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Abstract: The use of smart drug delivery systems (DDSs) is one of the most promising approaches
to overcome some of the drawbacks of drug-based therapies, such as improper biodistribution and
lack of specific targeting. Some of the most attractive candidates as DDSs are naturally occurring,
self-assembling protein nanoparticles, such as viruses, virus-like particles, ferritin cages, bacterial
microcompartments, or eukaryotic vaults. Vaults are large ribonucleoprotein nanoparticles present in
almost all eukaryotic cells. Expression in different cell factories of recombinant versions of the “major
vault protein” (MVP) results in the production of recombinant vaults indistinguishable from native
counterparts. Such recombinant vaults can encapsulate virtually any cargo protein, and they can be
specifically targeted by engineering the C-terminus of MVP monomer. These properties, together
with nanometric size, a lumen large enough to accommodate cargo molecules, biodegradability,
biocompatibility and no immunogenicity, has raised the interest in vaults as smart DDSs. In this
work we provide an overview of eukaryotic vaults as a new, self-assembling protein-based DDS,
focusing in the latest advances in the production and purification of this platform, its application in
nanomedicine, and the current preclinical and clinical assays going on based on this nanovehicle.
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1. Introduction

Nanomedicine is a translational science whose objective is to obtain new therapies and diagnostic
tools using the new available capabilities of nanotechnology [1]. It is applied in drug delivery, diagnosis,
imaging, and therapy fields. The application of nanotechnology in the design of new drug delivery
systems (DDSs) is, at this moment, one of the most active fields in nanomedicine research.

Conventional drug administration regimes use large amounts of the active principle, resulting
in high costs, undesired side-effects and low therapeutic efficacy because only small amounts of the
drug finally reach the target cells or tissues [2,3]. DDSs based on nanoparticles (NPs) have made
a remarkable difference in site-specific release of chemotherapeutic agents, due to their physical
and chemical characteristics and biological attributes. The use of such nanocarriers improves drug
biodistribution, targeting active molecules to diseased cells and tissues while protecting healthy ones.

Several NPs types are being extensively explored, including polymeric micelles [4], solid
nanoparticles [5], solid lipid nanoparticles (SLN) [6], nanostructured lipid carriers (NLC) [7],
liposomes [8], inorganic nanoparticles [9], dendrimers [10], or magnetic nanoparticles [11]. Among them,
biopolymer-based nanoparticles, including protein nanoparticles, are actively explored and used
in pharmaceuticals [12,13].
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Protein nano-DDSs are protein structures formed by the assembly of multiple copies of one
or several different proteins [14]. Nature offers such functional macromolecular structures that can
be easily manipulated for nanobiotechnology applications. Such naturally occurring protein cages,
as virus capsids and ferritin cages, serve as excellent templates for functional biomaterials with precise
architectures, unattainable by synthetic processes. The regular arrangement of protein subunits
within protein cage structures allows for the engineering of specific regions and surfaces of the cage,
such as the exterior or interior surfaces. The advantages of using proteins to prepare NPs for drug
delivery applications include their abundance in natural sources, biocompatibility, biodegradability,
easy synthesis process, and cost-effectiveness. In contrast, other particulate systems such as metallic
nanoparticles show several drawbacks including potential toxicity, large size, accumulation, or rapid
clearance from the body.

Most requirements for designing an ideal nano-DDS (stability, specificity, or controlled release of
the drug) can be acquired using proteins in its structure since protein domains with these functions
have been described [15]. As an advantage, proteins can be easily produced in different biological
systems [16] such as bacteria [14,17], insect cells [18–20], or mammalian cells [21], among others.

In addition, protein-based NPs offer the opportunity for surface modification by standard genetic
engineering techniques, or by conjugation of other protein/s and carbohydrate ligands. Protein engineering
has been extensively used to redesign structure and function, yielding particles with very narrow size
distributions and multiple functionalities. In this context, virus-like particles and other caged protein
structures have been explored as nanocarriers for introducing non-native functionalities. This enables
targeted delivery to the desired tissue and organ, which further reduces systemic toxicity. Such materials
have been developed for applications in the fields of nanotechnology, biotechnology, or drug delivery.
The use of protein NPs for such applications could, therefore, prove to be a better alternative to manipulate
and improve the pharmacokinetic and pharmacodynamic properties of the various types of drug molecules.
Research in this area has been very active for more than two decades, but only in the last years several of
these products have been released to the market and are now routinely used in clinics [22].

Protein nano-DDSs can be classified according to the structure resulting from protein interactions
in protein nanoboxes, nanoparticles, microspheres, matrices, and fibers. The vast majority of protein
nano-DDSs classified as protein boxes have been designed and optimized by nature [23] and have
a well-defined structure, divided into external, intermediate, and internal surfaces [24]. Generally,
specific ligands of target cells can be bound on the outer surface; the intermediate surface gives stability
to the complex; and the internal surface determines which cargo molecules can be introduced [25].
The loaded molecules inside these structures are protected against undesired degradation [23].
Some DDSs, such as viral particles, also have an intrinsic tendency to introduce components into
the cell interior [26]. In other cases, they must be modified to incorporate specific peptides and
direct them to the target cells. Not being the specific target of this review, these issues (and others)
regarding protein-based DDS can be examined in much more detail in previous revisions available in
the literature [27,28].

The main interest of protein boxes as nano-DDS is their internal cavity, which will determine the
number of molecules that can be internalized. Eukaryotic vaults are protein NPs with a large internal
cavity that makes them attractive as a nanocarrier for diverse types of molecules [18,29]. This feature,
together with their homogeneity and versatility to be modified and specifically delivered to target
cells, make vaults powerful candidates as nano-DDSs.

2. Eukaryotic Vaults

Vaults are ribonuclear-protein cytoplasmic complexes of 13 MDa [19] described for the first
time in 1986 [30] as small ovoid bodies similar in structure to the vaults of ecclesiastical buildings
(“vaulted ceilings”) [31], by which they were named. Their natural function is not completely elucidated,
although several functions related to nuclear transport, immune response [32] and multiresistance
in cancer cells [33] have been hypothesized. Although it is well known that they participate in these
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functions, the mechanism through which it intervenes is not defined. Vault structure is highly conserved
among different eukaryotic organisms [20,25,33], which indicates the importance of its functions and
the putative biocompatibility that it can present as nano-DDSs [33].

2.1. Vaults Structure

The ribonucleoprotein complex is composed of proteins and nucleic acids. The main component
is the “major vault protein” (MVP), representing more than 70% of natural vaults [25], while the
remaining components are proteins such as poly(ADP-ribose) polymerase (VPARP) and telomerase;
and small nontranslated RNA. The recombinant synthesis of MVP monomers is sufficient and allows
their spontaneous self-assembling into vaults indistinguishable from natural ones. This has allowed
the design, engineering, and production of recombinant vaults [19].

The structure of rat liver vault ribonucleoprotein particles was examined by different staining
techniques in conjunction with EM and digestion with hydrolytic enzymes. Quantitative scanning
transmission EM demonstrates that each vault particle is a homodimer, composed by two symmetrical
halves with a total of 39 copies of MVP in each one [19]. Hydrophobic interactions between MVP
domains (the strongest of the structure [18]) direct self-assembling of the vault. Each MVP monomer
folds into 12 domains: nine structural repeat domains, a shoulder domain, a cap-helix domain,
and a cap-ring domain. Interactions between the 42-turn-long cap-helix domains are key to stabilizing
the particle. Freeze-etch revealed that vault can open into flower-like structures, in which eight
rectangular petals are joined to a central ring, each by a thin hook. Vaults examined by negative stain
and conventional transmission EM (CTEM) confirmed the flower-like structure [34]. The hierarchical
self-assembly of MVP monomers into vaults is shown in detail in Figure 1.

The structural arrangement of a single MVP chain into the assembled vault was further analyzed
and proven when an ∼9 Å X-ray crystal structure of recombinant vaults purified from insect cells was
carried out [35]. A further refinement to 3.5 Å resolution using crystallized rat liver vaults verified
the previous low resolution structure prediction [36]. Vault structure analysis by X-ray diffraction
at 3.5 Å resolution [25] gives dimensions of approximately 67 × 40 × 40 nm as well as an interior
volume of 3.87 × 107 Å3. Vaults show a hollow, barrel-shaped structure with two protruding caps and
an invaginated waist, based on hierarchical protein self-assembly [36].

Moreover, studies based on electron cryotomography showed that intracellular vaults are similar
in overall size and shape to purified and recombinant vaults previously analyzed [37]. A 2.1 Å
resolution structure of the seven N-terminal repeats (R1–7) of MVP has also been determined [38].

Under physiological conditions there is a balance between the closed and open conformations
(separate halves) of vaults, allowing the entry of molecules [39]. An acidification of the medium
destabilizes the bonds between monomers, with the exception of the strong hydrophobic joints
between the head-helix domains, giving rise to a “flower-like” structure [20,40]. Low-pH condition
triggers vault conformational change. Closed intact vaults at pH 6.5 dissociate quickly into half-vaults
as the solution pH decrease to less than 4.0 [41]. This dissociation triggered at low pH has been
proposed as a useful tool for controlled drug delivery within cellular systems given that endosomes
and lysosomes are normally maintained at acidic pH. Thus, this phenomenon is being studied in order
to achieve a controlled release of cargo drugs [40]. In this line, Esfandiary et al. employed a variety of
spectroscopic techniques (i.e., circular dichroism, fluorescence spectroscopy, and light scattering) along
with electron microscopy, to characterize the structural stability of vaults over a wide range of pH (3–8)
and temperature (10–90 ◦C). Ten different conformational states of the vaults were identified over the
pH and temperature range studied with the most stable region at pH 6–8 below 40◦C and least stable
at pH 4–6 above 60 ◦C [42].
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Figure 1. Hierarchical self-assembly of major vault protein (MVP) monomers into closed vaults. Each 
vault consists in a hollow, barrel-like structure composed of two identical cup-like halves joined at 
their open ends. Each half vault is in turn composed of a single eight-petaled “flower-like” structure, 
which is folded into the cup shape. At low pH, the acidic residues at the half-vault interfaces would 
become neutral, leaving a highly positive charge and inducing the disassembly of the vault particle 
by charge repulsion. Adapted from [20,36,40,41]. 

Prior crystal structures of the vault have provided clues of its structure but are non-conclusive 
due to crystal packing. To addres this concern, a recent study determined vaults near-atomic 
resolution (~4.8 Å) structures in a solution/noncrystalline environment [43]. Authors obtained vaults 
by engineering at the N-terminus of rat major vault protein (MVP) an HIV-1 Gag protein segment. 
The barrel-shaped vaults in solution adopt two conformations, 1 and 2, both with D39 symmetry, and 
comparison with crystallography results shows a major flexible region at the vault shoulder, 
suggesting that loops near this region could be utilized as peptide fusion sites for engineering 
purposes. Also in the line to determine vault structure under physiological conditions, Llauró et al. 
examined the local stiffness of individual vaults and probed their structural stability with atomic 
force microscopy (AFM) under physiological conditions, showing that the barrel, the central part of 
the vault, governs both the stiffness and mechanical strength of these particles [44]. In another study, 
same authors used AFM to monitor the structural evolution of individual vault particles while 
changing the pH in real time. The results showed that decreasing the pH of the solution destabilize 
the barrel region, the central part of vault particles, leading to their aggregation. Additional analyses 
using Quartz-Crystal Microbalance (QCM) and Differential Scanning Fluorimetry (DSF) confirmed 
AFM experiments [20]. This confirms that low pH weakens the bonds between adjacent proteins. 

As described previously, single MVP self-assembly into final vault was modeled using the cryo-
EM technique, showing that N-terminal tags were located at the vault waist facing the inside of the 
particle with longer tags having greater internal density [45]. On the other hand, vaults assembled 
from MVP containing C-terminal tags displayed extra density at the top and bottom (caps) of the 
vault, indicating that whereas the N-terminus begins at the inside of the vault waist, MVP C-terminus 
is exposed at the vault surface [45,46]. The implications of such findings in the putative applications 
of vault will be discussed in detail in next sections. 

2.2. Drug Encapsulation within Vaults 

A key issue in order to apply engineered vaults as an efficient DDS was the development of a 
procedure to encapsulate foreign materials into the vault lumen. The development of such a strategy 
relies on previous studies of the VPARP protein, an essential component of native vaults that was 
identified using the yeast two-hybrid method employing MVP as a bait [47]. With this previous 
knowledge, a strategy was developed to identify a vault targeting sequence. In this line, structural 
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Figure 1. Hierarchical self-assembly of major vault protein (MVP) monomers into closed vaults.
Each vault consists in a hollow, barrel-like structure composed of two identical cup-like halves joined
at their open ends. Each half vault is in turn composed of a single eight-petaled “flower-like” structure,
which is folded into the cup shape. At low pH, the acidic residues at the half-vault interfaces would
become neutral, leaving a highly positive charge and inducing the disassembly of the vault particle by
charge repulsion. Adapted from [20,36,40,41].

Prior crystal structures of the vault have provided clues of its structure but are non-conclusive
due to crystal packing. To addres this concern, a recent study determined vaults near-atomic
resolution (~4.8 Å) structures in a solution/noncrystalline environment [43]. Authors obtained vaults
by engineering at the N-terminus of rat major vault protein (MVP) an HIV-1 Gag protein segment.
The barrel-shaped vaults in solution adopt two conformations, 1 and 2, both with D39 symmetry,
and comparison with crystallography results shows a major flexible region at the vault shoulder,
suggesting that loops near this region could be utilized as peptide fusion sites for engineering purposes.
Also in the line to determine vault structure under physiological conditions, Llauró et al. examined the
local stiffness of individual vaults and probed their structural stability with atomic force microscopy
(AFM) under physiological conditions, showing that the barrel, the central part of the vault, governs
both the stiffness and mechanical strength of these particles [44]. In another study, same authors used
AFM to monitor the structural evolution of individual vault particles while changing the pH in real time.
The results showed that decreasing the pH of the solution destabilize the barrel region, the central part
of vault particles, leading to their aggregation. Additional analyses using Quartz-Crystal Microbalance
(QCM) and Differential Scanning Fluorimetry (DSF) confirmed AFM experiments [20]. This confirms
that low pH weakens the bonds between adjacent proteins.

As described previously, single MVP self-assembly into final vault was modeled using the cryo-EM
technique, showing that N-terminal tags were located at the vault waist facing the inside of the particle
with longer tags having greater internal density [45]. On the other hand, vaults assembled from MVP
containing C-terminal tags displayed extra density at the top and bottom (caps) of the vault, indicating
that whereas the N-terminus begins at the inside of the vault waist, MVP C-terminus is exposed at the
vault surface [45,46]. The implications of such findings in the putative applications of vault will be
discussed in detail in next sections.

2.2. Drug Encapsulation within Vaults

A key issue in order to apply engineered vaults as an efficient DDS was the development of
a procedure to encapsulate foreign materials into the vault lumen. The development of such a strategy
relies on previous studies of the VPARP protein, an essential component of native vaults that was
identified using the yeast two-hybrid method employing MVP as a bait [47]. With this previous
knowledge, a strategy was developed to identify a vault targeting sequence. In this line, structural
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studies of VPARP and MVP interactions revealed the existence of a domain within the VPARP protein
(at its C-terminus, aa 1563–1724), called interaction domain (INT) [48–50], which interacts with the
inner side of domains 3, 4, and 5 of MVP N-terminal end [51,52]. The fusion of this INT domain at
the C-terminus of proteins with therapeutic interest allows their spontaneous encapsulation within
vaults without affecting their biological activity, as observed naturally with VPARP. As the INT domain
is responsible for binding VPARP to MVP, it was hypothesized to act as a “zip code” directing the
protein to the inside of the vault particle (see Figure 2A). This targeting ability was confirmed when the
INT domain was fused to proteins with enzymatic or fluorescent activities such as firefly luciferase or
a variant of the green fluorescent protein, and coexpressed with MVP in Sf9 insect cells [49], obtaining
fluorescently labelled vaults due to cargo protein internalization. INT-tagged proteins copurified
with recombinant vaults, and cryo-EM analysis revealed that they were packaged inside the particles
into two rings of density, above and below the vault waist. Other proteins with relevant biological
activities, such as CCL21 [53], pVI [48], or the antigens MOMP [54] and OVA [55] have been successfully
encapsulated by this mechanism. This strategy is depicted in Figure 2. Moreover, this encapsulation
process does not not require cotranslation of INT-tagged cargo protein with MVP [39]. INT fusion
proteins can be packaged inside recombinant vaults by just mixing them and incubating the mixture
on ice for 30 min. This process has been hypothesized to occur via vault “breathing”, a process
previously characterized for virus particles. As purified vaults are occasionally observed as half vault
structures [41,56], a transient half-vault/whole-vault dynamic could also explain INT protein packaging.

As mentioned before, MVP N-terminus faces the vault lumen, offering an excellent opportunity to
encapsulate peptides or proteins. In this context, several fusions have been added to MVP cDNA. The added
domain did not interfere in the self-assembly of MVP monomers, rendering vaults similar to native ones,
and as expected the new domain were found located inside the nanocages (see Figure 2B). Following this
strategy, peptides or proteins like green fluorescen protein [49], a cysteine-rich peptide [45], a His-T7 epitope
tag [45], a VSVG epitope tag [45], an adenovirus membrane lytic peptide [48] or an epitope of HIV-1 Gag
protein [43] have been successfully encapsulated within vaults.
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Figure 2. Encapsulation possibilities of recombinant vaults. A. The protein of interest (yellow) is
fused to interaction domain (INT) domain (purple). After self-assembly of MVP monomers into
vaults, the INT domain will direct loading of cargo protein (shown as two yellow discs) within vaults
through specific interaction with MVP monomers. B. The peptide of interest (in green) is expressed as
a fusion to N-terminus of MVP monomer. After MVP self-assembly into vaults, cargo peptide will
accumulate in the nanoparticle lumen (shown as two green discs). Adapted from [57]. PDB images:
4HL8 Bioassembly 1 and 2.
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Compounds not encoded by DNA (a common situation for small molecule drugs) have also been
encapsulated within vaults by means of the INT targeting domain [29]. Recombinant INT containing
an additional 31 amino acids at the N-terminus including a 6-His tag was used to direct bound species
into vaults. This was confirmed with Ni-NTA nanogold, a material with affinity to the 6-His tag.
As proof-of-concept, Ni-NTA-nanogold gold clusters were attached to the 6-His tag of three different
INT-tagged proteins, forming a Au-INT complex. Then, specific association of gold clusters with the
vault was demonstrated by co-immunoprecipitation with agarose beads.

The release rate of proteins encapsulated within vaults by INT-mediated interaction could be slowed
down by the substitution of different amino acids of the INT domain by histidines [51]. All these previous
results invite to easily visualize that vaults can be in the future an excellent DDS for virtually any peptide or
protein with therapeutic potential, just by the simple procedure of fusing them to the INT domain.

Many chemotherapy drugs are small, hydrophobic molecules that are difficult to administer in aqueous
solution and to distribute throughout the body. It is evident that such non-protein molecules cannot be fused
to the INT domain, but the internal environment of the vault can be modified to favor its encapsulation.
In this line, it has been described that a recombinant nanodisk containing “all trans retinoic acid” (ATRA),
a potent but toxic therapeutic compound, could be packaged inside vaults [58]. Such nanodisk was
obtained by incubating the fusion of a truncated form of the lipoprotein Apo-AI with INT vault binding
domain, together with a dispersion of synthetic phospholipids in aqueous buffer, in the presence of the
extremely hydrophobic ATRA drug. Finally, all this complex could be encapsulated within vaults thanks
to the presence of the INT domain. Moreover, vault protected the hydrophobic nano-DDS, increasing
its half-life and allowing the specific release of the drug. To avoid the previous step of the synthesis
of another nano-DDS, recombinant MVPs have been designed that create a more hydrophobic interior
environment. Thus, an amphipathic α-helix peptide, originally from the NS5A protein of hepatitis C virus,
has been covalently bound to the N-terminal end of MVP [18], without hindering vault self-assembly.
This modification has allowed the encapsulation of >2000 molecules (such as bryostatin 1, amphotericin
B, or ATRA) per single vault. Bryostatin 1 is of particular therapeutic interest because of its ability to
potently induce expression of latent HIV. In this line, results showed that vaults loaded with bryostatin 1
released the drug, resulting in the in vitro activation of latent HIV provirus and induction of CD69 biomarker
expression following intravenous injection into mice [18]. This strategy can be of great interest to favor the
biodistribution of most hydrophobic drugs.

2.3. Vault Targeting and Internalization

To address the ability of vaults to be engulfed and internalized in cells, vaults packaged with
INT-tagged fluorescent proteins (GFP or mCherry) were added to HeLa cell cultures and their uptake
confirmed by confocal microscopy [46]. This uptake, suggested to occur by endocytosis, was not
specific or efficient, and thus considered a positive trend in terms of minimizing putative nonspecific
incorporation of nano-DDSs in healthy cells. However, loaded vaults need to be targeted and delivered
in a specific way to target cells and tissues. For that purpose, MVP C-terminus has been deeply
explored. This C-terminal end faces the outside surface of the vault, and thus it can be modified to
incorporate targeting peptides to target and promote specific cellular internalization of vaults into
desired cells. In the frame of this strategy, the ability to specifically target the vault will rely and depend
on the ability to find receptors specifically expressed (or clearly overexpressed in comparison with
healthy cells) and the obtention of specific ligands recognizing such specific receptors in the target cell.
Then, such ligands should be fused to the vault surface in order to recognize their target. For example,
since epidermal growth factor (EGF) is upregulated in numerous cancer cell types, tags have been
engineered and tested as fusions to the C-terminus of MVP to facilitate targeting to epithelial cancer
cells via the EGF receptor (EGFR): a 33 amino acid Fc-binding peptide (called the Z domain) and the
55 amino acid epidermal growth factor (EGF). The modified vaults bound specifically to cancer cells
either directly (EGF modified vaults) or as mediated by a monoclonal antibody (anti-EGFR) bound
to recombinant vaults containing the Z domain (see Figure 3A). The EGF modified vaults have the
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ability to specifically bind cell surface receptors and trigger receptor activation in a manner similar to
recombinant human EGF [46]. Thus both specific (peptide-directed) and general (antibody-mediated)
methods could be used to target recombinant vault particles to cells, representing an essential advance
towards the use of recombinant vaults as targeted DDSs.

Since recombinant vaults will expose one copy of the targeting peptide for each copy of engineered
MVP monomer (see Figure 3B), the size of the peptide or protein fused to the C-terminal end of the
MVP plays an important role in the stability of the vaults. The fusion of epidermal growth factor
(EGF) [46], whose receptor is overexpressed in several cancers has been studied. It was observed that
the presence of EGF in all the copies of MVP produces instability, interfering in its structuring, finally
rendering insoluble vaults. To solve this problem, vectors were designed with two promoters that
allow, on the one hand, the expression of MVP associated with EGF; and on the other, the expression of
natural MVP [46]. This reduced the number of EGF present in each vault, allowing its correct structure,
solubility, and ability to reach target cells.

The main route of administration of vaults consists of intratumoral injection [53], while the
intranasal route has been studied for the use of vaults as vaccines [54]. Oral administration is hampered
by the structural changes that vaults may undergo when exposed to acidification [20,40] that occurs in
the gastrointestinal tract, and vaults specifically designed to cross the blood–brain barrier has not been
developed yet.

Vaults specifically directed to target cells by ligands or antibodies will enter the cell interior by
endocytosis [48,53], following the endosomal pathway until its degradation in lysosomes. Its success as
nano-DDS depends on its ability to release the therapeutic components to the cytoplasm of the cells and
not be degraded in the lysosomes. In order to avoid the degradative pathway and increase the release
of the drug to the cytoplasm, the fusion of the lytic domain of the pVI protein of the adenovirus to the
N-terminal end of the MVP has been studied [48]. It was demonstrated that pVI-vaults could disrupt
the endosomal membrane using three different experimental protocols including enhancement of DNA
transfection, codelivery of a cytosolic ribotoxin, and direct visualization by fluorescence. The early exit
of the lysosome occurs without causing nonspecific damage to the cell, although it has been observed
that a high concentration of this peptide can result in unwanted cellular apoptosis [48]. However,
therapeutic effect greatly depends on the efficient release of the cargo protein from the DDS. In this
context, it is hypothesized that the release rate of the cargo from the vault lumen is directly related to the
interaction between MVP and INT domain. To further explore the release of molecular cargos from the
vault nanoparticles, the interactions between isolated INT-interacting MVP domains (iMVP) and wild
type INT has been determined and compared to two structurally modified INTs: first, a 15-amino acid
deletion at the C terminus (INT∆C15) and, second, a histidine substitution at the interaction surface
(INT/DSA/3 H) to impart a pH-sensitive response [51]. The introduction of histidines to His-INT
resulted in stronger interaction between His-iMVP and His-INT/DSA/3 H compared to the wild type
His-INT at both pH 6.0 and 7.4. This study implies that modulation of molecular release rate from the
vault is possible by tuning the proportion of wild type and histidine-substituted INT or by truncation
of the INT domain.
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The above-mentioned strategies are limited by the capability to genetically engineer MVP protein
to fuse the desired targeting peptide to it and therefore, to the resulting vault. Recently, a different
approach has been proposed based on covalent chemical modifications of MVP residues. As other
protein-based supra-macromolecular structures, vaults contain many derivatizable amino acid side
chains. The new approach [19] was focused on establishing the comparative selectivity and efficiency
of chemically modifying vault lysine and cysteine residues, using Michael additions, nucleophilic
substitutions, and disulfide exchange reactions. Given the great number of vault lysine residues
and the versatile chemistry of thiols, authors demonstrated a simple, robust technique to efficiently
convert these more abundant residues into thiol terminated side chains. Using such chemistry, vaults
doubly modified with a fluorescein reporter probe and cell-penetrating octaarginine peptides attached
via a redox-sensitive cleavable or noncleavable linker were obtained. Relative to unmodified vaults,
the resultant modified vaults showed no adverse particle effects following chemical modification while
clearly demonstrating increased cellular uptake into cells of interest. This study provides a chemical
foundation for predictable and fast vault modification, as required for the use of engineered vaults in
imaging, therapeutic delivery, or basic biological research.

3. Recombinant Vaults Production and Purification

The baculovirus–insect cell system is today one of the most commonly used strategies to produce
recombinant proteins. Since insect cells are one of the few eukaryotes lacking endogenous vaults,
they have been the standard cell factory to obtain recombinant vaults. The current production of
recombinant vault nanoparticles is mainly performed in Spodoptera frugiperda (Sf9) insect cells [59],
where expression of only the MVP protein can direct the assembly of vault-like particles on
polyribosomes [59,60]. However, this approach is complex and costly for industrial scale applications.
The construction of a recombinant baculovirus containing a gene of interest requires a tedious and
time-consuming (3–6 months) process. After that, routine growing, titration, and maintenance of the
baculovirus stocks are also required. Moreover, continuous protein production is hampered by insect
cells lysis during infection. Release of intracellular proteins from lysed cells, or removal or inactivation
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of progeny baculoviruses released by budding off from infected cells, may result in protein degradation
by proteases and may also complicate downstream process [61–63].

To date, one significant change in the process has been the proposal of the replacement of
the sf9 insect cells for insect larvae, which allows a greater production. Protein expression levels
in baculovirus-infected larvae can be very high, reducing costs for large-scale production. In this
line, a procedure was reported, based in baculovirus-infected insect larvae as starting material [40].
Nevertheless, due to general unfamiliarity with larval systems and restricted or low access to cell
culture facilities to any research laboratory, this approach has not gained widespread popularity in
most molecular biology laboratories in North America and Europe.

According to all these drawbacks related to expression systems, there is the need to develop
alternative cell factories for recombinant vault production. Among the available organisms, yeast
is a promising one for large-scale expression and preparation for human applications. Yeast have
been successfully used in the last decades for recombinant protein production [64] and, for the
synthesis of protein nanostructures such as virus-like particles [65], are similar in size and structure to
vaults. In this context, it has been recently described for the first time the production of vaults in the
yeast Pichia pastoris [66]. Expression of MVP alone in P. pastoris led to the formation of intact vaults,
morphologically similar to endogenous vaults isolated from other eukaryotes. Moreover, such yeast
vaults retained the ability to interact with INT-fused proteins, revealing P. pastoris as a new, promising
alternative to insect cells for producing recombinant vaults.

To develop an economically competitive platform based on recombinant vaults, efficient
downstream processes also need to be set-up and optimized. The interest of its use as nano-DDS
requires the optimization of the process in order to increase the scale and yield [53] of production.
The high size of the vault ribonucleoprotein complex complicates its downstream. For its purification,
sucrose gradients [59,67], and continuous ultracentrifugation steps [57] have been used in a traditional
manner, procedures rather complex and labor intensive. This technique greatly hinders large-scale
production [57], both for the time devoted to achieving the needed high purity and the small amount
obtained. Recombinant MVP is purified from insect cell extracts in a procedure requiring three
ultracentrifugation steps and two additional gradient centrifugations. Sucrose or cesium chloride
gradient ultracentrifugation [68,69] is generally considered to be chemically and physically appropriate
for purification of different protein-based nanoparticles, including VLPs, but this general approach
is labor-intensive, time-consuming, and scale-restricted [70], and can be associated with unexpected
batch-to-batch variation. Although several reports have shown that gradient ultracentrifugation could
be employed to purify VLPs, it provided only low yield and failed to remove impurities (including
recombinant baculoviruses) from the final products [71].

Taking all these facts together, the need for the development of faster and easier downstream
procedures for recombinant vaults is clear, and many efforts are being devoted to such purpose. In this
line, efforts have been made in the substitution of centrifugation by special chromatographic columns,
which significantly reduce the purification time. According to this approach, after removing cell debris,
clarified lysate is loaded into an ion exchange column for large particles (Fractogel® EMD TMAE) and
then into a gel filtration column, rendering final overall purities higher than 99% [33,40]. More recently,
a two-step protocol for vault purification has been described, based on dialysis step and size-exclusion
chromatography [72]. In this work, vaults were purified by a first dialysis step using a 1 MDa molecular
weight cutoff membrane and a subsequent size-exclusion chromatography (SEC) on a Sepharose CL-6B
column, rendering vaults with 90–95% purity and yields of 15 mg protein from 0.7–0.8 g cell samples
pelleted from 50 mL of culture medium. Despite all these efforts and advances, vaults purification is
still performed basically by the original protocol based on several ultracentrifugations.

In Table 1 it is shown the currently used expression systems and purification procedures for the
obtention of recombinant vaults. Apart from those already in use, large scale and reproducible vault
particle purification methodologies will be needed, preferably without ultracentrifugation steps. Thus,
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it is not difficult to foresee that new, improved purification methods will surely appear in the future
that will allow a fast, cost-efficient vault purification.

Table 1. Expression systems and purification protocols currently used in the manufacturing of
recombinant vaults.

Expression
System [Ref.] Purification Method Final Yield Advantages Disadvantages

Baculovirus infection
on sf9 cells [59]

Several saccharose
gradient

ultra-centrifugations
~10 mg/L No endogenous vaults

Time-consuming,
tedious

downstream process

Baculovirus infection
on sf21 cells [72]

Dialysis and
size-exclusion

chromatography
~0.5–1 mg/L

No endogenous vaults
Quick, easy and cheap
downstream process

Low yields

Baculovirus oral
infection on

insect larvae [40]

Ion exchange (cationic)
and size-exclusion
chromatography

Up to
several grams

No endogenous vaults
High yields

Difficult scale-up
Slow production rate

Yeast cells
(Pichia pastoris) [66]

Sucrose gradient
ultracentrifugation and
ion exchange (anionic)

chromatography

~7–11 mg/L
No endogenous vaults

Fast and
cost-efficient production

Need scale-up

4. Vaults Applications in Nanomedicine and Clinical Trials

As a naturally occurring nanocage, vault is a promising candidate for DDS to target and deliver
therapeutic molecules to damaged cells or tissues. Being highly stable structures in vitro, it is reasonable
to hypothesize that vaults will be also stable in the bloodstream. However, putative immunogenic
reactions from the body to recombinant vaults could restrict their application in clinical trials, mainly
when using repetitive administrations. Several studies indicate that vaults are nonimmunogenic.
For example, it was not possible to elicit antibodies in rabbits against purified vaults, and an antigenic
response could only be induced when vaults were hemocyanin cross-linked prior to injection into
rabbits [30]. In another study, the immunobistocbemical expression of MVP protein in freshly frozen
normal human tissues and in 174 cancer specimens of 28 tumor types was analyzed, showing a broad
distribution of MVP in both normal and tumoral human tissues [73]. Finally, immunogenicity of
recombinant vaults in rats using subcutaneous administration showed no immunoreactivity against
the recombinant vaults [57]. All these data suggest that, being ubiquitous throughout the human body,
vaults are bio-invisible and nonimmunogenic to the human immune system.

To date, it is the American company Vault Pharma, a spin-off of the research group, that led by
Dr. Leonard Rome (Dept. of Biological Chemistry, UCLA) discovered vaults in 1986, which holds intellectual
property over vaults and some of their applications by means of several patents and, therefore, which is
developing vaults as new DDS, some of them already in clinical trials. Such patents cover aspects including
recombinant production, and vaults as carriers for biomolecules (such as cytokines and hydrophobic
molecules) delivery. The vault is being explored and used as a tool to modulate the activity of the immune
system. Vault Pharma’s technology platform uses the vault particle to deliver peptides for unique immune
signaling, exploiting the vault natural function as an immunological signal alert progenitor (characterized by
vault being rapidly ingested by antigen presenting cells (APCs), specifically macrophages and dendritic cells).
It was described that vaults are an early alert signal to the immune system once a cell is lysed and vaults
are released to the extracellular space where they are rapidly engulfed by APCs. In this sense, it has been
described that dendritic cells efficiently internalize vault nanocapules [54]. Therefore, current clinical trials
based on these properties takes advantage of this natural property of vaults to trigger an immune response
that is noninflammatory and results in many propitious effects including stimulation of extraordinarily
high levels of antigen specific CD4 and CD8 T cells. The projects developed can be classified as oncological
immunology and immunological activation to prevent infections.

For the treatment of oncology malignancies, vaults are designed to modulate the immune system,
so it can slow or stop tumor development. The most advanced design consists of vaults (not specifically
targeted) containing the CCL21 chemokine. This chemokine CCL21 is expressed mainly in the high venules
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of the lymph nodes and Peyer’s patches [53] and act as a chemoattractant of cells of the immune system that
express the CCR7 receptor. The strategy, which has shown its effectiveness, consists of directing the cells of
the immune system to the tumor zone to stop the growth of the tumor [53]. The encapsulation of chemokine
CCL21 occurs by fusion of the INT [53] domain at the C-terminus of CCL21. The MVP monomer is not
fused to peptides ligands or specific antibodies, so the intratumoral administration is the only possible to
act in a specific way. This explains that the use of the same nano-DDS is being studied to treat different
types of cancer. The most advanced clinical trial that uses the strategy mentioned is directed against lung
cancer. In the preclinical phase, the effectiveness of intratumoral administration of vaults loaded with
CCL21 in mouse models was demonstrated [33,53]. At these localized sites there is an increase in the activity
of the T lymphocytes against the tumor cells which results in the inhibition of their growth. Currently,
the project is at the beginning of the development phase I. As future perspectives, the fusion of different
ligands or antibodies specific for tumor cells to CCL21-vaults would allow intravenous administration and
the possibility of reaching difficult-to-access tumors [74].

Other techniques of activation of the immune system have been used to stop the tumor
development. Different cytokines (IL7 and CCL19) [75] have been encapsulated in vault nanoparticles
and their effect on tumors is being tested. Another route that is being developed is the encapsulation of
antigens characteristic of tumors such as NY-ESO [76], acting the vault as if it were a vaccine, activating
the immune system to recognize tumor cells and stop their growth.

On the other hand, the approach to control infectious diseases relies in the controlled encapsulation of
specific antigens of certain pathogenic microorganisms (Chlamydia, HIV, Influenza, HPV y Burkholderia),
allowing an optimal activation of the immune system by the slow release of immunogenic epitopes from
the vault. For example, it has been explored the ability (as vaccines for Chlamydia trachomatis) of engineered
vaults containing an immunogenic epitope of this pathogen, the polymorphic membrane protein G (PmpG),
to be internalized into human monocytes and behave as a “natural adjuvant”. Such PmpG-1-vaults were
able to activate caspase-1 and to stimulate IL-1β secretion, and immunization of mice with PmpG-1-vaults
induced PmpG-1 responsive CD4(+) cells upon restimulation with PmpG peptide in vitro [77]. In another
approach to fighting Chlamydia infections [54], the immunogenic protein major outer membrane protein
(MOMP) of Chlamydia muridarum was encapsulated within hollow, vault nanocapsules (MOMP-vaults) that
were engineered to bind IgG for enhanced immunity. Intranasal immunization with such constructions
induced anti-chlamydial immunity plus a significantly attenuated bacterial burden following challenge
infection. Based on all these backgrounds, Vault Pharma is conducting several clinical trials against
different infections, being the most advanced of such trials in their preclinical phases and alert the immune
system against Chlamydia, HIV and Influenza pathogens. A brief list of such trials is shown in Table 2.

Table 2. Current vaults applications in nanomedicine. Specific applications are classified according to
the stage of their respective clinical trials. Source: https://vaultpharma.com/pipeline/.

Vaults Application
Clinical Trial Stage

Drug Discovery Preclinical Phase I

Oncology immunology

Pancreatic cancer
Prostate cancer

Head and neck cancer
Renal cancer

Bladder cancer
Colon cancer
Breast cancer

Graft vs host disease
Pulmonary fibrosis

Solid tumors

Lung cancer
Melanoma

Glioblastoma
Lung cancer

Immunological activation for
infection prevention

HPV cancer
Burkholderia

Chlamydia
HIV/AIDS
Influenza

However, transfer of vaults use to the clinic presents different challenges to overcome. First,
current protocols for the production and purification of vaults need to be optimized. Each recombinant

https://vaultpharma.com/pipeline/
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vault requires the design, construction and maintenance of a baculovirus vector, a tedious and
time-consuming process. In this line, new expression systems (mainly insect larva or yeast cells) are
emerging as new actors in the field, with promising (but still preliminary) results. Also, downstream
processeses (based on tedious and time-consuming ultracentrifugation steps) need to be optimized.

On the other hand, administration routes for vault-based nanomedicines is another issue that
has been explored in detail. Oral administration of vaults—the preferred route of administration
in the pharmaceutical industry—presents a clear problem due to the structural changes suffered by
the vault in acidic environments such as the stomach. Thus, for this case, vaults would need to be
strongly engineered and modified to overcome such barrier. To date, the design of vaults to cross the
blood–brain barrier has not been developed. However, the natural presence of vaults in the central
nervous system [78] has been identified, suggesting that with the right ligand, vaults could cross the
blood–brain barrier without causing damage to the central nervous system. Intranasal administration
has also been explored for vault-based nanomedicines containing immunogenic proteins, successfully
acting as “smart adjuvants” inducing protective immunity at distant mucosal surfaces while avoiding
inflammation. Current clinical trials are focused on the treatment of different tumors by vaults loaded
with molecules boosting the immune system. In this case, vaults are locally (intratumoral) administered,
thus not taking advantage of the possibility to engineer vaults to specifically target them. This may be
due to the interest of obtaining a generalized product for different tumors. The use of targeted and
engineered vaults will surely expand the portfolio of available therapies for malignancies and other
pathologies in the next years. However, and as far as we know, the immunogenicity of recombinant
vaults using other administration routes (as intraperitoneal or intravenous) has not been tested yet.

5. Conclusions and Future Perspectives

Vaults are naturally occurring nanoparticles found widely in eukaryotic cells. They can be produced
in recombinant expression systems in large quantities by expressing the MVP protein monomer,
which spontaneously self-assembles to originate the final barrel structure. Vaults have been proposed as
a new nano-DDS able to improve the efficacy and reduce the side effects of current treatments since they
show the characteristics of an ideal nano-DDS: biocompatibility, encapsulation capacity of hydrophobic and
hydrophilic molecules, controlled release, and specific targeting, among other features. Its large internal
cavity allows the encapsulation of large quantities of molecules of interest. Vaults are a versatile system,
in which encapsulation of cargo proteins is achieved by the fusion of the INT domain to the C-terminal
end of the therapeutic protein. Non-protein cargo molecules can also be charged inside by modifying the
internal cavity of the vault. Moreover, modification of MVP C-terminal end by the fusion of appropriate
targeting peptides allows vault specific targeting to cells and organs.

Despite the great potential shown by vaults as smart DDSs, research related to these protein-based
nanoparticles has not been blooming as expected for such promising DDS. As mentioned before, a single
company holds the intellectual property of vaults through numerous patents covering several aspects
related to their production and exploitation. Such protection might represent a factor hampering the
further study of vaults by other research groups. However, and despite this potentially discouraging
fact, other laboratories are also devoting efforts to the study of different aspects of vaults, from more
basic and structural characterization, to their application in fields other than cancer or infectious
diseases treatment, confirming vaults as one of the most promising protein-based DDS.

Finally, it is worthy to note that vaults appear at present day as a promising tool not only in the
nanomedicine field, but also in another biotechnological applications. A preliminary study [79] showed the
development of efficient and sustainable vault-based bioremediation approaches for removing multiple
contaminants, such as phenol, from drinking water and groundwater, using vaults loaded with the enzyme
manganese peroxidase [80]. In this line, vaults have been recently proposed as a highly efficient system
to immobilize enzymes (“nanosupported” enzymes with biodegradative or antimicrobial activities) with
potential use as portable water treatment technologies [80]. This will surely expand the opportunities and
applications of these protein-based, self-assembled nanoparticle named vaults.
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