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Abstract: The pharmaceutical industry has never seen such a vast development in process analytical 
methods as in the last decade. The application of near-infrared (NIR) and Raman spectroscopy in 
monitoring production lines has also become widespread. This work aims to utilize the large 
amount of information collected by these methods by building an artificial neural network (ANN) 
model that can predict the dissolution profile of the scanned tablets. An extended release 
formulation containing drotaverine (DR) as a model drug was developed and tablets were produced 
with 37 different settings, with the variables being the DR content, the hydroxypropyl 
methylcellulose (HPMC) content and compression force. NIR and Raman spectra of the tablets were 
recorded in both the transmission and reflection method. The spectra were used to build a partial 
least squares prediction model for the DR and HPMC content. The ANN model used these predicted 
values, along with the measured compression force, as input data. It was found that models based 
on both NIR and Raman spectra were capable of predicting the dissolution profile of the test tablets 
within the acceptance limit of the f2 difference factor. The performance of these ANN models was 
compared to PLS models using the same data as input, and the prediction of the ANN models was 
found to be more accurate. The proposed method accomplishes the prediction of the dissolution 
profile of extended release tablets using either NIR or Raman spectra. 

Keywords: dissolution prediction; artificial neural networks; extended release formulation; Raman 
spectroscopy; NIR spectroscopy; tablet compression 
 

1. Introduction 

Near-infrared (NIR) and Raman spectroscopy are constantly evolving techniques—their 
utilization in the pharmaceutical industry is spreading by the day. They are fast and non-destructive 
analytical methods which require no sample preparation [1,2]. Since they are based on different 
physical phenomena (Raman scattering and NIR absorption), these two methods are considered to 
be complementary, as Raman measurements are more sensitive to compounds with aromatic rings 
(such as most active pharmaceutical ingredients (APIs)), while NIR spectroscopy is better suited for 
samples with σ-bond systems (such as most tableting excipients) [1]. Although these techniques have 
been around for decades, their application in the pharmaceutical industry was facilitated by recent 
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advances in their technology [3–5]. NIR spectrometers equipped with diode arrays, acousto-optic 
tunable filters or Fourier transform wavelength selectors enable much faster and more robust 
spectrum acquisition compared to grating instruments [6]. Raman spectroscopy required the 
development of strong, reliable laser sources and filters to separate the small amount of Raman 
photons from Rayleigh photons, which are present in numbers larger by several magnitudes [7]. 
Advances in fiber optics led to the development of Raman probes which allow on-line monitoring of 
processes [8]. These improvements were needed in order to overcome difficulties, such as 
fluorescence, poor sensitivity and reproducibility [8,9]. NIR and Raman spectroscopy have been 
applied for determining content uniformity [10,11], monitoring blending processes [12–14], for 
fluidized bed granulation and coating of tablets [15], continuous fluidized bed drying [16], 
identifying counterfeit drugs [17] and detecting polymorphs [18–20]. These analytical methods yield 
a large amount of data, as spectra generally consist of measurements at hundreds of wavelengths. In 
order to extract useful information from these spectra, various chemometric methods are required 
[21–23]. Among the most commonly used are principal component analysis (PCA) [24] and partial 
least squares (PLS) regression [25]. 

Dissolution testing has been a subject of scientific research since the pioneering work of Noyes 
and Whitney [26]. Although the pharmaceutical industry has applied it for a long time to confirm 
batch-to-batch consistency, it has received increased attention after the correlation between in vitro 
dissolution profiles and bioavailability was discovered [27–30]. In vitro dissolution profiles are often 
part of the target product quality profile of the modern quality by design approach [31], and are vital 
in the approval of new products or existing products after changes in technology [32]. However, this 
method is labor-intensive, destructive and the tablets measured represent only a negligible minority 
of the batch. A promising alternative to in vitro dissolution testing, recently recommended by the 
FDA, is the prediction of the dissolution profile based on spectroscopic data and chemometric models 
as a surrogate method [33]. In the 1990s and 2000s, several articles were published in which the 
authors used individual chemometric models for each time point of the dissolution curve [34,35]. 
More recently, Hernandez et al. developed a single PLS model to predict the percent drug released 
at 40 different time points for tablets which were compressed from powder mixtures subjected to 
different amounts of shear after mixing the components [36]. NIR spectroscopy was utilized by Pawar 
et al. to enable the real-time release testing of tablets made by continuous direct compression by 
prediction of the in vitro dissolution profile [32]. 

Artificial neural networks (ANNs) are computational methods which try to reproduce the 
information processing capabilities of the human brain [37]. A large variety of ANNs have been 
developed in the last few decades to solve different problems related to pattern recognition, 
classification, clustering, regression and optimizing [38]. An important advantage of ANNs is their 
ability to solve nonlinear problems using historical or incomplete data [37]. ANNs have also been 
proven to be useful tools for data fusion [39]. However, when applying ANNs, the risk of overfitting 
of the model should always be considered, which is a serious problem often associated with these 
systems. Another important issue is the enormous computing capacity required to calculate ANNs, 
which could make their utilization uneconomical [40]. However, the performance of computers has 
vastly developed, which has opened the way to their practical application. The pharmaceutical 
industry has also found its own way to utilize them. ANNs were employed to optimize formulations 
[41], to model in vitro–in vivo correlations [42], to build quantitative structure–activity relationship 
models [43] and to be utilized in pharmacological studies [44]. Machine learning was utilized in 
various cases to achieve a better understanding of the effect of critical process parameters on the 
formulation. Lou et al. used six different machine learning methods to model the effects of powder 
surface coating on the compactibility of the powder [45]. Various machine learning techniques were 
utilized by Millen et al. to predict the critical quality attributes of the product of a wet granulation 
process [46]. Han et al. used ANNs and deep neural networks (DNNs) to predict the disintegration 
time of oral disintegrating tablets [47]. ANNs are also able to predict in vitro dissolution profiles 
based on various input data. Ebube et al. used ANNs to predict the dissolution profile of tablets with 
three various compositions. They used the theoretical composition of the tablets as input variables 
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[48]. Peh et al. applied an ANN to predict the dissolution profiles of theophylline pellets containing 
different ratios of microcrystalline cellulose and glyceryl monostearate. They used the amount of the 
two aforementioned materials, the time point of the measurement and the difference between the 
dissolution percentages of the two previous points as inputs. The f2 value was used to evaluate the 
similarity of the predicted and measured dissolution profiles [49]. These early works utilized the 
theoretical properties (e.g., theoretical composition) of the formulations as input data; therefore, their 
applicability is limited. The real-time monitoring of a manufacturing process requires a model which 
can predict dissolution profiles using in-line measured analytical data. Therefore, our aim was to 
create a model which uses the measured properties of the tablets as input. 

Our created models purpose is to utilize the advances of spectroscopy and computer technology. 
New spectroscopic instruments are spreading in the pharmaceutical industry, and their application 
as a process analytical technology (PAT) has become common. The analytical data yielded by these 
instruments needs to be exploited to its full potential in order to extract as much information about 
the monitored system as possible. Our goal was to use the recorded spectra to measure the 
concentration of the drug and extended release matrix agent in the tablets. This information, along 
with the compression force of the tablets was used as input of an ANN model which predicts the in 
vitro dissolution profile of the tablets. The presented method is a faster alternative of the current 
dissolution testing, which obsoletes the inconvenient tasks associated with the current procedure 
(preparation of buffers, waiting several hours for the results, cumbersome cleaning), while it has the 
potential to evaluate a much larger portion of the produced tablets. 

2. Materials and Methods 

2.1. Materials 

Drotaverine (DR) was obtained from Sigma-Aldrich (Munich, Germany). Hydroxypropyl 
methylcellulose (HPMC) K4M DC2 was a kind gift of Colorcon (Budapest, Hungary). 
Microcrystalline cellulose (MCC, Vivapur 200) was purchased from JRS Pharma (Rosenberg, 
Germany). Magnesium stearate (MgSt) obtained from Hungaropharma Ltd. (Budapest, Hungary) 
was used as a lubricant. Concentrated hydrochloric acid solution was purchased from Merck Ltd. 
(Darmstadt, Germany). 

2.2. Methods 

2.2.1. Experimental Design 

Tablets were made with a total of 37 different settings, from which four tablets per setting were 
selected for analysis. Of the settings, 27 originated from a 33 factorial experimental design. This 
experimental design had the following factors: DR content (6%, 8%, 10%), HPMC content (10%, 20%, 
30%) and compression force (63.8 MPa, 95.7 MPa, 127.6 MPa). In the additional 10 settings, two factors 
were set to the center point level, while the third was set to various levels inside and outside the 
predetermined set points. The experimental conditions for each setting are shown in Table 1. Thirty 
settings were used for the calibration of PLS models and as a training set for the ANN, while seven 
settings (1, 4, 14, 17, 27, 29, 34) were chosen for testing. 

Table 1. Experimental conditions applied for the tablet manufacturing. Additional settings are 
displayed in italics. Settings chosen for validation are displayed in bold. DR = drotaverine; HPMC = 
hydroxypropyl methylcellulose. 

Formulation 
Number 

DR Content (w/w 
%) 

HPMC Content (w/w 
%) 

Compression Force 
(MPa) 

1 6 10 63.8 
2 8 10 63.8 
3 10 10 63.8 
4 6 20 63.8 
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5 8 20 63.8 
6 10 20 63.8 
7 6 30 63.8 
8 8 30 63.8 
9 10 30 63.8 
10 6 10 95.7 
11 8 10 95.7 
12 10 10 95.7 
13 6 20 95.7 
14 8 20 95.7 
15 10 20 95.7 
16 6 30 95.7 
17 8 30 95.7 
18 10 30 95.7 
19 6 10 127.6 
20 8 10 127.6 
21 10 10 127.6 
22 6 20 127.6 
23 8 20 127.6 
24 10 20 127.6 
25 6 30 127.6 
26 8 30 127.6 
27 10 30 127.6 
28 7 20 63.8 
29 7.5 20 63.8 
30 8.5 20 63.8 
31 9 20 63.8 
32 8 5 63.8 
33 8 15 63.8 
34 8 25 63.8 
35 8 35 63.8 
36 8 20 31.9 
37 8 20 159.5 

2.2.2. Tablet Manufacturing on a Single Punch Tablet Press 

All tablets consisted of four components: DR as the API (6–10 w/w %), HPMC as the sustained 
release agent (5–35 w/w %), MgSt as lubricant (1 w/w %) and MCC as filler and binder (54–88 w/w %). 
The API was blended with the HPMC and MCC excipients by manual mixing (shaking with regular 
changes in the direction) in a bottle for 5 min, and a mixture of 10 g was prepared in all cases. Then, 
1% of MgSt was added to the blend and the mixture was shaken for an additional 2 min. On a Dott 
Bonapace CPR-6 single punch tablet press (Limbiate, Italy) equipped with 14 mm concave punches, 
the 500 mg tablets were compressed. The compression forces varied between 31.9 MPa and 159.5 
MPa, as defined in the experimental design. 

2.2.3. Raman Spectroscopy 

Raman spectroscopy measurements were carried out using a Kaiser Raman RXN2 Hybrid 
Analyzer (Ann Arbor, MI, USA) equipped by a Pharmaceutical Area Testing (PhAT) probe. A 785 
nm diode laser source was used, and performance was set to 400 mW. Spectra were recorded in the 
range of 200–1890 cm−1 with 4 cm−1 spectral resolution. Reflection measurements were taken from a 6 
mm diameter area of the tablets. Working distance was 25 cm in both cases. Two spectra were 
recorded for each tablet. Reflection and transmission spectra were measured for 5 and 30 s, 
respectively, and two scans were acquired in both cases. 



Pharmaceutics 2019, 11, 400 5 of 18 

 

2.2.4. Fourier Transformation Near-Infrared Spectroscopy 

NIR spectra were collected with a Bruker Optics MPA (Multi Purpose Analyzer) FT-NIR 
spectrometer (Billerica, MA, USA). A high intensity tungsten NIR source was used. NIR transmission 
spectra were collected in the 4000–15,000 cm−1 wavenumber range with 32 cm−1 spectral resolution. 
This method used the external transmission unit with an InGaAs detector. Background and sample 
spectra were collected by averaging 64 scans. The spectral range chosen for reflection NIR spectra 
was 4000–10,000 cm−1 with a resolution of 8 cm−1. Thirty-two scans were averaged for background 
and tablet spectra. An external fiber optic probe was used, and the detector was InGaAs. Tablets were 
placed under the probe so that the probe touched the surface of the tablets. 

2.2.5. In Vitro Dissolution Testing 

The dissolution profiles of the tablets were recorded using a Hanson SR8-Plus dissolution tester 
(Chatsworth, CA, USA) following the United States Pharmacopoeia (USP) II method (paddle 
method). The dissolution medium was a 900 mL 0.1 N HCl solution at a temperature of 37 ± 0.5 °C. 
The rotational speed of the paddles was set to 100 rpm. The concentration of DR in the medium was 
measured with an on-line coupled Agilent 8453 UV-VIS spectrophotometer (Hewlett-Packard, Palo 
Alto, Santa Clara, CA, USA) using the absorbance of the medium at 356 nm, and 10 mm flow through 
cuvettes were used. The length of the dissolution run was 24 h. During this period, samples were 
taken at 53 time points (at 2, 5, 10, 15, 30, 45 and 60 min, after that once in every 30 min until 1440 
min) using a Hanson Autoplus Maximizer 8 (Chatsworth, CA, USA) automatic syringe pump 
through 10 µm filters. 

2.3. Data Analysis 

2.3.1. Experimental Design 

The effect of experimental factors on the properties of the dissolution curve of the tablets was 
interpreted by using TIBCO Statistica 13 software (Palo Alto, CA, USA). The results of the first 27 
settings were evaluated as a 33 full factorial design. The independent variables (factors) were the 
nominal DR and HPMC content and the compression force of the tablets. Two models were 
calculated, and the dependent variables in these were the dissolution values measured at 15 and 960 
min to represent both the initial and the later parts of the curve, respectively. The dissolution profiles 
were normalized to the mean (8%) DR content. The model fitted to the data used the linear and 
quadratic effect of the factors and the two-way interaction between the linear effects. 

2.3.2. Multivariate Data Analysis 

The collected NIR and Raman spectra were analyzed using Matlab R2018a (MathWorks, Natick, 
MA, USA) and PLS Toolbox 8.6 (Eigenvector Research, Manson, WA, USA) software. PCA of the 
spectra was carried out in order to recognize patterns in spectral data depending on HPMC and DR 
content of the samples. Various pretreatments were tested on the four types of spectra, and PCA 
models were built in order to evaluate the effect of the experimental factors on the spectra. Similarly 
to PCA, PLS uses the linear combination of variables to create latent variables (LVs). However, LVs 
are calculated in a way that, apart from describing the variation of X data, also need to correlate with 
Y values [50]. The pretreated spectra were used to build PLS models to predict the DR and HPMC 
content of the test tablets; the methods resulting in the best models are described hereinafter. The 
contiguous block cross-validation method with 30 splits was used. Raman reflection and 
transmission spectra were baseline corrected (automatic Whittaker filter, p = 0.001, λ = 10,000), 
followed by standard normal variate and mean centering. NIR transmission spectra were derivated 
(1st derivate, Savitzky–Golay method, the number of points in the filter was five, and a second order 
polynomic function was fitted on the points) after which multiplicative signal correction and mean 
centering were applied, with NIR reflection spectra pretreated in the same way. The genetic 
algorithm (GA) was used as a variable selection method to enhance the predictive ability of the 
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models. GAs were run with a population size of 64, a variable window width of 10 and a maximum 
LV number of 6. The best model was chosen from three replicate runs. The models were evaluated 
using the root mean square error of calibration (RMSEC), the root mean square error of cross-
validation (RMSECV) and the root mean square error of prediction (RMSEP). The equations used to 
calculate these values are described by Porep et al. [2]. 

2.3.3. Artificial Neural Network Models 

ANN models were used to predict the dissolution profile of the tablets. ANNs were built by 
utilizing the Neural Network Toolbox included in Matlab R2018a (MathWorks, Natick, MA, USA). 
Feed-forward back-propagation networks were developed with the training functions Levenberg–
Marquardt and Bayesian regularization. The mean-squared error was used as performance function. 
The networks consisted of three layers, the input layer had three neurons and the output layer had 
53. For the training set, the inputs of the network were the theoretical DR and HPMC content of the 
tablets and the measured compression force. The training target was the measured dissolution profile 
of the training tablets, consisting of 53 time points. In the case of the test tablets, the inputs were the 
DR and HPMC content predicted by the PLS models and the measured compression force. The 
output of the built models was the predicted dissolution profile defined in 53 time points. The 
number of the neurons in the hidden layer was optimized by testing the network performance with 
different neuron numbers. Neuron number was gradually increased from 1 to 10—in each case the 
training step was repeated 100 times. In each training run, 15–15% of the training tablets were 
randomly chosen for cross-validation and testing. The resulting networks were evaluated by using 
them to predict the dissolution profile of the test tablets. The predicted and measured dissolution 
profile of the test tablets were compared by calculating the RMSEP values, and the models were 
characterized by the sum of these RMSEP values. For each neuron number, the average of the 
summed RMSEP was recorded, and the model with the lowest RMSEP value was chosen as the best 
model. In order to compare the performance of the spectroscopic methods, this process was repeated 
using three different inputs for the test tablets. In the first case, the DR and HPMC contents were 
predicted using NIR spectra, in the second, the Raman spectra were used, while in the third case, DR 
content was calculated from Raman and HPMC content from NIR spectra. The third input parameter 
was the measured compression force in all cases. The aforementioned steps were carried out using 
the Levenberg–Marquardt and Bayesian regularization training functions to find out which one was 
better suited for this purpose. The predictions of the best models were also compared by calculating 
the f2 similarity factor, which is a common way of comparing predicted and measured dissolution 
profiles [51]. This performs a logarithmic transformation of the squared vertical distances between 
the measured and the predicted values at each time point. An f2 value between 50 and 100 means that 
the two profiles can be accepted as equivalent. Models were evaluated by comparing the predicted 
and measured dissolution profiles based on the f2 values (Equation 1) [52]. 𝑓 = 50𝑙𝑜𝑔 [1 + ∑ 𝑤 𝑅 − 𝑇 ) . × 100 , (1) 

where n is the number of dissolution points, Rt and Tt are the measured and predicted dissolution 
values at time t and wt is an optional weighting factor. 

In order to evaluate the possible advantage of ANNs, the predictions yielded by ANN models 
were compared to results obtained from a PLS model using the same inputs. These PLS models were 
built using the same inputs and targets as the ANN models. Input data was autoscaled (mean 
centered and divided by standard deviation), while target data was mean centered. The predictions 
of these PLS models were compared to the respective ANN models based on the average f2 value of 
all predicted profiles. 

3. Results and Discussion 

3.1. Evaluation of Experimental Design Results 
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The dissolution profiles of the tablets made according to settings 1–27 from Table 1 were used 
to evaluate the effect of the DR and HPMC content and the compression force. For a better 
visualization of the effects, dissolution profiles belonging to the same DR content, HPMC content and 
compression force were averaged (Figure 1). DR content determined the maximum dissolution 
achieved, but it did not seem to influence the shape of the curve. On the other hand, HPMC had a 
strong effect on the speed at which the drug was released. It is important to note the nonlinear effect 
of HPMC, as at 10%, the drug was released almost immediately, while at 20%, drug release became 
much slower. The difference was much smaller between the curves of 20% and 30% HPMC content. 
Compression force had only a slight effect on the initial part of the curve. 

  

 
Figure 1. Average dissolution profiles sorted by (a) DR content; (b) HPMC content; (c) compression 
force. 

The effect of the three parameters on the dissolution measured at 15 and 960 min was analyzed 
as a 33 full factorial experimental design. The Pareto chart of the standardized effects on the 
dissolution at 15 min is displayed in Figure 2a. It is clear that HPMC content had the most significant 
effect, as its linear and quadratic terms had the two largest values. This result was not surprising, 
considering the fact that HPMC was added to the tablets to control the release of DR. When the 
concentration of HPMC is high enough, upon contact with water it forms a geling polymer network 
[53] and drug molecules reach the dissolution medium via diffusion through this layer. The 
compression force was also significant, as well as its interaction with the HPMC content. DR content 
had only a marginal effect at 15 min, that is, at the initial phase of the dissolution. The results were 
quite similar after 960 min (Figure 2b). HPMC level was still the dominating factor, but the relative 
importance of compression force decreased. At this point, the relative influence of DR content 
increased, and it became a significant factor with an effect similar to the compression force. The 
results of the experimental design show that a model that aims to predict the dissolution profile of 
these tablets needs to consider all three factors to determine the shape of the dissolution curve, while 
DR content was also vital in predicting the maximum dissolution achieved. It can be also concluded 
that for surrogate modeling of dissolution, all these factors need to be characterized accurately, for 
which tasking a single data source might not be sufficient. 
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Figure 2. Effect of factors on the dissolution achieved at (a) 15 min and (b) 960 min. Effects were found 
significant at p = 0.05 are colored red. Interactions are linear. 

3.2. Analysis of Spectroscopic Data 

The NIR and Raman spectra recorded in reflection and transmission mode were used to build 
PLS models to predict the DR and HPMC content of the test tablets. PCA was applied to the spectra, 
the methods which were found to be the most useful in extracting the required information from the 
data are described below. In the following section, only the analysis of transmission NIR and Raman 
spectra is described, as these were found to be more useful in predicting DR and HPMC content. PLS 
models based on reflection spectra yielded worse predictions in all cases. Figure 3a shows the raw 
NIR transmission spectra of the tablets. 

The spectra provided noisy signals in the region below 7600 and at the 8000–8500 cm−1 band 
because of the high absorbance; therefore, these regions were excluded before further preprocessing 
steps. The first derivative of the spectra was calculated, as this process improves information 
extraction in cases when the signal of interest is contained in the sharper, narrower peaks of the 
spectrum. Multiplicative signal correction was applied in order to normalize the spectra and to 
remove the baseline offset, helping to remove differences between the spectra caused by 
multiplicative and additive effects during the collection of spectra. Mean centering was used before 
calculating the PCA model. The preprocessed spectra are shown in Figure 3b. After preprocessing, 
the samples with different HPMC contents could be clearly distinguished based on the different peak 
absorbance values. HPMC content correlated negatively with the intensity of peaks at 11,000, 10,300 
and 9800 cm-1, and positively with the peaks at 8850 and 7750 cm−1. 
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Figure 3. (a) Raw near-infrared NIR transmission spectra of training tablets; (b) preprocessed spectra. 

The resulting PCA model used two principal components (PCs), explaining 88.95% and 6.13% 
of the total variance in the data, respectively. Observing the score plot of the first two PCs (Figure 4), 
the separation of the samples along the first PC could clearly be associated with the HPMC content, 
while the variance along the second PC could be identified as the DR content (see the groups along 
PC2 separated by DR content). See Figure S1 for the loading plots. 

 
Figure 4. Score plot of preprocessed NIR transmission spectra. 

The raw Raman transmission spectra are presented in Figure 5a. The region above 1680 cm−1 was 
noisy and below 350 cm−1 a steep slope can be observed, which was caused by fluorescence. These 
regions were excluded before further examination of the data. 
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Figure 5. (a) Raw Raman transmission spectra of training tablets; (b) preprocessed spectra. 

The baseline offset was removed by utilizing the automatic Whittaker filter method. 
Normalization of the spectra was carried out using standard normal variate. The spectra obtained 
this way are shown in Figure 5b. Mean centering was applied prior to calculating the PCA model. 
After preprocessing, the spectra consisted of several distinguishable, narrow peaks, and the intensity 
of these peaks correlated with the DR content. There was a positive correlation between DR content 
and the intensity of peaks at 1645, 1605, 1560 and 1345 cm−1, while DR content correlated negatively 
with the peak intensities at 1120 and 1090 cm−1, with these peaks being associated with HPMC and 
MCC. 

A PCA model with two PCs was built based on these spectra. The first PC, responsible for 55.22% 
of the total variance, represented the DR content, while the second PC (10.35% variance explained) 
was associated with HPMC content. The score plot of these two PCs is shown in Figure 6. The samples 
with different DR content form distinguishable groups along the first PC, although the distance 
between the groups is smaller than in the case of HPMC content measured by NIR transmission. The 
loading plots are shown in Figure S2. 



Pharmaceutics 2019, 11, 400 11 of 18 

 

 
Figure 6. Score plot of preprocessed Raman transmission spectra. 

The reflection spectra were analyzed in a similar manner (data not shown). The pretreated 
spectra of the training set of tablets were used to build PLS models predicting the DR and HPMC 
content, which were applied to predict the content of the test tablets. The pretreated spectra may still 
contain regions which carry no useful information. Therefore, GA was used in order to choose the 
parts of the spectra which are the most valuable for the prediction. All four types of spectra were 
used to predict both DR and HPMC content of the test tablets, from which R2p and RMSEP values 
were calculated. After the original models were built, GA was applied and it was evaluated as to 
whether it managed to improve the performance of the models. The parameters and the goodness 
indicators of the models predicting DR and HPMC content are shown in Tables 2 and 3, respectively. 

Table 2. Parameters of the models predicting DR content (models gained after genetic algorithm (GA) 
runs are in parentheses). 

Type of Data 
Raman 

Transmission (GA) 
Raman 

Reflection (GA) 
NIR Transmission 

(GA) 
NIR Reflection 

(GA) 
Pretreatment 

method a 
bl, SNV, MC SNV, MC der, MSC, MC der, MSC, MC 

Spectral region 
(cm−1) 350–1680 350–1680 

7600–8000, 8500–
13,000 4200–7400 

Number of LVs 2 (3) 4 (6) 3 (3) 6 (6) 
R2c 0.911 (0.943) 0.893 (0.962) 0.905 (0.934) 0.750 (0.777) 
R2cv 0.894 (0.934) 0.875 (0.928) 0.876 (0.912) 0.586 (0.700) 
R2p 0.913 (0.905) 0.868 (0.778) 0.856 (0.918) 0.579 (0.444) 

RMSEC (% w/w) 0.428 (0.343) 0.471 (0.281) 0.443 (0.370) 0.718 (0.680) 
RMSECV (% w/w) 0.468 (0.370) 0.509 (0.386) 0.506 (0.426) 0.928 (0.789) 
RMSEP (% w/w) 0.386 (0.400) 0.467 (0.602) 0.500 (0.414) 0.837 (0.977) 

a bl: baseline correction, SNV: standard normal variate, MC: mean centering, der: 1st derivative, MSC: 
multiplicative signal correction, LVs: latent variables, RMSEC: root mean square error of calibration, 
RMSECV: root mean square error of cross-validation, RMSEP: root mean square error of prediction. 

Table 3. Parameters of the models predicting HPMC content (models gained after GA runs are in 
parentheses). 

Type of Data Raman 
Transmission (GA) 

Raman 
Reflection (GA) 

NIR Transmission 
(GA) 

NIR Reflection 
(GA) 

Pretreatment 
method a 

bl, SNV, MC SNV, MC der, MSC, MC der, MSC, MC 



Pharmaceutics 2019, 11, 400 12 of 18 

 

Spectral region 
(cm−1) 

350–1680 350–1680 7600–8000, 8500–
13,000 

4200–7400 

Number of LVs 2 (5) 4 (4) 4 (4) 4 (4) 
R2c 0.953 (0.986) 0.958 (0.966) 0.986 (0.988) 0.924 (0.951) 
R2cv 0.947 (0.982) 0.950 (0.959) 0.983 (0.986) 0.907 (0.947) 
R2p 0.956 (0.975) 0.956 (0.942) 0.982 (0.982) 0.875 (0.909) 

RMSEC (% w/w) 1.753 (0.950) 1.654 (1.500) 0.949 (0.884) 2.231 (1.610) 
RMSECV (% w/w) 1.862 (1.082) 1.811 (1.643) 1.049 (0.962) 2.470 (1.861) 
RMSEP (% w/w) 1.381 (1.031) 1.443 (1.630) 0.861 (0.914) 2.307 (2.068) 

a bl: baseline correction, SNV: standard normal variate, MC: mean centering, der: 1st derivative, MSC: 
multiplicative signal correction. 

The PLS regression curves of models using transmission spectra are shown in Figures S3–6. 
Based on the RMSE and R2 values, it was found that Raman transmission spectroscopy gave the best 
results for DR content, while for the prediction of HPMC content, NIR transmission had the best 
performance. Predictions of HPMC content had larger error values than predictions of DR content. 
This can be explained by the fact that in both NIR and Raman spectra, there were more peaks that 
can be associated with DR, and thus models trying to predict DR content have more information at 
their disposal. In the case of transmission spectra, GA was able to improve the performance of the 
models. Models based on reflection spectra yielded significantly worse results in all cases. NIR and 
Raman transmission spectra were used to predict both the DR and HPMC content of the test tablets. 
These predictions were used as input while testing the ANN models. 

3.3. Predicting the Dissolution Profile by ANN 

The average RMSEP values of the ANN models using three different validation input datasets 
are shown in Figure 7. The results show that one neuron yielded poor performance, yet the addition 
of a second neuron greatly improved the models. Adding further neurons was beneficial until five 
neurons, in the case of Raman and NIR-Raman input, or four neurons, in the case of NIR input. Error 
of models slightly increased after this threshold, implying that four or five neurons were enough to 
describe the behavior of this system, with more neurons only leading to overfitted models. It was 
also clear that Levenberg–Marquardt-based ANNs were worse in all cases when compared with 
Bayesian regularization models, although the latter took a longer time to train (with 10 neurons, 100 
training steps took around 20 min for Bayesian regularization and 5 min for Levenberg–Marquardt); 
this difference in training time does not justify using Levenberg–Marquardt. The models with the 
lowest RMSEP value were chosen for further evaluation (five neuron models for Raman and NIR-
Raman and four neuron models for NIR). The predictive ability of these models was compared to 
prediction yielded by a PLS model built using the same data and using the same input for validation. 
The predicted dissolution profile of these models was compared to the measured profiles by 
calculating the f2 value. Table 4 shows this comparison, with ANN models outperforming PLS models 
in all cases. 
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Figure 7. Average RMSEP values of predictions using DR and HPMC content predicted from (a) 
Raman, (b) NIR and (c) Raman and NIR spectra as input. 

The main difference between the performance of ANN and PLS models was their ability to 
recognize the nonlinear effect of HPMC content on the dissolution curve. This difference can be 
observed in the case of 10% HPMC (Formulation 1) test tablets when the average of PLS and ANN 
predictions were plotted and compared with the measured profiles (Figure 8). 

Table 4. Average f2 value of the best artificial neural network (ANN) models compared to partial least 
squares (PLS) models using the same input. 

Modeling Method Raman NIR NIR-Raman 
ANN 74.27 71.84 73.07 
PLS 65.63 65.01 65.79 

The average prediction of Formulation 1 tablets was more accurate when the ANN models were 
used. On the basis of these results, ANN is a better choice for predicting dissolution profiles as it 
gives better predictions, and yet constructing the model does not require more resources. Also, it is 
not necessary to combine the two spectroscopic methods, as predictions based on both individual 
NIR and Raman spectra yielded approximately the same result, with Raman being slightly better. 

The proposed method utilizing an ANN was capable of predicting the in vitro dissolution profile 
of all the test tablets within the acceptance limit of the f2 similarity factor (Figure 9). For the 
comparison of predicted and measured profiles of individual tablets and their f2 values, see Figure 
S7 and Table S1, respectively. This method used the three factors determining the shape of the 
dissolution profile as inputs of the ANN. These were the DR and HPMC content and the compression 
force. The first two were measured either by transmission Raman or NIR spectroscopy, and 
calculated from PLS models, while the compression force was measured by the tablet press. The 
advantage of this method was that while predicting the dissolution profile, it also yielded information 
on the composition of the tablets, which is a critical quality attribute. This could be exploited by 
reducing the number of analytical equipment used to monitor the tableting process, as fewer 
instruments can yield the same information. As this method used the real physical attributes of the 
tablets as input, it could be possible to measure these input values by other means without 
compromising the performance of the model. As a conclusion, the results of this work demonstrate 
that if the information collected during the production of tablets is processed in an optimal way, 
much more information can be gained on the quality of the product compared to current methods. 
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Figure 8. Average of predicted (PLS and ANN) and measured dissolution profiles of Formulation 1 
tablets where predictions were based on (a) Raman, (b) NIR and (c) Raman and NIR spectra. 
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Figure 9. Average of predicted and measured dissolution profiles of validation tablets; inputs are 
based on Raman spectra. 

4. Conclusions 

Recent advancements in spectroscopy and computer technology opened the way to a new era 
for the pharmaceutical industry, where in-line monitoring of the processes yields a tremendous 
amount of information. When processed with the right tools, this information enables a more 
comprehensive characterization of intermediates and end products. The current work aimed to 
utilize the data collected by NIR and Raman spectroscopy, along with the compression force 
measured by the tablet press. The DR and HPMC content and the compression force of the tablets 
were used as inputs in an ANN model, which aimed to predict the in vitro dissolution profile of the 
tablets. A total of 148 tablets were produced with 37 different settings of the aforementioned three 
variables. It was found that transmission Raman spectroscopy was best suited for the prediction of 
DR content, while in the case of HPMC content, transmission NIR spectroscopy gave the best results. 
ANNs were built based on two learning function methods, Levenberg–Marquardt and Bayesian 
regularization, with the latter yielding more accurate results. The predictions of ANN models were 
compared to predictions of PLS models using the same input. It was found that ANN is more capable 
of handling the nonlinearity of the effect of HPMC on the dissolution curve; thus, using ANN can be 
beneficial. Models can be built based on both NIR and Raman spectroscopy, which can predict the 
dissolution profile of the test tablets within the acceptance limit of the f2 similarity factor. These 
results imply that utilizing the proper data processing methods enables us to replace some of the 
most cumbersome analytical techniques with ones that require a minimal amount of human labor, 
yet can characterize a much larger fraction of the product—possible every single tablet. Further 
research could be carried out in order to construct models that consider the impact of more process 
parameters—possibly the particle size of the drug and key excipients, the degree of lubrication of the 
tablets or the quality of the film coating. These solutions, when adopted by the pharmaceutical 
industry, can lead to technologies where the quality of the product is understood to a much deeper 
extent, and thus it can be assured that the patient will receive a treatment of the desired quality. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Loading 
plots of the constructed PCA models based on NIR transmission spectra: (a) PC1, (b) PC2, Figure S2: Loading 
plots of the constructed PCA models based on Raman transmission spectra: (a) PC1, (b) PC 2, Figure S3: PLS 
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regression curve of model predicting DR content based on NIR transmission spectra. Grey circles are training 
samples, blue squares are test samples, Figure S4: PLS regression curve of model predicting HPMC content based 
on NIR transmission spectra. Grey circles are training samples, blue squares are test samples, Figure S5: PLS 
regression curve of model predicting DR content based on Raman transmission spectra. Grey circles are training 
samples, blue squares are test samples, Figure S6: PLS regression curve of model predicting HPMC content based 
on Raman transmission spectra. Grey circles are training samples, blue squares are test samples, Figure S7: 
Predicted and measured dissolution profile of all test tablets, Table S1: f2 values of the measured and predicted 
dissolution profile of test tablets. 
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