4-TM5 helix linker [44].
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Novel drug design is a timely effort of multidisciplinary teams that requires vast amounts of
allocated human and material resources with a relative chance of failure. A growing preoccupation has
been observed worldwide for promising, less expensive routes of drug discovery. Drug repurposing
implies the exploration of new potential biological targets for molecules already approved by national
drug agencies or in late stages of development as a means to speed up the process of identifying new
candidates for treating diseases of high interest [45,46]. Computer-aided drug design and discovery
methods have been continuously improved over the past years, working to reduce costs and time
investments for the identification and optimization of new lead molecules, but also as drug repurposing
tools [47–49]. Considering the attractiveness of such strategies for discovering novel therapeutic
solutions using repurposable drug candidates [50], we performed in silico screening studies based
on chemical graph mining, classification and regression quantitative structure–activity relationship
(QSAR) modeling, and molecular docking techniques in order to identify approved drugs as potent
TRPA1 antagonists that may serve as potential treatments for MS patients.

2. Materials and Methods

A screening algorithm was conceptualized aiming for the discovery of novel TRPA1 antagonists
using well established in silico approaches. The proposed step-by-step algorithm is summarized in
Figure 1 and consisted of combining several methods in a global estimate of the probability of strong
TRPA1 inhibitory activity. The implemented methodology focused on the development of a predictive
model that merges state of the art screening techniques (data mining, classification and regression
QSAR modeling, and molecular docking). The identified novel potential TRPA1 inhibitors were filtered
thereafter by the physicochemical properties established as predictors for a high likelihood of diffusion
through the BBB.
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2.1. Datasets Preparation

The chemical structures of known human TRPA1 inhibitors and their corresponding activity
values expressed as half maximal inhibitory concentration (IC50, M) were acquired from ChEMBL
database [51]. Using the OSIRIS DataWarrior v5.0.0 software [52], the dataset was filtered by removal of
compounds with inexact values of IC50. The chemical structures with estimated IC50 values greater than
2000 nM were saved separately as decoys. Mean IC50 values were calculated for compounds tested in
multiple activity assays, duplicate structures were merged into a single entry, and negative logarithmic
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values of IC50 (pIC50, M) were calculated for all compounds. Three-dimensional coordinates were
generated for all retained structures using OpenBabel v2.4.1 [53].

Compounds serving for drug repurposing screening were downloaded from the DrugBank v5.3.13
database [54] with their respective desalted 3D coordinates. The acquired database consisted of several
drug groups (human and veterinary approved, experimental, investigational, nutraceutical, withdrawn,
and illicit drugs) and included no organometallic or biologic drugs. All inorganic compounds and
organic structures with molecular weight lower than 100 g/mol, which consisted mainly of solvents
and chemical reactants, were removed thereafter.

Constitutional, topological, electronic, geometrical, and hybrid descriptors were calculated with
CDK Descriptor Calculator v1.4.8 [55] and were integrated into both datasets for future analyses.
Constant descriptors were removed, and descriptive statistics for pIC50 and the most common molecular
descriptors widely used for describing druglikeness (molecular weight, partition coefficient, hydrogen
bonds donors, hydrogen bonds acceptors, polar surface area, rotatable bonds) were performed using
IBM SPSS Statistics v20.0 software (IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY, USA:
IBM Corp).

2.2. TRPA1 Inhibitors Structure–Activity Relationships (SAR)

As a means to identify potential TRPA1 channels blockers among existing drugs, we explored
structure–activity relationships (SAR) of the inhibitors dataset. To establish the key physicochemical
features of potent antagonists, scaffold analysis was performed using DataWarrior to generate the
Bemis-Murcko skeletons as well as plain and most central ring systems. Bemis-Murcko skeletons
are molecular frameworks that result from the removal of atom types, bond types, and side chains
and have proven to be useful in various in silico screening studies [56–58]. Plain ring systems are
rings with removed substitution patterns, linkers, and side chains, while most central ring systems are
plain rings that are located topologically closest to the center of the molecule (graph center) [59,60].
Thereafter, the dataset was divided into two sets at a time in order to compare the means of pIC50

values between compounds with a specific scaffold and the remaining structures using an independent
sample t-test. The same statistical reasoning was applied for Kier-Hall smarts descriptor (khs) as an
attempt to credit both certain structural skeletons and individual atom groups with high inhibition
potency. Kier-Hall Smarts descriptor counts e-state relevant fragments instead of calculating the
actual e-state indices [61]. Similarity/activity cliffs were generated with DataWarrior using flexophore
fingerprints with a similarity threshold set at 80%. A flexophore is a 3D versatile pharmacophore
descriptor calculated based on molecular flexibility, which is represented using a complete graph. The
function compares vertices and edges between maximum common substructures of two descriptor
graphs [62,63].

2.3. Data Mining Protocol

SAR analysis results were further used in a graph mining approach in order to retrieve drugs
with structural features similar to those specific for TRPA1 inhibitors with superior biological activity.
DrugBank was screened for compounds with Bemis-Murcko skeletons, plain rings, most central rings,
and atom groups that were found to be characteristic for compounds that possess significantly higher
pIC50 values among the inhibitor dataset. Secondly, previously generated flexophore descriptors were
used to score drugs that feature a structural similarity with TRPA1 inhibitors above the 80% threshold,
using DataWarrior to search the chemical space of DrugBank database for flexophore similarity pairs
between TRPA1 antagonists and repurposable molecules [63]. A scoring function was constructed as
a tool to prune the DrugBank dataset by giving one point for each skeleton, most central ring, plain
ring, and atom group common to the stronger TRPA1 inhibitors and another point for a flexophore
similarity higher than 80%. The same scoring function was applied to both the inhibitor and the decoy
datasets using only the features common to the screened repurposing dataset.
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2.4. Quantitative Structure-Activity Relationship (QSAR) Modeling

2.4.1. Binary Classification Model

The first step in predicting TRPA1 inhibitory activity for the screened database consisted of
building a binary classification model based on setting cutoff values for several descriptors, similar
to our previous work [58]. The TRPA1 blockers dataset was divided into three groups that included
weak inhibitors with pIC50 values < 6 M, moderate inhibitors with pIC50 ranging between 6–7 M,
and strong inhibitors with pIC50 > 7 M. This rationale was applied in order to obtain two balanced
sets of strong and weak inhibitors, which are required for building classification models with good
performance [64]. Values higher than 7 M were chosen for strong inhibitors, considering that compounds
with IC50 < 100 nM are generally accepted as potent inhibitors. Strong inhibitors were labeled as
active (1) and weak inhibitors as inactive (0). An independent sample t-test was applied in order to
identify molecular descriptors that were statistically different between weak and strong inhibitors, and
a weighted index was calculated by dividing the mean difference to the range of the descriptor values
between the two groups. Descriptors with weights > 0.2 and receiver operating characteristics (ROC)
areas under the curve (AUC) > 0.8 were further processed by building the correlation matrix and were
referred to as variables. Variables that were highly intercorrelated (R > 0.9) were removed, and the
two inhibitor groups were randomly split into training (70%) and test (30%) subsets. Cutoff values of
the classifiers were chosen using ROC curves and by identifying the coordinates with a good balance
between sensitivity and specificity. The test subset was then used to validate the classification model,
and all classification evaluation parameters were calculated (sensitivity, specificity, accuracy, ROC
AUC, and F1 score). The classification model was applied to the DrugBank and the decoy datasets.

2.4.2. Regression Model

Multiple linear regression models (MLR) were built to quantitatively predict the biological activity
(pIC50) of screened drugs on TRPA1 calcium channel. The inhibitor dataset was randomly divided
into ten training (70%) and ten test (30%) subsets by a 10-fold bootstrapping randomization. The
independent variables were chosen by applying forward (FW) and stepwise (SW) selection methods.
The inclusion criterion was based on more exigent values for the probability of F (p < 0.01 for acceptance
and p = 0.01–0.05 for removal) in order to diminish redundancy generated by the inclusion of a large
number of descriptors. The forward selection method adds descriptors progressively to the equation,
weighting its ability to increase the fitness of the model, while the stepwise selection method adds each
descriptor in a step-by-step manner, calculating the significance of the previously included variable
and removing the already added descriptors that are no longer relevant to the fitness of the regression
model [65]. Each model was used to predict the activity of the test subsets for external validation. The
fittest model was chosen by the highest squared correlation coefficient (R2pred) and the lowest root
mean square error (RMSEpred) of the test subsets and was further used to predict pIC50 values for both
DrugBank and decoy datasets.

2.5. Molecular Docking Simulations

A molecular docking experiment was carried out to estimate the predicted binding affinity of
screened molecules to the TRPA1 channel. The crystal structure of human TRPA1 was retrieved from
RCSB Protein Data Bank (PDB code: 3J9P) [39] and was subjected to several optimization steps due to
low resolution and large B-factors. Missing residues were added to the protein, and loops were built
and refined with Chimera v1.13.1 [66] and Modeller v9.22 [67]. Thereafter, the protein structure was
energetically minimized using the AMBER ff14SB force field for further refinement.

Three-dimensional structures of TRPA1 inhibitors, decoy dataset, and DrugBank compounds
were prepared for docking using Open Babel. Ligand structures underwent hydrogen atom addition
and energy minimization with MMFF94s force field, were converted to the docking file format with
protonation states corresponding to pH = 7.4, and finally were imported into the PyRx v0.8 [68], a
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virtual screening software that runs with AutoDock Vina v1.1.2 docking algorithm [69]. Previously
reported analyses of electron density maps and molecular dynamics simulations indicated that
inhibitors A-967079 and HC-030031 bind to TRPA1 and interfere with channel gating via an induced fit
mechanism [39,44]. Therefore, a docking simulation with flexible residues was first employed with
both gold standard inhibitors (positive controls) to generate side chain conformers appropriate for a
putative TRPA1-inhibitor complex. A-967079 and HC-30031 have two different binding sites, which
are separated by TM5. Residues Leu870, Ser873 (cytoplasmic), Thr874, Phe877, Ile878, Leu881 (TM5),
Thr908, Phe909, Met912, Leu913 (pore helix 1), Val942, Thr945, Ile946, Val948, Ile950, Leu952, and Leu956
(TM6) were set as flexible for A-967079 docking, while Arg872 (TM5) and Asn855 (TM4-TM5 helix
linker) were chosen for HC-030031. Thus, the protein structure was subsequently optimized to reflect
an inhibited state by replacing the original binding pocket side chains with the new conformations.

Following receptor structure preparation, the virtual screening was performed for all datasets
with rigid residues, and the searching space (grid box) was defined to include both reported adjacent
binding sites. Docking scores (binding energies, ∆G, (kcal/mol) corresponding to the first conformation
generated for each ligand were retrieved for the screened compounds (TRPA1 inhibitors, decoys,
and repositioning candidates). Graphical depictions of ligand poses and interaction diagrams were
built using BIOVIA Discovery Studio Visualizer (BIOVIA, Discovery Studio Visualizer, Version 17.2.0,
Dassault Systèmes, 2016, San Diego, CA, USA). Validation of the docking experiment was performed
by redocking the two positive controls and calculating the squared correlation coefficient (R2) between
the experimental pIC50 and the docking scores of the TRPA1 inhibitor dataset.

2.6. Ranking of Potential Novel TRPA1 Inhibitors

The final step of the screening algorithm consisted of building a ranking system to identify the
drugs and the druglike compounds with the highest probability of exhibiting potent TRPA1 inhibitory
activity. The predictive model was built by combining the outputs of the aforementioned screening
steps into a single, global equation (Figure 1). A binary logistic regression model was generated using
three independent variables: the weak/strong inhibitor class as a categorical variable, the predicted
pIC50 (pIC50pred), and the predicted binding energy (∆G) values as continuous variables. The TRPA1
inhibitor database was divided by 10-fold bootstrapping into random training (70%) and test (30%) sets
for external validation, and ten regression equations were generated. A secondary external validation
was performed by calculating the inhibition probability of the decoy compounds. The model with
the highest accuracy and ROC AUC was then applied to the filtered DrugBank database to estimate
the probability of blocking TRPA1 channels. Since the final aim of the screening was to discover
repurposable drugs as novel potential TRPA1 blockers addressing multiple sclerosis, the compounds
with a probability higher than 50% of being potent inhibitors were filtered by the physicochemical
properties needed for a good BBB permeation and CNS exposure: molecular weight under 500 g/mol,
AlogP ranging between 2–5, polar surface area under 90 Å2, 3 or fewer hydrogen bond donors, and 7
or fewer hydrogen bond acceptors [70].

3. Results

3.1. TRPA1 Inhibitors and Repurposing Datasets

A dataset composed of 576 human TRPA1 inhibitors with biological activity expressed in IC50

values (M) was downloaded from the ChEMBL database [51]. Following the application of filtering
procedures, a virtual chemical library was built by retaining 371 compounds from the original dataset,
while 76 compounds were proposed separately as decoys. Drug repurposing dataset preparation
resulted in a virtual library containing 7710 drug structures retained from DrugBank [54]. For each
compound library, a total of 282 molecular descriptors were calculated, and 53 constant descriptors
were removed. Descriptive statistics of pIC50 values and druglikeness-related descriptors for the active
dataset are shown in Table S1.
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3.2. Structure-Activity Relationships of TRPA1 Inhibitors

The scaffold analysis of TRPA1 inhibitors dataset yielded 46 Bemis-Murcko skeletons, 51 plain
rings, and 26 most central rings. Several scaffolds were associated with significantly higher biological
activity, and the statistical significance threshold was set to p < 0.01 as a means to increase the
discriminant power of the test (Table 1).

Table 1. Structural scaffolds associated with significantly higher biological activity.

Scaffold Type Identifier No. of
Compounds

Mean ± SD
pIC50 (M)

Mean Difference
(Present − Absent)

Bemis-Murcko
skeleton BM-1 35 7.47 ± 0.39 0.98

BM-2 4 8.06 ± 0.74 1.50
BM-3 63 7.78 ± 0.83 1.46

Plain rings PR-1 31 7.40 ± 0.36 0.90
PR-2 4 7.96 ± 0.19 1.40
PR-3 8 7.64 ± 0.68 1.09
PR-4 33 8.11 ± 0.36 1.69
PR-5 8 8.20 ± 0.12 1.66
PR-6 360 6.60 ± 1.00 1.13
PR-7 4 8.06 ± 0.74 1.50
PR-8 99 7.59 ± 0.83 1.39

Most central ring MCR-1 99 7.59 ± 0.83 1.39

SD—standard deviation.

Bemis-Murcko skeletons correlated with significantly higher activity values are shown in
Figure 2. Structural skeletons BM-1 (1-[3-(3-cyclohexylcyclopentyl)propyl]-decahydronaphthalene)
and BM-3 (1-[3-(3-cyclohexylcyclopentyl)propyl]-octahydro-1H-indene) were highly similar, well
represented among the inhibitors with comparable mean pIC50 values, and had several common
structural features: a condensed bicyclic structure represented by either nine or ten atoms rings,
a three-atom linker, and a pentacyclic substructure linked to a six-atom ring. Structural skeleton BM-2
([1-(4,5-dicyclohexylpentyl)cyclopentyl]cyclohexane) was less frequent, being specific for only four
TRPA1 inhibitors. However, structures containing this specific scaffold had a higher inhibition potency,
all compounds showing pIC50 values higher than 7 M.

The plain rings systems specific for the TRPA1 inhibitors were split into individual
rings in order to analyze their contribution for a high biological activity and are depicted
in Figure 3. It was noted that four of the eight total rings were bioisosteres of ring
PR-1 (1,2,3,4-tetrahydroquinazoline-2,4-dione), which was contained in structures with pIC50

values ranging between 6.5–8.5 M limits and was specific for Bemis-Murcko skeletons
BM-1 and BM-3. Rings PR-2 (1H,2H,3H,4H-pyrido[2,3-d]pyrimidine-2,4-dione) and PR-3
(1H,2H,3H,4H-thieno[2,3-d]pyrimidine-2,4-dione) were less representative, but the replacement of
the phenyl aromatic ring with pyridine or thiophene gave higher mean pIC50 values overall. The
highest increase in mean activity values could be observed in compounds containing ring PR-5
(4H,5H,6H,7H-[1,2]thiazolo[5,4-d]pyrimidine-4,6-dione), which included a substitution of the phenyl
ring with thiazole, while ring PR-4 (1H,2H,3H,4H-furo[2,3-d]pyrimidine-2,4-dione) was found in
representants with furan-including rings and pIC50 values higher than 8.5 M (Figure 3).
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Figure 3. Plain rings contained by compounds with significantly higher TRPA1 inhibitory activity
using statistical comparison of mean pIC50 (M) values.

Ring PR-6 (benzene) was widely spread among the dataset, being present in 360 structures out of
371, and had a higher mean pIC50 value than those that did not include it. Ring PR-7 (cyclopentane)
was specific only for compounds represented by Bemis-Murcko skeleton BM-2. Ring PR-8 (1,3-thiazole)
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was found in a large number of TRPA1 inhibitors and was specific for Bemis-Murcko skeletons BM-1
and BM-3, and the vast majority of compounds that contained it had pIC50 values higher than 7 M.
Notably, the only most central ring that was found with a significantly higher inhibitor activity was
1,3-thiazole (MCR-1), which was a substructure of the same compounds that contained ring PR-8 as a
plain ring.

Kier-Hall smarts descriptors were further used to identify relevant fragments for potent TRPA1
inhibition. Instead of using the quantitative values of the descriptor, structures were grouped for
statistical analysis, taking into consideration only the presence or the absence of each specific e-state
fragment. The fragments present in inhibitors with significantly higher pIC50 values (p < 0.01) are
shown in Table 2.

Table 2. Kier-Hall smarts descriptors associated with significantly higher TRPA1 inhibition activity.

Kier-Hall
Smarts

Descriptor
Identifier Atom Group

No. of
Compounds
(Frequency)

Mean ± SD
pIC50 (M)

Mean Difference
(Present – Absent)

khs.ssCH2 AG-1 –CH2– 248 (66.84%) 6.84 ± 1.02 0.82
khs.dssC AG-2 =C< 271 (73.04%) 6.67 ± 1.07 0.36
khs.aaaC AG-3 Ar. C 229 (61.72%) 6.83 ± 1.01 0.67
khs.ssssC AG-4 >C< 181 (48.78%) 7.00 ± 1.06 0.84
khs.dsN AG-5 =N– 128 (34.50%) 7.22 ± 1.08 0.99
khs.aaN AG-6 Ar. N 226 (60.91%) 6.79 ± 1.05 0.55
khs.aasN AG-7 Ar. N– 173 (46.63%) 7.03 ± 1.00 0.86
khs.sOH AG-8 –OH 140 (37.73%) 7.23 ± 1.06 1.05
khs.dO AG-9 =O 271 (73.04%) 6.77 ± 1.01 0.76
khs.aaO AG-10 Ar. O 63 (16.98%) 7.36 ± 0.99 0.94
khs.sF AG-11 –F 231 (62.26%) 6.79 ± 1.08 0.58

khs.aaS AG-12 Ar. S 130 (35.04%) 7.24 ± 1.01 1.02
khs.sCl AG-13 –Cl 108 (29.11%) 6.78 ± 0.95 0.29

SD—standard deviation; Ar.—aromatic.

Statistical analysis of the atom groups counted by Kier-Hall smarts descriptor function showed
that 13 atom groups were found in structures with higher inhibition potency. Notably, six of the
identified atom groups had mean pIC50 values higher than 7 M: a carbon atom forming four covalent
bonds with different non-hydrogen atoms (AG-4), a nitrogen atom with one single and one double
bond (AG-5), a substituted cyclic nitrogen (AG-7), a hydroxyl group (AG-8), a cyclic oxygen (AG-10),
and a cyclic sulfur atom (AG-12). Clearly, the carbon atom that formed four covalent non-hydrogen
bonds was specific to the Bemis-Murcko skeleton BM-2 and other compounds, while the aromatic
oxygen, the sulfur, and the substituted nitrogen were common for both skeletons BM-1 and BM-3 and
plain rings PR-1-5 and PR-8.

Analysis of structure similarity/activity cliffs of the TRPA1 inhibitors’ chemical space based on
flexophore descriptor generated several structural clusters, which are shown in Figure S1. Only six
activity cliffs could be observed, two being present in the largest generated cluster. One notable
activity cliff was formed between compounds CHEMBL3981381 and CHEMBL3976217, which were
both included in the set containing Bemis-Murcko skeleton BM-3.

This individual activity cliff indicated that both the substitution of furane ring with pyrazole and
the presence of a different substitution pattern of fluorine atoms on the phenyl ring produced a decrease
in TRPA1 inhibition. Both compounds contained nitrogen, forming both double and single bonds,
a hydroxyl group, aromatic sulfur atoms, substituted aromatic nitrogen atoms, fluorine atoms, and
a thiazole substructure as the most central ring, while only compound CHEMBL3976217 contained
an aromatic oxygen atom. Another cluster containing highly active structures included compounds
representative for Bemis-Murcko skeleton BM-2 (CHEMBL3907685, Figure S2), which also featured
hydroxyl, fluorine, and chlorine atom groups.
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3.3. Data mining and Scoring

A graph mining strategy was further used to identify potential TRPA1 inhibitors by scanning
DrugBank for drugs that feature previously established scaffolds and atom groups with statistical
relevance. The number of successfully retrieved drugs by applying this method is shown in Table 3.
No compounds were found using the Bemis-Murcko scaffolds, probably due to the high specificity of
the selected skeletons to the TRPA1 blockers.

Table 3. Number of DrugBank compounds found to feature atom groups and scaffolds previously
selected in the structure–activity relationship (SAR) analysis.

Atom Groups Scaffolds

Identifier No. of Structures Identifier No. of Structures

AG-1 6388 BM-1 0
AG-2 4962 BM-2 0
AG-3 1857 BM-3 0

AG-4 1805 PR-1 6
AG-5 459 PR-2 0
AG-6 2384 PR-3 2
AG-7 1360 PR-4 0
AG-8 4179 PR-5 0
AG-9 5776 PR-6 2442

AG-10 383 PR-7 21
AG-11 1009 PR-8 82

AG-12 428 MCR-1 46
AG-13 952

Six structures were found to contain PR-1 plain ring in their molecule, three being investigational
drugs (selurampanel, elinogrel, and SP-8203), two were experimental druglike compounds, and one
was an approved drug (ketanserin). PR-3 was found in only two investigational drugs within the
same therapeutic group (relugolix and sufugolix). PR-7 was specific for 21 compounds, while PR-6
(phenyl) was identified for a large number of structures (2442), being rather common and therefore
unspecific. Although 82 drugs were found to contain the PR-8 ring (1,3-thiazole), only 46 featured this
substructure as the most central ring.

As expected, AG-1 atom group was present among a high number of the screened structures,
since it is highly unspecific. Atom groups AG-5 (single and double-bonded hydrogen), AG-10
(aromatic oxygen), AG-12 (aromatic sulfur), and AG-13 (chlorine) were found in fewer than 1000
screened compounds.

The data mining criterion based on flexophore descriptor similarity generated 981 pairs between
203 known TRPA1 inhibitors and 356 DrugBank entries. Similarity percentages ranged from 0.8101 to
0.9832, and the top compound pairs are presented in Table S2. Six pairs were found with a similarity
higher than 95%, five being druglike experimental compounds with no clinical usage, while melatonin
(DB01065) was found to have a flexophore similarity of 95.33% with TRPA1 inhibitor CHEMBL3297780
(Figure S3).

An analysis of similarity/activity cliffs was performed again using flexophore descriptors after
merging the TRPA1 inhibitors dataset with the retrieved drugs with over 80% similarity. Most of the
screened drugs formed a similarity network between TRPA1 inhibitors clusters, while 21 compounds
formed no links within the network (Figure S3). However, the cluster with the highest density of
strong inhibitors formed no direct links with the screened drugs.

A data mining scoring function was implemented in the screening protocol using the structural
scaffolds and the atom groups with statistical significance to the TRPA1 inhibitory activity, awarding
one point for each feature. Flexophore similarity above the 80% threshold was also awarded one point,
and the total sum of all positive features was calculated as the data mining score for the screened
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DrugBank database, TRPA1 inhibitors, and decoys, respectively. The calculated scores summed the
presence of similarity, MCR-1 as most central ring, plain rings PR-1, PR-3, PR-6-8, and the atom groups
with mean pIC50 values above 7 M (AG-4, AG-5, AG-7, AG-8, AG-10, AG-12). The score ranged from
1–10 (4.82 ± 2.82) for the TRPA1 inhibitor dataset, 0–6 (1.50 ± 0.92) for DrugBank library, and 1–4 (2.41
± 0.79) for the decoy dataset.

DrugBank entries with either high flexophore similarity and a minimum of two common graph
features or no similarity and at least three common graph features were selected for further screening,
the inclusion criteria being set to a threshold value equal to three. Thus, a total of 903 repurposable
structures were selected.

3.4. QSAR Models

3.4.1. Activity Class Prediction

A classification model was built by performing ROC analysis of molecular descriptors generated
for the TRPA1 inhibitors. Out of the 229 available descriptors, 188 showed a statistically significant
difference between the two inhibitor classes. However, 104 had calculated weights higher than 0.2, and
only 60 had ROC AUC values over 0.8. After the removal of highly intercorrelated variables, only four
descriptors were selected for the classification model (Table 4). The classification model built showed
that strong TRPA1 inhibitors were characterized by a high difference between charge weighted partial
positive surface area and charge weighted partial negative surface area, a high eccentric connectivity
index that is a highly discriminative topological descriptor that combines distance and adjacency
information [71], superior order six Kier-Hall Chi path index, and superior order four Kier-Hall Chi
path cluster index.

Table 4. Statistics and description of selected classifiers.

Classifier Description Cutoff
Threshold Sensibility Specificity ROC AUC

DPSA3

difference between charge
weighted partial positive
surface area and charge

weighted partial negative
surface area

65.36 0.894 0.659 0.876

ECCEN eccentric connectivity
index 440 0.872 0.636 0.875

SP6 Kier-Hall Chi path index
of order 6 3.67 0.957 0.648 0.903

SPC4 Kier-Hall Chi path cluster
index of order 4 3.98 0.904 0.602 0.908

* ROC: receiver operating characteristics; AUC: area under the curve.

The generated classification model showed substantial statistical parameters with good accuracy
for both training (calibration) and test (validation) datasets and an overall prediction accuracy of the
activity class of 83.5% as well as an ROC AUC of 0.890 (Figure 4).
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The classification evaluation metrics are shown in Table S3. The true negative rate (selectivity or
specificity) was higher than the true positive (recall or sensitivity) rate for both sets, the model having
a higher chance of detecting the true negative compounds and a slightly lower chance of detecting the
true positives. The application of the classification model to the selected repurposable drugs yielded
424 potentially active hits out of 903 screened structures.

3.4.2. Quantitative TRPA1 Antagonist Activity Prediction

The quantitative biological activity, expressed as the predicted negative logarithmic value of
IC50 (pIC50pred) of the repurposing library against the TRPA1 channel, was calculated using MLR
methods. Ten stepwise and ten forward equations were built, and one model generated by both
methods was chosen based on the model quality parameters. The regression coefficients are presented
in Equation (1).

pIC50 = 0.0004×GRAV4− 0.3038× khs.dO− 0.0954× nHBAcc+0.2523×C2SP3+
0.0117×DPSA3− 0.0944× khs.ssCH2− 1.1296× nAcid + 1.2054× khs.ddsN−

0.0600×C2SP2− 3.2101×MDEN13 + 0.0939×C3SP2 + 4.2769.
(1)

The generated QSAR models showed R2 parameters between 0.671–0.748, R2pred values ranging
between 0.499–0.681, while residues varied between −2.37–2.19. The selected model was identified by
both forward and stepwise independent variable selection methods, and the included descriptors are
reported in Table 5.

Validation of the QSAR regression model was successful, considering that squared correlation
coefficient values for both training and test subsets were higher than the threshold of 0.50, which
is considered an index of acceptable fitness (Figure 5). However, the seemingly low squared
correlation coefficient could be attributed to the high structural diversity of the TRPA1 chemical
space, since 46 different Bemis-Murcko skeletons, 51 plain rings, and 26 most central rings were
identified amongst the dataset, as reported in the SAR section. The QSAR regression equation revealed
that biological activity against TRPA1 was directly proportional with the gravitational index of all heavy
atoms, singly bound carbons bound to two other carbons, the difference between charge weighted
partial positive surface area and charge weighted partial negative surface area, number of nitro- group
e-state fragments, and doubly bound carbons bound to three other carbons. Moreover, the number
of keto oxygen e-state fragments, the number of hydrogen bond acceptors, the number of linker
carbon atoms, the doubly bound carbons bound to two other carbons, and the molecular distance edge
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between all primary and tertiary nitrogen atoms were negatively contributing to the predicted measure
of biological activity. The selected regression equation was thereafter used to predict pIC50 values for
the drug repurposing library. The mean estimated pIC50 values were 5.99 ± 1.31 M, varying from
0.78 M to 10.89 M. Out of 903 screened compounds, 176 molecules showed predicted pIC50 above 7 M.

Table 5. Multiple linear regressions model (MLR) quantitative structure-activity relationship (QSAR)
model descriptors and evaluation metrics.

Molecular Descriptors Model Statistics

Variable Description

GRAV4 gravitational index of all heavy atoms R2 0.707
khs.dO keto oxygen e-state fragments count R2pred 0.681
nHBAcc hydrogen bond acceptors count RMSEC 0.455
C2SP3 singly bound carbon bound to two other carbons RMSEV 0.515

DPSA3
difference between charge weighted partial positive
surface area and charge weighted partial negative

surface area
Variables 11

khs.ssCH2 –CH2– e-state fragments count
nAcid acidic groups count

khs.ddsN –NO2 e-state fragments count
C2SP2 doubly bound carbon bound to two other carbons

MDEN13 molecular distance edge between all primary and
tertiary nitrogen atoms

C3SP2 doubly bound carbon bound to three other carbons

R2—squared correlation coefficient of the training subset: R2pred—squared correlation coefficient of the predicted
(test) subset; RMSEC—Root Mean Square Error of the calibration dataset (training subset); RMSEV—Root Mean
Square Error of the validation dataset (test subset).
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3.5. Molecular Docking

A molecular docking screening study was conducted as a tool to predict the binding affinities of
the screened ligands. Docking using a flexible residues approach generated favorable conformations
into the previously reported binding sites for both A-967079 and HC-030031 (Figure S4). The simulated
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protein-ligand complex of A-967079 revealed that the TRPA1 inhibitor formed a hydrogen bond with
key TM5 residue Thr874 via the oxime moiety and participated in halogen interactions with Val948
and Met912 and in other weak interactions with the binding site side chains (Figure S5). Moreover,
HC-030031 interacted with the specific binding site by forming hydrogen bonds with Asn855 (TM4-TM5
helix linker), Arg872 (TM5), Arg975, and Gln1031 and participated in several weak interactions (Figure
S6). Redocking both ligands with rigid residues and with a grid box simultaneously containing both
binding sites yielded similar results. Thus, the favorable conformers of residues situated in both
binding pockets were used in the following virtual screening protocol.

The docking scores (∆G) of TRPA1 inhibitors ranged from −9.7 to −4.9 kcal/mol with a mean
value of −7.57 ± 0.89 kcal/mol. A low squared correlation coefficient between experimental pIC50 and
docking scores was obtained (Figure 6, R2 = 0.226), but with strong statistical significance (Pearson
test, p < 0.0001). Previous studies concluded that the state of the art molecular docking algorithms
can properly differentiate active compounds from decoys, but the scoring functions are not entirely
reliable for lead optimization, since low correlations were found between the docking scores and
the experimental activity values for multiple ligand databases [72]. Moreover, statistically different
mean ∆G values between the weak and the strong inhibitor groups (t-test, p < 0.0001) were observed,
denoting that the docking algorithm had discriminative capabilities between active and inactive
molecules and could be suited for high throughput screening of novel candidates. The predicted
binding affinities of DrugBank screened compounds ranged from −10.4 to −4.1 kcal/mol with a mean
value of −7.30 ± 1.01 kcal/mol.Pharmaceutics 2019, 11, x FOR PEER REVIEW 14 of 24 
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3.6. Ranking of Potential novel TRPA1 Inhibitors

A multivariate binary logistic regression model was built as a means to rank the screened
DrugBank molecules by the probability of exhibiting strong TRPA1 antagonism. The activity class
code, the predicted pIC50, and the docking scores of weak and strong TRPA1 inhibitors were used as
regression independent variables for the generation and the validation of a predictive model for the
overall estimate of biological activity. The resulted model yielded a highly satisfactory accuracy of
94.3%, showing an increased predictive power of inhibitory activity for the validation subset (Table S4).
The generated logistic regression mathematical model is expressed in Equation (2).

Excellent ROC AUC values were obtained for both the calibration and the validation subset,
showing a global performance value of 0.978 (Figure 7). Furthermore, a high accuracy of 92.1% was
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obtained using the decoy dataset as a secondary validation method; only six out of 76 molecules were
incorrectly predicted as active. Thus, the proposed algorithm increased the accuracy of standalone
predictive models, diminishing some of their weak points, such as low R2 values and classification
accuracy below 90%.
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The binary logistic regression in Equation (2) offers good insight into the influence of each variable
on the probability of potent TRPA1 inhibition (P). The regression equation coefficients showed that
the highest predictive weight was given to the estimated pIC50 values. Molecules with predicted
pIC50 values below 5 M had an overall inhibition probability lower than 0.05%. If a candidate had a
predicted pIC50 equal to 7 M but was classified as inactive and had a predicted binding energy equal
to −6 kcal/mol, there was a 55.26% probability of TRPA1 inhibition. Moreover, if the same compound
was classified as active, the probability increased to 94.96% and to 96.58% if the predicted binding
energy equaled −7 kcal/mol. Therefore, the highest impact on inhibition probability was given by
predicted pIC50, followed by the activity class and the docking score.

P =
1

1 + exp[−(2.725×Class + 3.967× pIC50pred− 0.404× ∆G− 29.986)]
. (2)

Plotting the probability values against estimated binding energies of all TRPA1 inhibitors (Figure S7)
revealed that nine inhibitors with over 50% inhibition probability were characterized by binding
energies varying from −7 to −6 kcal/mol, while the rest of the strong inhibitors exhibited binding
energies below −7 kcal/mol.

The predicted activity class, pIC50pred, and the predicted binding energy values of screened
DrugBank molecules were fit into the generalized prediction model based on the previously generated
logistic regression equation, and the primary ranking of the potential antagonists was performed.
Thus, 310 drugs and druglike compounds registered over 50% probability of TRPA1 inhibitory activity,
196 compounds had over 90% probability, 160 showed over 95% probability, and 107 showed over 99%
probability of presenting antagonist activity. The top 10 ranked molecules, their generic names, and
their proven biological activities are shown in Table S5.

The hit compounds resulted from the primary ranking system were further filtered by removing
the structures with physicochemical properties placed outside the well-established cutoff values
for a good blood brain barrier diffusion. Therefore, only 97 candidates (P > 0.5) were identified as
potential TRPA1 antagonists with possible use in treating multiple sclerosis. The secondary and the
final rankings of the 10 best commercially available candidates as proposed therapeutic solutions are
reported in Table 6. After performing the secondary ranking, only laropiprant was found in both the
primary and the secondary ranking outputs. Two approved NSAIDs, flufenamic acid, and tiaprofenic
acid showed high probabilities of inhibiting TRPA1 calcium channels. However, previous studies
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showed that flufenamic acid both activates TRPA1 channels and blocks TRPC5, TRPM2, TRPM3, and
TRPV4 calcium channels [73,74]. One limitation of the proposed screening algorithm is the apparently
reduced predictive capacity of selective detection of TRPA1 inhibitors and even a possibly low ability
to discriminate between agonists and antagonists.

Table 6. Top 10 secondarily ranked potential TRPA1 inhibitors with good central nervous system (CNS)
exposure based on the binary logistic regression equation used as a global prediction model and blood
brain barrier (BBB) permeation filtering.

DrugBank
ID

Generic
Name

Drug
Groups

Biological
Activity Score Activity

Class
pIC50pred

(M)
∆G

(kcal/mol) P

DB11629 Laropiprant A, I, W selective DP1
antagonist 3 1 9.38 −7.3 1.00000

DB11644 Tafamidis A, I TTR dissociation
inhibitor 3 1 9.01 −6.8 0.99999

DB06700 Desvenlafaxine A, I SNRI 3 1 8.17 −7.9 0.99976
DB01267 Paliperidone A antipsychotic 3 1 7.39 −9.0 0.99661
DB04854 Febuxostat A XO inhibitor 3 1 7.28 −6.4 0.98517

DB02266 Flufenamic
Acid A NSAID 3 1 7.13 −7.1 0.98032

DB00957 Norgestimate A, I sex hormone 3 0 7.76 −6.9 0.97359

DB04908 Flibanserin A, I 5-HTA1/2
agonist/antagonist 4 0 7.59 −8.3 0.96989

DB01600 Tiaprofenic
acid A NSAID 3 0 7.65 −6.3 0.94887

DB01359 Penbutolol A, I beta-blocker 3 1 7.00 −5.7 0.94310

Score—data mining score; pIC50pred (M)—MLR predicted pIC50; ∆G—predicted binding energy (kcal/mol);
P—probability of TRPA1 inhibition; I—investigational; A—approved; W—withdrawn; TTR—transthyretin;
SNRI—serotonin-norepinephrine reuptake inhibitor; XO—xanthine oxidase; NSAID—nonsteroidal
anti-inflammatory drug.

The more interesting hit molecules discovered by the combined screening algorithm were
three marketed drugs (Figure S8), two being CNS-acting molecules and one non-CNS acting drug:
desvenlafaxine, the main metabolite of venlafaxine (SNRI antidepressant), paliperidone, the active
metabolite of risperidone (antipsychotic dopamine D2 receptor antagonist and serotonin 5-HT2A

receptor antagonist), febuxostat (xanthine-oxidase inhibitor for gout treatment). All three molecules
presented several structural features identified during SAR studies as being statistically relevant for
potent TRPA1 inhibition.

The pharmacokinetic profile of desvenlafaxine indicates a good oral bioavailability (80%), while
paliperidone is characterized by a low (28%) absolute bioavailability when formulated in extended
release preparations [75,76]. However, paliperidone is also available as long-acting injectable suspension
formulations [77]. Pharmacokinetic studies revealed that febuxostat has an oral bioavailability of at
least 49%, while other authors report a higher value (84%) [78,79]. The effectiveness of febuxostat in
murine models of multiple sclerosis proven by pharmacodynamic assays indicates the drug’s diffusion
through the BBB [80,81].

Desvenlafaxine has one phenyl ring, one hydroxyl group, and a carbon atom that
forms four covalent bonds with other non-hydrogen atoms (hydroxylated cyclohexyl moiety)
and one carbon linker. Paliperidone presents a hydroxyl group, a keto oxygen, two
aromatic nitrogens, one aromatic oxygen, one fluorine atom, and two linker carbon atoms.
Moreover, paliperidone has two particular scaffolds specific to potent TRPA1 inhibitors:
9-hydroxy-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one, which resembles ring PR-2 and
the 1,2-benzoxazol-3-yl)piperidin-1-yl substructure, which can act as a bioisostere of ring PR-5
(4H,5H,6H,7H-[1,2]thiazolo[5,4-d]pyrimidine-4,6-dione). Febuxostat has several molecular features
similar to a few confirmed TRPA1 inhibitors, such as the thiazole plain ring, one carbon linker, and a
nitrile group bound to a phenyl ring, this specific moiety being present in structural derivatives of the
golden standard TRPA1 inhibitor HC-030031.
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Binding site analysis of the docked poses was performed for desvenlafaxine, paliperidone, and
febuxostat in order to estimate possible protein-ligand interactions that could lead to TRPA1 inhibition.
The molecular docking algorithm revealed that desvenlafaxine could successfully bind to the A-967079
pocket via weak interactions such as cation-pi and stacked pi-pi interactions with Phe877 and alkyl,
alkyl-pi, and van der Waals interactions with surrounding residues (Figure S9). Since no hydrogen
bonds were formed, more docking poses were explored. Desvenlafaxine could also interact with
HC-030031 putative binding sites, forming two hydrogen bonds with key residue Asn855 via the
protonated tertiary amine and the aliphatic hydroxyl and between the aromatic hydroxyl and Cys1025.
Moreover, desvenlafaxine participated in stacked pi-pi interaction with Phe1024, alkyl-pi interaction
with Arg1030, and hydrophobic van der Waals interactions with five other residues, making it a
potential allosteric modulator of the channel activity (Figure 8).Pharmaceutics 2019, 11, x FOR PEER REVIEW 17 of 24 
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Figure 8. (a) 3D binding conformation of desvenlafaxine into putative HC-030031 binding site; (b)2D
diagram of protein-ligand interactions between TRPA1 and desvenlafaxine.

The docking simulations generated binding poses of paliperidone inside the binding site of
HC-030031. Paliperidone formed three conventional hydrogen bonds with Gln968, Arg975, and
Cys1025 and two carbon–hydrogen bonds with Glu854 and Gln1031. The binding conformation was
stabilized by alkyl and alkyl-pi interactions with Ile858, Ala971, and Arg1030, lone pair pi interactions
with Ile1029, cation pi interactions with Arg872, and attractive charges between protonated tertiary
amine and Arg975. Paliperidone interacted with residue Asn855 via hydrophobic van der Waals
interactions, but one unfavorable donor-donor interaction leading to repulsion was formed between
the ligand hydroxyl group and Arg975 (Figure 9). However, such unfavorable contacts could be
diminished by torsions of the hydroxyl group.

The binding pose of febuxostat showed that the ionizable acidic group participated in hydrogen
bonding with Ser972 and that the thiazole ring accepted one hydrogen bond from Arg975, while the
ether group formed one hydrogen bond with Asn855. Moreover, the TRPA1–febuxostat complex could
be further stabilized by weak hydrophobic interactions, such as cation-pi interactions with Arg872,
Arg975, and alkyl, alkyl-pi, and van der Waals interactions with several other residues (Figure 10).
Thus, all three ligands showed favorable interactions with residues essential for TRPA1 channel
gating modulation.
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4. Discussion

TRPA1 is a promising therapeutic solution for MS patients, considering that knockout studies led
to the discovery of a potential pathophysiological role of the channel in astrogliosis and oligodendrocyte
apoptosis [24]. We established a new screening methodology by combining classic state of the art
computer-aided drug discovery techniques into a predictive model that improved the performance of
individual methods. Both ligand-based virtual screening and structure-based drug discovery tools
were implemented in the construction of the algorithm: graph mining approaches based on inhibitor
datasets, structure-activity relationships (SAR), quantitative structure-activity relationships (QSAR)
using both classification and regression models, and molecular docking simulations.
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The constructed model combined into a binary logistic regression the predicted activity classes
and the predicted pIC50 and pKi values and was characterized by over 90% accuracy. The model
limitation was represented by susceptibility to overfitting, since both the QSAR classification and the
linear regression models included one common topological descriptor. The key player in the global
prediction model was the predicted pIC50, since it was the highest weighting independent variable.
Interestingly, flufenamic acid was successfully predicted as a TRPA1 channel modulator, but in vitro
studies reported that fenamates were TRPA1 agonists and antagonists of other TRP channels [73,74].
Thus, it can be speculated that the proposed screening algorithm is able to identify potential TRPA1
ligands, but the ability to discriminate between activation and inhibition activities remains unclear.

A large number of DrugBank molecules were predicted as TRPA1 inhibitors, such as alkaloids,
antibiotics, and several antineoplastic agents, which have potential use in treating inflammatory and
neuropathic pain. However, the repurposing of such drugs is impractical due to high toxicity and
restrained utility. Structures of investigational drugs selurampanel, SP-8203, and relugolix showed
common scaffolds with strong TRPA1 inhibitors, but the graph mining score disqualified the molecules
from further screening. Elinogrel, ketanserin, relugolix, and sufugolix were included in the following
algorithm steps and showed TRPA1 antagonism probabilities of 93.04, 7.30, 99.93, and 43.93%. Neither
elinogrel nor relugolix passed the BBB permeability screening. Although melatonin showed a 95.53%
flexophore similarity with one TRPA1 inhibitor, the generated prediction algorithm did not retrieve the
molecule as a potent TRPA1 antagonist.

A total of 97 drugs were classified as molecules with good BBB permeability and CNS exposure,
but only 10 molecules showed TRPA1 inhibition probabilities higher than 90%. Desvenlafaxine
(O-desmethylvenlafaxine), paliperidone (9-hydroxyrisperidone), and febuxostat were ranked as
predicted TRPA1 inhibitors with potential use in MS management. Desvenlafaxine and paliperidone
exhibited a predicted binding energy lower than the suggested threshold obtained by analyzing the
TRPA1 inhibition probability-predicted binding energy scatter plot. The docking poses and the binding
sites analysis of the three molecules indicated that desvenlafaxine may be a promising allosteric channel
pore inhibitor by interacting with both A-967079 and HC-030031 binding sites, while paliperidone
and febuxostat are prone to induce allosteric inhibition by interacting with the putative HC-030031
binding site.

Recent studies showed that desvenlafaxine is an effective antinociceptive agent in diabetic
peripheral neuropathy, hence a potential role of the predicted TRPA1 antagonism could be further
investigated in such conditions [82]. Venlafaxine, the parent molecule of desvenlafaxine, showed an
inhibition probability of 6.64%, suggesting that the hydrogen bond donor property of the demethylated
metabolite could be crucial for receptor inhibition, as shown by the simulated protein–ligand
interactions. A recent study reported that venlafaxine suppressed pro-inflammatory cytokines in
experimental autoimmune encephalomyelitis (EAE) and alleviated cuprizone-induced demyelination
and neuroinflammation, showing promising results in MS murine models [83,84]. Risperidone was
also previously shown to exert beneficial effects in the EAE model, significantly reducing microglia
and macrophage activation in CNS [85], but the molecule did not satisfy the graph mining score
necessary for TRPA1 activity prediction. We can hypothesize that, for both drugs, the effect appears
after being metabolized.

Other authors revealed that febuxostat was efficient in managing secondary progressive EAE by
restoring mitochondrial ATP production and reducing neurodegeneration [80,81]. These data suggest
that the potential TRPA1 inhibitory activity of desvenlafaxine, paliperidone, and febuxostat should be
further explored as possible synergistic mechanisms targeting pathology progression in animal models
of multiple sclerosis.

Drug repositioning approaches can be often limited by the safety profiles of the screened, approved,
or even withdrawn candidates. Literature data show that desvenlafaxine has a safety profile consistent
with other antidepressants and a warning was issued regarding the risk of suicidal thinking [75,86].
Paliperidone formulations were proven relatively safe, but were, however, linked to deaths caused



Pharmaceutics 2019, 11, 446 20 of 24

by heart disease or infections in adults suffering from dementia-related psychosis [77]. Recent safety
data incriminated febuxostat for deaths linked to cardiovascular disease, and the mortality was higher
when compared with allopurinol [87,88].

5. Conclusions

A step-by-step screening algorithm was implemented in order to identify new potential TRPA1
antagonists and was validated by model quality parameters, showing an excellent prediction accuracy.
This method is not limited to this target and could be successful in other in silico studies. The proposed
prediction model revealed desvenlafaxine, paliperidone, and febuxostat as potential therapeutic
solutions for MS treatment, targeting mainly non-covalent TRPA1 inhibition. Some limitations of
the generated model such as descriptor redundancy and overfitting were acknowledged, and the
algorithm could be improved by developing machine learning techniques for prospective and similar
screening methodologies in the pursuit of other repurposable drug candidates. Future in vitro and
in vivo studies are needed to confirm the biological activity of the selected hit molecules and to evaluate
the usefulness of pharmacological inhibition of TRPA1 channels in animal models of demyelination.
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