
 

Pharmaceutics 2019, 11, 168; doi:10.3390/pharmaceutics11040168 www.mdpi.com/journal/pharmaceutics 

Review 

Interpretation of Non-Clinical Data for Prediction of 

Human Pharmacokinetic Parameters: In Vitro-In 

Vivo Extrapolation and Allometric Scaling 

Go-Wun Choi 1, Yong-Bok Lee 2 and Hea-Young Cho 1, * 

1 College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si,  

Gyeonggi-do 13488, Korea; gwchoi153@gmail.com (G.-W.C.);  

hycho@cha.ac.kr (H.-Y.C.) 
2 College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-Gu,  

Gwangju 61186, Korea; leeyb@chonnam.ac.kr (Y.-B.L.) 

* Correspondence: hycho@cha.ac.kr; Tel.: +82-31-881-7167; Fax: +82-31-881-7219 

Received: 31 January 2019; Accepted: 2 April 2019; Published: 5 April 2019 

Abstract: Extrapolation of pharmacokinetic (PK) parameters from in vitro or in vivo animal to 

human is one of the main tasks in the drug development process. Translational approaches provide 

evidence for go or no-go decision-making during drug discovery and the development process, 

and the prediction of human PKs prior to the first-in-human clinical trials. In vitro-in vivo 

extrapolation and allometric scaling are the choice of method for projection to human situations. 

Although these methods are useful tools for the estimation of PK parameters, it is a challenge to 

apply these methods since underlying biochemical, mathematical, physiological, and background 

knowledge of PKs are required. In addition, it is difficult to select an appropriate methodology 

depending on the data available. Therefore, this review covers the principles of PK parameters 

pertaining to the clearance, volume of distribution, elimination half-life, absorption rate constant, 

and prediction method from the original idea to recently developed models in order to introduce 

optimal models for the prediction of PK parameters. 

Keywords: pharmacokinetics; in vitro-in vivo extrapolation; allometric scaling; animal scale-up; 

translational approach; non-clinical study 

 

1. Introduction 

One of the main reasons associated with the termination of drug development is inappropriate 

pharmacokinetic (PK) properties in humans [1]. Drugability is mainly dependent on the drug’s 

metabolism and pharmacokinetic (DMPK) properties, which are the main hurdles in pharmaceutical 

R&D. Approximately 40% of drug failures are attributed to DMPK issues [2]. The main cause of 

failure in clinical trials is poor efficacy [3]. Although issues related to PK and bioavailability have 

improved since the 2000s [4], nearly half of all the therapeutic candidates in drug development are 

lost due to poor absorption, distribution, metabolism, excretion (ADME), toxicology, and 

pharmacology (safety) [5]. 

Therefore, the prediction of PK properties in humans before the first-in-human clinical trials is 

one of the main purposes of non-clinical studies in the drug discovery–development process. The 

two ways of predicting PK in humans include in vitro-in vivo extrapolation (IVIVE) and allometric 

scaling (AS). 

The physiologically-based IVIVE model is based on physiological, biochemical, and 

biopharmaceutical factors such as organ size, blood flow rate, enzyme kinetics, drug permeability, 
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partitioning factor into the organ, and various in vitro clearance data. These data are incorporated 

into the IVIVE model to provide valuable insight into drug properties and evidence to guide 

decision-making in the drug discovery-development process. Despite its advantages, construction of 

the IVIVE model requires knowledge of PKs and an understanding of complex mathematical 

equations. Moreover, this approach is expensive and time-consuming [6]. Although to project in 

vitro to in vivo data is difficult due to the complexity of the interdependent biological processes and 

their dynamic nature [7], it is more physiologically relevant than AS, considering that IVIVE 

incorporates physiological factors and includes the possibility to expand with the mechanistic 

model [8,9]. In IVIVE, although methods to predict the various forms of clearance are available (e.g., 

biliary [10], renal [11–13], glucuronidation [11], and hydrolysis [14] clearance), we focus on the 

prediction of hepatic clearance which is the primary elimination pathway. AS is an empirical 

approach to predict human PK parameters. The origin idea and application of AS in PKs have been 

discussed in detail by numerous works [15–21]. Although AS is empirical and has limitations for 

drugs with high protein bound, extensive active renal secretion, and other transport processes or 

have species-specific binding or distribution, that may poorly predict human PK parameters [22], it 

is simple and less complicated, while providing a valuable insight as well. 

Although basic principles and methodologies of the two methods vary, they have a common 

goal which is human PK prediction. Data required for IVIVE and AS were obtained from 

non-clinical studies prior to the entry of clinical trials [23-25]. Animal PK data are routinely obtained 

in non-clinical drug development processes [26]. These two methods are practically used to 

estimate the first-in-human dose in clinical trials [25]. 

Until now, numerous IVIVE and/or AS methods have been developed and comparative 

analyses have been conducted. However, a general overview of the fundamental principle of PK 

parameters for the application of IVIVE and AS is lacking, and the available methods are scattered. 

Therefore, this review will provide a comprehensive overview of the underlying principles of PK 

parameters with mathematical equations. 

2. Theoretical Background for the Prediction of Clearance 

2.1. Physiological Clearance Concept 

Clearance (CL) is considered the most important PK parameter as it is related to drug 

elimination and bioavailability [27]. Further, the main purpose of IVIVE is to predict human CL 

using in vitro data and physiologically relevant mathematical equations. Therefore, an 

understanding of the basic principles of the CL concept is the first step prior to applying IVIVE. 

Due to the significance of the parameter itself, and physiological relevance, prediction of CL is one of 

the key steps in drug discovery and development. 

There are three methods for the calculation of CL in PKs [28]. 

1.Non-compartmental analysis (NCA): This method employs data-dependent and 

model-independent calculations without the need to define a specific compartment model. The 

elimination constant is derived from the linear-regression of the elimination phase of a drug. The 

CL in NCA is calculated using Equation (1), in which the dose is the amount of drug introduced to 

systemic circulation and AUC0-inf is area under the concentration-time curve from zero to infinity. In 

this equation, the volume of distribution (V) does not need to be defined. In case of administration 

involving the absorption pathway, the dose is adjusted based on bioavailability (F). 

CL =
Dose ∙ F

AUC���

 (1)

2. Compartmental analysis: CL is calculated using the elimination rate constant (e.g., expressed as k, 

kel, or k10) and V. This method assumes a defined compartment model. In this method, CL is 

calculated based on the following equation: 

CL = k ∙ V (2)
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3. Physiological model: This model describes CL by incorporating physiological, anatomical, and/or 

biochemical aspects. The knowledge of the physiological PK model is crucial to understand IVIVE 

since it has improved by the efforts to explain the PK phenomenon as more physiologically relevant. 

Therefore, comprehensive physiological CL concepts are described in the following subsections. 

2.1.1. Organ Clearance 

The concept of organ clearance is based on the loss of a parent drug across an organ of 

elimination [29–32]. A well-perfused clearing organ exhibits the ability to clear xenobiotics. If a drug 

is cleared in the clearing organ, then Cout is less than Cin (Cout < Cin), in which Cin and Cout indicate 

drug concentration in artery and venous, respectively. 

The rate of the input and output of a drug can be expressed by multiplying drug concentration 

with flow, Q. Regarding mass balance, the rate of elimination is defined by the difference between 

input and output as described below. 

Rate of elimination = Cin·Q − Cout·Q = Q·(Cin − Cout) (3)

Organ extraction ratio (ER) is the ratio of the elimination rate to the input rate. Thus, ER can be 

understood as the efficiency with which the organ clears the drug under a specific blood flow, Q. ER 

is calculated using the following equation: 

ER =
Q(C�� − C���)

Q ∙ C��
=

C�� − C���

C��
= 1 −

C���

C��
 (4)

Organ clearance is the volume of blood cleared of a drug by an organ per unit of time. It is 

expressed by the following equation [33]: 

CL =
The rate of elimination

C��
=

Q(C�� − C���)

C��
= Q ∙ ER (5)

The ER is a dimension-less parameter. As shown in Equation (5), it is obvious that the organ 

clearance is limited by the blood flow in the specific organ. Since ER is greater than or equal to 0 but 

less than or equal to 1 (0 ≤ ER ≤ 1), CL is greater than or equal to 0 but less than or equal to Q (0 ≤ 

CL ≤ Q). 

In Figure 1, the perfusion model explains the relationship between Q and ER [34]. This model 

follows the well-stirred model that will be mentioned later. It assumes that the drug distribution in 

intra-cellular and extra-cellular fluids can instantaneously reach equilibrium, where the blood flow 

rate is rapid enough not to limit the distribution of a drug. If a drug is bolus administered into the 

reservoir, the mass balance equations are described by the following Equations (6) to (9). 

 

Figure 1. The perfusion model including one reservoir and one clearing organ. In this 

model, Q refers to the rate of perfusate or blood flow. Cin is the drug concentration in the 

artery entering the reservoir and clearing organ. Cout denotes the drug concentration in 

veins leaving the clearing organ and entering the reservoir, which is a non-clearing organ. 
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VE and VR indicate the volume of clearing organ and reservoir, respectively. The 

elimination process is followed by first-order kinetics and its elimination constant is 

represented by kel. CE is the drug concentration in the clearing organ. 

Differential equations for the reservoir and clearing organs are as follows: 

−V�

dC��

dt
= Q(C�� − C���) (6)

V�

dC�

dt
= Q(C�� − C���) − k�� ∙ V� ∙ C� (7)

where CE is drug concentration in the clearing organ. However, in a practical setting, the analysis of 

the actual drug concentration in the organ is impossible. Therefore, CE is substituted by Cout which 

can be measured in a practice setting using the partition coefficient between CE and Cout as shown in 

the equations below: 

K� =
C�

C���

 (8)

K� ∙ V� ∙
dC���

dt
= Q(C�� − C���) − k�� ∙ K� ∙ V� ∙ C��� (9)

Solving Equations (7) and (9) for Cin and Cout and substituting these solutions into Equation (1), 

the final solution yields Equation (10) below. The detailed solving method has been represented in 

Rowland et al. [34]: 

CL��� =
Q ∙ k�� ∙ K� ∙ V�

Q + k�� ∙ K� ∙ V�

 (10)

in which CLorg denotes the organ clearance. 

In Equation (10), kelKPVE is defined as intrinsic clearance (CLint); in other words, an intrinsic 

capability of a liver to remove a drug from the blood without any flow limitations. The unit of 

kelKPVE is identical to CL, and it is expressed by the following equation: 

CL��� = k�� ∙ K� ∙ V� (11)

which from Equation (10) implies 

CL��� =
Q ∙ CL���

Q + CL���
 (12)

Equation (12) indicates that CLorg is a function of Q and CLint. There are two circumstances 

depending on the relative size of the two variables. 

1. The first situation is when the clearance capacity (i.e., CLint) exceeds the Q (CLint >> Q). In this 

situation, Equation (12) collapses and transforms to Equation (13). 

CL��� ≅ Q , if CL��� ≫ Q (13)

2. The second situation is when Cout is a small fraction of Cin (i.e., when Kp is high, or ER is low). 

[34]. In this case, Equation (12) collapses in the following equation: 

CL��� ≅ CL��� , if CL��� ≪ Q (14)

The basic assumption of the CL concept is that only an unbound free drug is accessible to the 

enzyme and is subjected to metabolism or biliary excretion. Therefore, the actual intrinsic clearance 

should be based on the unbound fraction in plasma (fp) or blood (fb). In practical settings, the 

calculation of protein binding and the analysis of drug concentration are usually performed with 

plasma. Interconversion between the free fractions in blood and in plasma is shown below: 

f� =
f� ∙ C�

C�

 (15)
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C� = C��� + C�(1 − H��) (16)

where CB and CP refer to the total drug concentration in blood and in plasma, respectively. Hct is the 

hematocrit with a value of 0.44 in humans [35] and CRBC refers to the drug concentration in red 

blood cells. 

Therefore, CLorg is expressed by the equation below by incorporating fp: 

CL��� =
Q ∙ f p ∙ CL���

Q + f p ∙ CL���

 (17)

2.1.2. Consideration of Enzyme Kinetics 

In Equation (12), if the clearing organ is the liver, the correlation between hepatic clearance 

(CLH) and enzyme kinetics is expressed by the equation below. 

The metabolic rate (Vmet) in the liver is described by the Michaelis–Menten equation: 

V��� =
V��� ∙ C

K� + C
 (18)

where Vmax is the maximal rate of the reaction, C is the concentration of the substrate, and Km is the 

Michaelis constant. If both sides of Equation (18) are divided by C, then Vmet/C is the hepatic 

intrinsic clearance (CLint, H) as shown in the following equation: 

CL ���,� =
V���

C
=

V���

K� + C
 (19)

 Since liver enzymes are rarely saturated in clinical practice, generally the value of Km is much 

greater than C. Thus, Equation (19) can be simplified into the following equation: 

CL���,� =
V���

C
=

V���

K�
 (20)

Intrinsic clearance is also expressed by the summation of enzyme activities of all parallel 

metabolic pathways as shown in the following equation: 

CL���,� = �
V���,�

K�,� 

�

���

 (21)

In an in vitro setting, the Vmax and Km are calculated. Then hepatic clearance is estimated by 

embedding the CLint, H into Equation (12). 

2.1.3. Hepatic Clearance Model 

Liver is one of the key organs for drug clearance via metabolism and/or excretion through the bile 

acid. For most drugs, the elimination process in PKs involves hepatic metabolism. Alteration of liver 

blood flow, synthesis of albumin, and/or enzyme activity could occur by liver impairment, 

concomitant drug use, environmental factors, and so on [36,37]. Therefore, predicting drug behavior in 

the liver facilitates the analysis of hepatic drug elimination in virtual scenarios [38]. 

In the field of PKs, there are four representative hepatic clearance models (Table 1). 
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Table 1. Four hepatic clearance models. 

Model Scheme1 CLH 2 ERH 

Well-stirred 

 

Q� ∙ CL���,� ∙ f�

Q� + CL���,� ∙ f�
 

CL���,� ∙ f�

Q� + CL���,� ∙ f�
 

Parallel tube 

 

Q� ∙ {1 − e
��

��∙�����,�

��
�
} 1 − e

��
��∙�����,�

��
�
 

Distributed 

 

Q� ∙ {1 − e
��

��∙�����,� 

��
�

�

�
∙��(

��∙�����,�

��
)��

}  1 − e
��

��∙�����,�

��
�

�
�

∙��(
��∙�����,�

��
)��

 

Dispersion 

 

Q� ∙ {1 −
4a

(1 + a)� ∙ e
�
���
���

�
− (1 − a)� ∙ e

��
���
���

�
} 1 −

4a

(1 + a)� ∙ e
�
���
���

�
− (1 − a)� ∙ e

��
���
���

�
 

1 Dotted line indicates the concentration–distance profile within liver. 

2 Where QH is hepatic liver flow expressed as a unit of mL/min/kg. 

Well-Stirred Model 

The well-stirred model is a widely applied model, in which the liver is viewed as a single, 

well-mixed compartment with a fixed drug concentration. This model is expressed in simple 

equations. 

CLH is described by Equation (5): 

CLH = QH· ERH (22)

where QH is the hepatic blood flow (20.7 mL/min/kg in humans), and ERH is the hepatic extraction 

ratio. Since ER is dependent on QH, CLH is not directly proportional to QH. Typically ER decreases 

with increasing QH [32]. Additionally, hepatic availability (FH) is calculated by the following 

equation using ERH: 

F� = 1 − ER� =
Q

H

QH + fp ∙ CLint,H

 (23)

For the drugs with high ERH, equations of CLH, ERH, and FH are simplified as the following 

equations: 

CL� ≅ QH (24)

ER� ≅
CLint,H ∙ fp

CLint,H ∙ fp

≅ 1 (25)

F� ≅
Q

H

fp ∙ CLint,H

 (26)

For the drugs with low ERH, the equations of CLH, ERH, and FH are to be simplified to the 

following equations: 

CL� ≅ CLint,H (27)

ER� ≅
CLint,H ∙ fp

QH

 (28)

F� ≅
QH

Q
H

≅ 1 (29)

Parallel-Tube Model 
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The parallel-tube model describes the liver as a set of tubes representing a sinusoid where the 

elimination occurs in hepatocytes. Drug concentration within the liver (i.e., sinusoids and hepatocytes) 

exponentially decreases in the direction of the hepatic vein [39]. 

In this model, FH is expressed by the following equation: 

F� = 1 − ER� = e
−�

CLint,H

QH
�
 (30)

When ERH and QH are known, the CLint,H is estimated by this model. Taking the natural 

logarithm of the Equation (30): 

ln(1 − ER�) = −
CLint,H

QH

 (31)

CL���,� = −Q� × ln(1 − ERH) = −Q� × ln FH (32)

Both well-stirred and parallel-tube models assume that drug permeability is not a rate-limiting 

step in drug elimination [40]. However, recently, an extended clearance model has been developed 

in which permeability is one of the important factors affecting the CLH [41,42]. 

In many cases, the well-stirred model is the choice of method for the estimation of CLorg. 

However, in certain situations, the estimation of CLH differs between the two models. Pang and 

Rowland have shown these differences [43–45]. In their studies, using lidocaine with an ER of 0.99 

or higher, a liver perfusion experiment was conducted in mice. Its metabolite profile is well 

described by the well-stirred model. The major differences between these two models are FH based 

on changes of QH and oral bioavailability (Fpo). When a drug with high ERH (e.g., lidocaine) is 

administered via per oral (PO) route, its Fpo is expressed by the following equation: 

F�� = F� = 1 − ER� = e
−�

CLint,H

QH
�
 (33)

Based on the well-stirred and parallel-tube model, the Equation (33) could be transformed into 

Equations (34) and (35), respectively: 

F�� ≅
QH

fp ∙ CL
int,H

 (34)

F�� ≅ e
−�

fp∙CL
int,H

QH
�

 
(35)

As shown in these equations, FPO is associated with QH. In a well-stirred model, FPO shows a 

linear relationship with QH. However, in the parallel-tube model, FPO changes exponentially with 

QH. By comparing the observed values with predicted values using these two models, the 

investigator can select the model that better explains the organ clearance. However, under practical 

experimental settings, it is hard to determine the model with a good fit prior to an investigation. 

Therefore, unless there is obvious evidence, most investigators use the well-stirred model based on 

the principle that models should be as simple as possible, but not simpler [40,46]. 

Distributed Model and Dispersion Model 

It is obvious that the liver is neither a well-stirred compartment nor a series of identical tubes 

[47]. There have been efforts to explain hepatic clearance as more physiologically relevant by using 

a dispersion model [48,49] or a distributed model [50,51]. The distributed model describes the liver 

as a series of parallel tubes with different geometrical properties. In this model, ε2 is an estimated 

parameter used to express variance for each sinusoid in the whole liver [52]. In the distributed 

model, the mixing of blood in the sinusoids is incorporated into flow rates and path length. The 

degree of mixing is defined by the dispersion number DN which is estimated in this model. When 

DN → ∞ or DN → zero, the dispersion model is collapsed in the well-stirred model and the parallel 
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tube model, respectively. The variable ‘a’ in the dispersion model is equal to (1+4RNDN)1/2, where the 

efficiency number of RN is equal to fp·CLint,H/QH. 

Other models presented by scholars include the series-compartment model [53] and 

transit-time model [54–57]. However, the IVIVE mainly uses the four models described above. 

3. Prediction of Human Clearance Using IVIVE Method 

3.1. IVIVE 

The purpose of IVIVE is to perform quantitative extrapolation of in vitro data to predict 

human parameters. A reliable extrapolation method to predict hepatic metabolic clearance utilizes 

in vitro kinetic data and mathematical equations [58]. The general approach of IVIVE using human 

liver microsomes (HLM) or recombinant human cytochrome P450 (CYP) system (rhCYP) is 

presented in Figure 2. Using these systems, metabolite production or substrate depletion are used 

to calculate the in vitro metabolic kinetic parameters (i.e., Km, Vmax, and kin vitro). The IVIVE method 

has been improved since its introduction by Rane et al. [59]. Scale-up of in vitro data to in vivo is 

performed by analyzing the correlation between in vitro and in vivo data or applying physiological 

correction factors. Many investigators have tried to improve the accuracy of prediction (Table 2). 

 

Figure 2. The scheme of the overall in vitro-in vivo extrapolation (IVIVE) process using 

human liver microsomes or recombinant human cytochrome P450 (CYP) system. MPPGL 

refers to the microsomal protein per gram of liver. 

3.1.1. Empirical IVIVE Model 

Scaling factors have been used to predict in vivo clearance from in vitro data. Correction factors 

are key components in this method. Various physiological or empirical values have been suggested in 

this approach. Appropriate scaling factors have been developed to improve the predictability of the 

IVIVE model. A direct physiological scaling factor was incorporated to predict CLH using in vitro 

hepatocytes and rat microsomes data by Houston [60]. In that study, the basic principal and process of 

IVIVE were presented. The physiological scaling factor was investigated. Results indicated that this 

simple scaling factor yielded adequate evidence supporting IVIVE. 
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Another empirical analysis was performed by Lavé et al. [61], who used human hepatocytes as 

an in vitro system to predict human ERH. A scaling factor in Equation (41), shown in Table 2, was 

estimated using non-linear iterative least squares, which is not a fixed value. The predicted ERH,pred 

and intrinsic in vitro clearance (CLint, in vitro) had a good relationship. In this method, no protein binding 

was considered, resulting in overestimation of ERH,pred values of highly bound drugs. Nevertheless, 

the PK parameters of a few highly bound drugs, such as bosentan and lorazepam, were estimated 

with good agreement. The authors suggested that such discrepancy was attributed to the differences 

between the relative binding rate of the drug in the plasma and in hepatocytes, and/or its relative 

[61]. However, the overall predictability of human PK parameter was improved by applying a precise 

scaling factor, which plays a key role in the IVIVE method. 

As shown in these results of Houston [46] and Lavé et al. [47], appropriate scaling factors are 

important in the IVIVE model to improve the predictability. Protein binding also has a critical impact 

on the prediction of in vivo PK parameters. The effect of binding properties on the prediction of CL 

has being investigated in other studies. 

3.1.2. Correction Factor of IVIVE Model 

Protein Binding Factor 

Obach [62] has reported the prediction method of human intrinsic hepatic clearance (CLint, H, 

human) using the in vitro half-life (t1/2) to incorporat non-specific binding factors to microsomes (fu,mic) 

and/or the fp. Twenty-nine drugs were classified according to their chemical property (i.e., basic, 

neutral, and acidic compounds). Generally, the basic compounds tend to have a large extent of 

binding. Results showed that human CL of neutral and basic compounds was adequately predicted 

with or without binding factors. However, in case of acid compounds, excluding binding factors, 

human CL values were predicted with a high degree of error. 

In practice, in the absence of prior PKs and/or ADME knowledge of a compound of interest, 

one cannot easily decide whether or not to consider protein binding when predicting human PK 

parameters. Therefore, the projection of human CL considering both binding factors (i.e., in vitro 

microsomes binding and the fraction unbound in plasma) is a strategy to decrease significant risks 

of over/under estimation of human CL while expanding the predictability. 

The effect of microsomal protein binding on the prediction of CLint was also investigated by 

Austin et al. [63]. In their work, rat liver microsomes were used as an in vitro system. Their results 

showed that the CLint was dependent on microsomal concentration. However, this relationship can 

be ignored when fu,mic is considered. The authors also found that fu,mic was correlated with 

lipophilicity. Based on these results, the authors formulated an equation for the calculation of fu,mic 

based on the physicochemical properties of drugs. Equation (36) can be used to calculate fu,mic as 

follows: 

f�,��� =
1

C × 10�.��(��� �/�)��.�� + 1
 (36)

where C denotes the microsomal protein concentration (mg/mL) and log P/D refers to logP of a 

basic compound (pKa > 7.4) or logD7.4 of acidic compound (pKa < 7.4), where logD7.4 stands for the 

partition coefficient between octanol-0.02 M phosphate buffer (pH 7.4 at 20 °C). The logP is equal to 

the logD7.4 for compounds designated as neutral and the logP is also calculated using the following 

equation: 

logP = logD�.� + log (1 + 10�.�������) (37)

where A = 1 and B = −1 for an acidic compound, and A = −1 and B = 1 for a basic compound [64]. 

Howgate et al. [65] revealed that most of the fu,mic values are high enough to be ignored in the 

prediction of clearance. However, the few compounds with high microsomal binding should be 

considered to accurately predict the in vivo clearance. Therefore, when basic knowledge of the 

compound of interest is lacking in the early stage of drug discovery and development process, 

incorporating fu,mic is a preferable way to predict in vivo situations. 
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Animal Scaling Factor 

Naritomi et al. [66] recommended the IVIVE method of the animal scaling factor, which is 

defined as CLint, in vivo divided by CLint, in vitro to improve the human CLint, in vivo. This scaling factor is 

similar across species, since it depends on the compound itself. When the animal scaling factor in a 

rat or a dog was not considered, the average fold error increased (from an average two-fold to 

four-fold error). These results indicate that the scaling factor of each drug is conserved across an 

inter-species system. However, an animal scaling factor is difficult to use in the absence of adequate 

information for various species. 

Table 2. Mathematical equations of the IVIVE approach for prediction of clearance from in 

vitro data. 

Equation  Comment * Ref. 

CL���,�� ����� =
V���

K�

=
rate of metabolism

C�

 (38) Basic principle of IVIVE 

was suggested 

Provide the 4 stages for 

the IVIVE  

[60] 

CL�,�� ���� =
Q� ∙ f� ∙ CL���,�� ����

Q� + f� ∙ CL���,�� ����
 or CL��� =

CL�

f�(1 − E)
 (39) 

CL���.�� ����� =
Initial amount in the incubation

AUC�� �����
 (40) 

Empirically the scaling 

factor (SF) was estimated 

as the value of 8.9 

Predicted ERH and 

observed ERH are ERH, pred 

and ERH, obs, respectively 

Provide criteria for the 

classification of the drugs 

into: low extraction, ERH < 0.3; 

intermediate, 0.3 < ERH < 0.7; 

high extraction, ERH > 0.7 

[61] ER�,���� =
SF ∙ CL���,�� �����

Q� + (SF ∙ CL���,�� �����)
 (41) 

ER�,��� =
CL

Q�

 (42) 

CL���,�,����� =
0.693

�� ����� t�/�

∙
mL incubation

mg microsomes

∙
45 mg microsomes

g liver
∙

20 mg liver

kg body weight
 

(43) Investigation of the effect of 

the protein binding into the 

plasma and microsomes 

The ISTD refers to the 

internal standard 

[62] 
f�,���

=

drug
ISTD� peak height ratio in buffer sample

2 ∙
drug

ISTD� peak height ratio in microsome sample
 

(44) 

CL���,�,����. = CL���,�� ����� ∙ animal scaling factor (45) 

Animal scaling factor was 

incorporated into IVIVE 
[66] Animal Scaling factor =

CL���,�,�� ����

CL���,�� �����

 (46) 

f�,���

=
unchanged compound concentration in buffer

unchanged compound concentration in microsome
 

(47) 

CL���,�� ����,���� = CL���,�� ����� ∙ MPR =
V���

K�

∙ MPR (48) 
Microsomal protein recovery 

(MPR) ratio was incorporated 
[67] 
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MPR (mg protein/g liver)

=
Liver homogenate CYP content (nmol/g liver)

Microsomal CYP content (nmol/mg protein)
 

(49) 
in IVIVE 

RB/P refers to blood to 

plasma ratio 

CL���.�� ����,��� =
CL

f� ∙ R�/�

 (50) 

P450 content correcting factor

=
P450 isozyme content/g liver

P450 isozyme content/mg protein
 

(51) 
CYP abundance was 

incorporated in IVIVE 
[68] 

RAF =
V���(HML)

V���(rhCYP)
 (52) 

Relative activity factor 

(RAF) introduced for 

scaling rhCYP data to 

HLM 

Modified RAF taking into 

account of Km 

[69,70] RAF =
CL���(HML)

CL���(rhCYP)
 (53) 

CL��� = [�(�
V����rhCYP���

× RAF��(V���)

K��rhCYP���

�

���

)]

�

���

× MPPGL × Liver weight 

(54) 

ISEF =
V�����

(HML)

V����
�rhCYP�� × CYP�abundance (HLM)

 (55) Inter-system extrapolation 

factor (ISEF) is introduced 

for scaling rhCYP data to 

HLM 

[69] 

CL��� = [�(�
V����

�rhCYP�� × CYP� abundance

K��rhCYP���

�

���

)]

�

���

× MPPGL × Liver weight 

(56) 

CL� =
R�/� ∙ Q� ∙ CL���,�����,����� ∙ f� ∙ F�

R�/� ∙ Q� + CL���,�����,����� ∙ f� ∙ F�

 (57) 
The ionization factor is 

incorporated into the 

IVIVE 

FI is an ionization factor 

Subscript letter IW 

denotes intracellular water 

Upper letter i and n 

indicate compounds of 

ionized and neutral forms, 

respectively 

[71] 

F� =
f�

�

f��
� =

1 − f�
�

1 − f��
�

 (58) 

f����
� =

[A�]

[AH]�

=
1

1 + 10������
 (59) 

f����
� =

[BH�]

[B]�

=
1

1 + 10������
 (60) 

CL� =
Q� ∙ CL���,�����,����� ∙ f�,�����/f�,���

Q� + CL���,�����,����� ∙ f�,�����/f�,���
 (61) 

The unbound fraction into the 

liver (fu,liver) is incorporated 

into the IVIVE 

Plasma to whole liver 

concentration ratio (PLR) = 

13.3 

[72] 

f�,����� =
PLR ∙ f�,�,���

1 + (PLR − 1) ∙ f�,�,���

 (62) 
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CL���,�����,�� ����� = PS������,�����

∙
CL��� + PS����

CL��� + PS������,����� + PS����

 
(63) 

Physiologically-based 

IVIVE model 

Total apparent uptake 

clearance (PSuptake,total) consists 

of saturable and/or 

non-saturable processes 

CLmet and PSbile refer to 

metabolic and biliary 

clearance, respectively 

Apparent sinusoidal total 

efflux clearance from the 

intracellular side of 

hepatocytes back into 

blood (PSefflux, total) consists 

of saturable and/or 

non-saturable processes 

[73] 

CL� =
Q� ∙ CL���,�����,�� ����� ∙ f�

Q� + CL���,�����,�� ����� ∙ f�

 (64) 

fn� = fn��� + fn��� (65) 

Provide the method for the 

prediction of total 

clearance and relative 

elimination contributions 

The fnH, fnsec, and fnmet refers 

to a fractional contribution of 

hepatic, biliary, and 

metabolic elimination to 

overall clearance 

PSinf, act and PSinf, pas refer to 

the sinusoidal active and 

passive influx clearance, 

respectively 

Sinusoidal efflux from 

hepatocytes back into blood 

(PSeff) is assumed to occur via 

passive diffusion, therefore 

PSeff = PSinf,pas 

CLint,sec and CLint,met refer to 

intrinsic secretory and 

metabolic clearance, 

respectively 

PSinf equals to the sum of 

PSinf,act and PSinf,pas which are 

determined by suspension of 

pooled human hepatocytes 

(unit: mL/min/kg) 

[8] 

fn� = 1 − e��.���������� (66) 

fn��� = 1 − e��.����������,��� (67) 

CL����� = CL����� − CL� (68) 

CL����� =
CL�

fn�

 (69) 

CL���,�� �����

=
(PS���,��� + PS���,���) ∙ (CL���,��� + CL���,���)

PS���,����� + CL���,��� + CL���,���

 
(70) 

CL� =
Q� ∙ CL���,�� ����� ∙ f�

Q� + CL���,�� ����� ∙ f�

 (71) 

* Each comment corresponds to all the equations within each major section of the table defined by 

horizontal lines. 

3.1.3. Inter-Individual Variability (IIV) in the IVIVE Method 

The prediction of human CLH by IVIVE is generally limited by IIV, most likely due to drug 

metabolizing enzymes [74]. Several studies have reported the substantial differences in CYP 

expression and significant differences in the activity of different CYP isoforms in HLM [68,75,76]. The 



Pharmaceutics 2019, 11, 168 13 of 33 

 

potential variation in the abundance of protein expression in relevant organs can be incorporated into 

IVIVE [77]. 

The microsomal protein per gram of liver (MPPGL) value can be used as a scaling factor to 

calculate CLint, in vivo from CLint, in vitro. Generally, a value of 45 mg/g liver [60] originally obtained from 

rat data, or 52.5 mg/g based on hepatocyte data reported in the literature via back calculation, is 

commonly used as MPPGL. Since the pharmacogenetic data of laboratory animal models are less than 

those of humans because of their genetics and environment, the variation in MPPGL of humans may 

be greater than that of rats [78]. 

Microsomal Protein Content and CYP Abundance 

Since a maximum limit for microsomal CL may exist [59], drugs with high CL tend to have 

under-predicted CLint, in vivo if data are derived from microsomal protein [51]. Carliel et al. [67] have 

investigated diazepam as a model drug with high clearance. Its CLint, in vivo is 160 mL/min/SRW, 

where SRW refers to standard rat weight of 250 g. Microsomal content was adjusted by treating 

phenobarbital and dexamethasone as CYP inducing agents. The scaling factor calculated from 

Equation (49) was used to estimate CLint, in vivo. The results showed a good agreement with observed 

in vivo clearance. Although a CLint, in vitro obtained from dexamethasone-treated microsomes 

provided an accurate estimate of 77% of the observed CLint, in vivo, the limitation similar to that of 

Houston [60] persisted. The relationship between CLint, in vitro and CLint, in vivo was investigated 

empirically rather than mechanistically. Nonetheless, this study suggested that variation in CYP 

content affects the prediction of in vivo clearance. It provides evidence supporting the 

incorporation of CYP content as a covariate affecting the IIV in the IVIVE model. 

Correction factors of both microsomal protein content and CYP abundances have been 

included in the IVIVE method using the fu,mic factor by Howgate et al. [65]. Underestimation of the 

parameter is a general issue in the IVIVE method. Inclusion of the microsomal protein content and 

CYP abundances that affect the IIV did not show the trend of underestimation. 

Microsomal Protein per Gram of Liver (MPPGL) 

MPPGL is a key value for the scaling of CLint, in vitro to CLint, in vivo using liver microsomes data or 

the rhCYP system as shown in Figure 2. It is a value with varying degrees of IIV. However, 

investigators have been using fixed values either due to the lack of information or empirically. 

Barter et al. [78] have reported MPPGL variability via meta-analysis and have investigated 

potential covariates affecting MPPGL [79]. In their studies, the authors reported an inverse 

correlation between age and MPPGL. The MPPGL values range from 40 mg/g and 31 mg/g for 

those in their 30s and 60s, respectively. The authors also provided the following equation to 

calculate age-related values of MPPGL from birth to adult: 

MPPGL (mg/g) = 10(�.�����.����×�����.�����×������.�������×����
 (72)

The results provide key information to project PK parameters to humans, especially prior to 

clinical trials. Healthy subjects constitute the typical population for a clinical pharmacology study 

during the early phase of drug development, whereas real world patients are very disparate. 

Estimation of the PK parameters of special populations (e.g., pediatric or geriatric patients) is one of 

the challenging tasks in clinical trials. Of course, various factors that affect PKs in a special 

population have been studied. These results provide meaningful insight suggesting that 

non-clinical data may be considered for the design of clinical trials representing special 

populations. 

Inter-System Extrapolation Factor (ISEF) 

The use of a recombinant system represents an alternative in vitro method instead of human 

liver samples, for prediction of in vivo metabolic clearance. Iwatsubo et al. [68] have suggested the 

use of CYP450 isoform content in the recombinant method and proposed a P450 content correction 

factor. Since the levels of CYP450 reductase and cytochrome b5 differ from those of human livers 
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(lower, in most case) in a recombinant system, the authors have proposed an additional correction 

factor, expressed in Equation (51). The authors have concluded that the prediction of in vivo CL 

using recombinant system is possible if metabolic activity is corrected for the CYP isozyme content 

both in rhCYP and per gram liver in vivo. 

ISEF, which is a dimensionless value based on the activity of CYP isoform and its contents, has 

been defined by Proctor et al. [70]. It is used to direct scale data from a rhCYP system to an HLM 

environment for evaluation of differences in intrinsic activity (per unit CYP) and IIV by 

incorporating CYP abundance as shown in Equations (52) to (56). Population approached IVIVE 

could be performed by combining the variance in physiological parameters (such as liver blood 

flow and liver weight) and the variance in scaling parameters (such as MPPGL and ISEF). 

Nakajima et al. [69] have suggested a modified version of the relative activity factor (RAF) 

using CLint, in vitro to correct a flaw in the original RAF, which was calculated with Vmax alone while 

the Km value was ignored. In their study, RAF represents the ratio of CL used to predict clearance of 

azelastine. It best reflects observed N-demethylation CL in HLM. 

Chen et al. [80] have experimentally determined the ISEF of six CYP isoforms and investigated 

their utility in early phases of drug discovery and development. Venkatakrishnam et al. [81] have 

also investigated the role of CYP1A2, CYP2B6, CYP2C19, CYP3A, and CYP2D6 in a lymphoblastic 

cell line and suggested the incorporation of bridging factors between rhCYP and liver microsomes, 

such as RAF and abundance of CYP isoform in microsomes. 

3.1.4. Additional Correction Factors 

In the conventional IVIVE method, the prediction of in vivo CL using in vitro metabolic data 

has been performed with good agreement. However, this method could not be used for drugs with 

high binding rate to plasma and/or blood protein, low CL, or high interaction with transporters. To 

overcome these limitations, recently, investigators have tried to develop new IVIVE methods using 

physiologically-based and mechanistic approaches which are presented below in detail. 

FI 

Only unbound and unionized forms of drugs have access to hepatocytes, which are the sites of 

metabolism. In the conventional IVIVE model, protein binding is a key factor contributing to the 

accuracy of CL prediction. Berezhkovskiy [71] has developed a modified equation to predict CLH 

based on differences in intra- and extra-cellular pH of the unbound drug fraction using FI as 

presented in Equations (57) to (60). These equations yielded higher values (up to 6.3-fold) of CLH for a 

basic compound (FI > 1) for strong diprotic bases, but lower values (up to 6.3-fold) of CLH for an acidic 

compound (FI < 1) for strong diprotic acids. The author suggests that the modified equation with FI 

improved the issue of both under- and over-estimation commonly encountered in IVIVE. Therefore, 

for basic compounds, the modified equation could improve the prediction of CLH. For acidic drugs, 

the conventional IVIVE equation tends to overestimate the CLH. However, this modified equation also 

improves the prediction of CLH for acidic compounds. Especially, the ionization factor significantly 

influences the calculation of CLH for drugs with a low extraction ratio since CLH is directly 

proportional to FI in this case. 

Effective Fraction Unbound in Plasma 

Calculation of drug concentration in the site where metabolism occurs is important in IVIVE 

methodology since only free-form drugs penetrate the cellular membrane to reach the metabolic 

enzyme. Ionic interactions between extracellular binding proteins and the hepatocyte surface provide 

higher cellular exposure for the unbound drugs than without consideration of the interactions [82]. 

Poulin et al. [72,83,84] have developed a mechanistic IVIVE model based on two additional 

factors including pH differences between extracellular and intracellular water in liver, and 

protein-facilitated uptake induced by potential ionic interactions between protein-albumin bound 

drug complex and cell surface. This mechanistic IVIVE model overcomes the prediction of human CL 
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for drugs with low CLint and high binding affinity for proteins commonly encountered when 

predicting human CL from in vitro data. Equations suggested by Poulin presented in Equations (61) 

to (62), incorporate the new correction factor of unbound fraction in the liver. 

3.1.5. Physiologically-Based IVIVE Model 

Despite several attempts to accurately predict drug concentrations in the liver where 

metabolism takes place, the comparative analysis from Hallifax and Houston [85] reported fewer 

differences in accuracy for the prediction in vivo CL, calculated by Berezhkovskiy and Poulin, using 

conventional methods. Furthermore, the authors have underscored the need to develop a model 

that reflects additional physiological factors and mechanistic elucidation to overcome the 

limitations of existing methods. 

In the disposition process, transporters and enzymes play a key role by interacting with each 

other [86]. Conventionally, IVIVE methods are focused on a single pathway of drug metabolism. 

However, a drug introduced into the body is cleared via the ADME pathways, which involves 

numerous enzymes and transporters. 

Wu et al. [87] have suggested a Biopharmaceutics Drug Disposition Classification System 

(BDDCS), which is modified by the Biopharmaceutics Classification System based on routes of drug 

elimination and the effect of efflux and absorptive transporters. Their study revealed that highly 

permeable compounds are highly metabolized whereas less permeable compounds tend to be 

eliminated via renal and/or biliary excretion in intact form. 

A novel IVIVE method was developed to predict hepatic organ clearance via physiology-based 

modeling [42,73] as shown in Equations (63) to (64). This new method reflects additional 

physiologically relevant information (namely hepatic uptake, metabolism, biliary excretion, and 

sinusoidal efflux) compared with the conventional method. The proposed method was used to 

predict rat hepatic clearance of 13 compounds with various physicochemical and PK characteristics. 

In these studies, the hepatic clearance of valsartan (class 2 compound based on BDDCS) was 

underestimated with the highest fold-error of 3.95. The rate-limiting steps of class 2 compounds 

include metabolism and biliary excretion. Although this method incorporates both biliary excretion 

and metabolism in a typical single parameter prediction, underestimated cases such as valsartan 

prevailed probably due to its high plasma protein binding (97%) feature. However, since plasma 

protein binding is considered in the model, the error might have occurred due to unknown 

non-hepatic elimination. 

Although these novel IVIVE methods provide precise prediction and detailed information of 

CL, additional in vitro data are required compared with the conventional single parameter 

prediction. Furthermore, in the early phases of drug discovery and development, it may be difficult 

to apply high-throughput screening, which is an advantage under in vitro experiment settings. 

However, this novel IVIVE method represents a very useful tool for the evaluation of optimized 

candidates prior to clinical trials. 

An extended clearance model (ECM) based on hepatobiliary clearance has been reviewed by 

Camenisch et al. [41]. The same group proposed a new IVIVE method for the prediction of total 

clearance for accurate prediction of relative elimination contribution. Two mathematical Equations 

(66) and (67) depict the relationship between PSinf and fnH; and PSinf,pas and fnmet. In vitro data (i.e., 

hepatic uptake data) based on suspensions of human hepatocytes fnH and fnmet can be calculated 

using the equations. 

Along with estimated fractional parameters, total clearance can be presented as the sum of 

parallel connected organ clearances assuming the absence of extra-hepatic and/or renal clearance. 

This practical method facilitates the determination of the mechanism of elimination pathway using 

only in vitro data. 

4. Application of AS for the Prediction of Human PK Parameters 

4.1. Concept of AS 
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Allometry is the study of the relationship between size and physiological parameter. It is the 

study of the usual variation in measurable characteristics of anatomy and physiology as a function of 

overall body size [88]. The allometric equation is generally expressed as a power function based on 

the following equation [20]: 

Y = aW� (73)

In Equation (73), the Y and X represent quantitatively measurable variables, a denotes constant 

of appropriate unit, and b is a power exponent. In the PKs, Y is a parameter of interest and B is a 

physiological parameter, and W is weight. In general, a is drug dependent and b is parameter-type 

dependent, which are approximately 0.75 for CL and chemical-specific factors associated with 

metabolism (e.g., Vmax), 1 for volume of organs and blood flows, and 0.25 for physiological times [18, 

88]. AS assumes that mammals share similar anatomical, biochemical, and physiological features 

[16,21]. 

4.2. Prediction of Clearance by AS 

There have been various attempts to predict human clearance. Mathematical equations are 

presented in Table 3. Since simple AS is one of the simplest methods for prediction of human PK 

parameter, it is widely used for scale-up of prediction from non-clinical PK data to humans. Although 

it is simple and useful by nature, simple AS has not been entirely successful for the prediction of 

human clearance. To overcome this limitation, various groups have reported new methods of AS.  

Table 3. Methods for prediction of clearance (CL) using allometric scaling (AS). 

Method Equation Comments * Ref. 

Simple AS CL = a(W)� (74) Select a proper equation 

by the rule of exponent 

(ROE) 

W and BW represent 

body and brain weight, 

respectively 

- 

AS with MLP 1 CL ∙ MLP = a(W)� (75) - 

AS with BW CL ∙ BW = a(W)� (76) [89] 

Rule of exponent 

If the exponent is 0.55 to 0.7,  

then use the simple AS, Equation (74) 
 

 [90] 
If the exponent is 0.71 to 1,  

then use the MLP, Equation (75) 
 

If the exponent is more than 1,  

then use the BW, Equation (76) 
 

Two-term 

method 
CL = θ(W)� ∙ (BW)� (77) 

θ is a constant, which is 

determined by multiple 

regression analysis 

[91] 

Multiexponential CL����� = aW� + ��
1 −

3
2

b

1 −
1
2 b

�� aW�.� (78) 
The unit of CL is 

mL/min 
[92] 

Normalized AS CL������

CL���,�����

CL���,������

= a(W)� (79) 

CLint refers the unbound 

CLint in microsomes or 

hepatocytes in species 

and humans 

[93] 
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One species AS CL����� = CL������ ∙ (
W�����

W������
)� (80) 

The exponent b is a 

constant 0.75, which is 

physiologically relevant 

value  

(e.g., blood flow, filtration, 

etc.) 

[94,95] 

One species AS 

CL���� = 0.152 ∙ CL��� ∙ (
W�����

W���

) (81) 

Predict the CL of 

bound drug 

[90] 

CL���� = 0.41 ∙ CL��� ∙ (
W�����

W���
) (82) 

CL���� = 0.407 ∙ CL������ ∙ (
W�����

W������

) (83) 

Two species AS 

CL���� = a������� ∙ W�����
�.��� (84) 

Predict the CL of 

bound drug 
CL���� = a���������� ∙ W�����

�.��� (85) 

Hepatic liver 

method 
CL���� = CL������ ∙ (

Q�,�����

Q�,������
) (86)  [96] 

FCIM 2 CL = 33.35 × (
a

Rf�
)�.�� (87) 

Rfu is the fu ratio 

between rats and 

humans and a is 

the coefficient form 

AS 

The unit of CL is 

mL/min 

[97] 

QSAR 3 

LogCL���� = 0.433 ∙ log (CL���)

+ 1.0 ∙ log (CL���)

− 0.00627 ∙ MW + 0.189 ∙ Ha
− 0.00111 ∙ log (CL���) ∙ MW

+ 0.0000144 ∙ MW�

− 0.0004 ∙ MW ∙ Ha − 0.707 

(88) 

The unit of 

observed and 

predicted CL value 

is mL/min/kg 

[98] 
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LogCL��,����

= −0.5927 + 0.7386 log�CL��,����

+ 0.5040log�CL��,����

+ 0.06014clogP

− 0.1862 log�CL��,���� × clogP

+ 0.02893MW × clogP
+ 0.02893MW × clogP

+ 0.02551 log�CL��,����

× log�CL��,���� clogP

− 0.03029 log�CL��,���� × log�CL��,����

× Ha

− 0.03051 log�CL��,���� × MW × clogP

+ 0.08461 log�CL��,���� × log�CL��,����

× log�CL��,����

− 0.2510log (CL��,���) × log(CL��,���)

× MW
+ 0.06061log (CL��,���) × log (CL��,���)

× Ha
+ 0.04607log (CL��,���) × clogP × clogP

− 0.003596clogP × clogP × Ha
+ 0.0005963clogP × Ha × Ha 

(89) 

The unit of 

observed and 

predicted oral CL 

value is mL/min/kg 

[99] 

* Each comment corresponds to all the equations within each major section of the table defined by 

horizontal lines. 
1 The maximum life-span potential (MLP) is calculated by the equation MPL (years) = 

185.4BW0.636W-0.225 [100]. 
2 Fraction unbound intercept correction method 
3 Quantitative structure activity relationship (QSAR) consist of physicochemical properties, such as 

molecular weight (MW), partition coefficient (cLogP), and number of hydrogen-bound acceptors 

(Ha). 

4.2.1. Two-Term Method 

Boxenbaum and Fertig [17] have developed the two-term method. In their work, the intrinsic 

clearance of antipyrine was predicted using a two-term allometric equation including brain weight 

(BW) and weight (W) based on Equation (77). The equation was in good agreement with the 

relationship between antipyrine intrinsic clearance and physiological variables, BW and W. However, 

in their article, only a single drug, antipyrine, was tested. Further investigation revealed that this 

two-term equation was limited to general conditions. 

4.2.2. Rule of Exponent 

Mahmood and Balian [6,89,101–106] have contributed to numerous works on AS. In their studies, 

they compared the CL value of antiepileptic drugs using four different allometric equations: a 

simple AS in Equation (74), the product of CL and MPL in Equation (75), the Boxenbaum’s two-term 

power function in Equation (77), and the product of CL and BW in Equation (76), a novel equation 

developed by Mahmood and Balian. 

It is well known that the simple AS adequately predicts the CL of a drug, which is mainly cleared 

by renal excretion. However, under general circumstances, simple AS was not adequate to predict CL. 

When Boxenbaum’s two-term method was used to predict the CL of antiepileptic drugs, the 

prediction failed. When MLP and brain weight were incorporated in simple AS, the predicted values 

showed good agreement with the observation values [89]. 

Mahmood and Balian extended their studies to another work [105] by applying three of four AS 

methods (except for the two-term power method) to drugs with various physiochemical and PK 

properties. 
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Moreover, the ROE, established by Mahmood and Balian [105], provides a guide for the selection 

of appropriate AS methods for the prediction of drug clearance. The choice of method depends on the 

exponent determined by simple AS. If the exponent lies between 0.55 to 0.7, the simple AS method is 

reasonable. If the exponent lies between 0.71 to 1.0, clearance can be predicted reasonably well using 

CL product MLP method. If the exponent is larger than 1.0, clearance can be predicted using CL 

product BW method [105]. Mahmood [103] also tested the ROE to predict oral clearance by the same 

approach. Results showed that the ROE also predicted oral clearance. 

Some researchers have expressed concerns about AS since correction factors such as MLP and 

BW have no clear biological rationale [107]. The fact that three or more species are needed for a 

reliable prediction of CL [108] is time consuming and costly in the drug development process. 

However, considering that various experiments are conducted during the drug discovery and 

development process, at least two animals in an in vivo study are necessary for the non-clinical study 

[109]. 

The ROE method could be applied to predict a human CL for biliary excreted drugs. Correction 

factors are derived based on bile flow with normalization by body weight and liver weights. After the 

appropriate method is selected by ROE, the CL in a given species is divided by the calculated bile 

flow correction factor and scaled. The predictability of human CL is significantly improved using the 

bile flow correction factor [110]. 

4.2.3. One or Two Species Method 

A few studies have reported AS using only one or two species [90,94,95]. As presented in 

Equations (80) to (85), these empirically determined equations provide valuable information about 

predicted human CL. Results using these methods are in good agreement. Especially, considering 

the limited available data in the early phase of drug discovery and development process, these 

methods are useful tools for the prediction of human CL and provide evidences for go or no-go 

decision-making. 

4.2.4. Liver Blood Flow 

Liver blood flow is used as a correction factor in AS. Liver blood flow is used to predict human 

CL using Equation (86). It has been suggested that the simple liver blood flow-based scaling is the 

best method and that monkey liver blood flow (MLBF) is superior to predict human CL from rats, 

dogs, and monkeys’ CL data [96]. 

The advantage of this method is clear in that it only needs a single species to scale up from 

animal data. In addition, the MLBF method is particularly applicable to drugs that are not readily 

metabolized and/or renally excreted when administered intravenously [101]. However, Mahmood 

[101] has raised an issue about the MLBF method reported by Nagilla and Ward [96]. Mahmood 

[101] claimed that the reported MLBF method had statistical flaws and that the dataset used in their 

work [96] should be clarified. Furthermore, the bile flow used in the study did not match with the 

bile flow rate reported by Davies and Morris [35] which they cited. Furthermore, the MLBF method 

assumes that data from rats, dogs, and monkeys are always available. However, this is not true. In 

addition, this method is based on only three species. 

4.2.5. Incorporation of in Vitro Data 

Lave et al. [93] have investigated in vitro data with AS to predict hepatic clearance for 10 drugs 

that are extensively metabolized. They determined the rate of metabolism in various animal species 

via in vitro experiments, including human liver microsomes and hepatocytes. The authors 

concluded that correcting clearance with in vitro metabolic rates significantly improved the 

prediction of human CL compared with direct scaling or correction with BW. 

Although this in vitro correction method provided a rationale based on physiological factors, 

Mahmood [102] demonstrated that MLP corrected AS produced the same results. However, this in 
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vitro correction method showed a clear disadvantage in that in vitro CL from several species must 

be determined in the MLP correct AS method, which is time consuming and costly [22]. 

4.2.6. Protein Binding 

Theoretically, only unbound drugs can be distributed to the hepatocytes where the metabolism 

occurs and/or kidney excretes. Since the protein binding properties of a drug vary between species 

[111], disposition of the drug may be variable in different species. Chiou et al. [112] have reported 

the effect of protein binding on prediction of human clearance in AS for 15 extensively metabolized 

drugs. In their work, consideration of protein binding to correct inter-species differences in AS 

tended to improve the prediction of human clearance. Although it is theoretically feasible to use AS 

with unbound clearance (CLu = CL/fu) based on protein binding, in practice, fu does not significantly 

improve its predictability [22], [113]. 

Mahmood [104] has investigated the role of protein binding in the prediction of CL using 20 

randomly selected drugs. Furthermore, Mahmood [6] has compared total CL and CLu and found 

that for drugs excreted renally or via extensive metabolism, CLu could not be predicted any better 

than total CL. 

4.2.7. QSAR Approach 

Wajima et al. [98,99] have tried to predict human CL based on physicochemical properties of 

drugs. In their method, human CL was predicted using descriptors including MW, cLogP, and Ha. 

Observed rat and dog data were incorporated into their analysis. Their method facilitated 

prediction of human clearance. 

4.2.8. Fraction Unbound Intercept Correction Method (FCIM) 

FCIM was developed by Tang et al. [97] for prediction of human CL. In this method, 

water-octanol partition coefficient and the ratio of fp between rats and human (Rfu) are considered. 

The authors concluded that the new method significantly improved the prediction, even better than 

ROE. Furthermore, this method improved the prediction of vertical allometry. 

However, when Mahmood [106] performed comparative analysis using ROE and FCIM for 

drugs with various PK properties (i.e., extensively metabolized, renally excreted and/or secreted 

and biliary excreted), the results showed that both methods facilitated the prediction of human 

clearance. In some cases, one of these two methods could be more suitable for predictions. However, 

the author expressed concern about FCIM since it uses a fixed exponent of 0.77 and a constant of 

33.35 while exponents of AS are dependent on the species used in the scaling. Furthermore, FCIM is 

not suitable for renally secreted and biliary excreted drugs. Despite such concerns, when both 

methods are considered, it is possible to predict CL in a wide range of drugs. 

4.2.9. Multiexponential Allometric Scaling (MA) 

Goteti et al. [92] have developed a new method for animal scale up using MA. In this method, 

the human CL is estimated by the equation below: 

CL = aW� + cW� (90)

where a and b represent coefficient and exponent obtained from simple AS, respectively, and c and 

d are coefficient and slope from MA, respectively. 

The slope of MA (i.e., the value of d in Equation (90)) is determined by plotting blood flow rate, 

organ volume, and organ weights of liver and kidney in non-clinical species against W. As a result, 

the slopes of liver and kidney were found very similar. The value of d is fixed as 0.9. The coefficient 

of c is the function of the coefficient of a from AS. The final MA equation is derived as shown in 

Equation (78). 
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The MA method can successfully predict human clearance. Their results indicate that monkey 

is an important species for scaling. When the exponent of simple AS was greater than 0.7, MA 

showed better prediction of human CL than the simple AS method. 

4.3. Prediction of Volume of Distribution by AS 

4.3.1. Volume of Distribution in PKs 

There are three types of volume of distribution (Vd) and generally estimated in PKs. 

 Volume of distribution of central compartment (Vc). 

 Volume of distribution at steady state (Vss) 

 Volume of distribution by area (Varea), also known as Vβ 

Vc is used as a correlation factor for the concentration and number of drugs in the body by the 

following equation: 

X = V� × C (91)

where X and C refer to the amount of drugs in the body and concentration in the blood, 

respectively. Of these three types of volume of distribution, Vc is generally predicted from animal 

data. Its predictability is better than the others [114]. 

The following equations show that Vd is clearly different from the actual tissue volume where 

drugs are distributed in the body: 

X = V�� ∙ C + � V� ∙ C�

�

���

= V�� ∙ C + � V� ∙ K� ∙ C

�

���

= �V�� + � V� ∙ K�

�

���

� ∙ C

= V� ∙ C 

(92)

where Vbl is the volume of blood, Vi is the volume of organ, Ci is the concentration in the organ, and 

Ki is the partition coefficient (Ki = Ci/C). In this equation, the greater the tendency to distribute to 

tissues from blood (i.e., the greater Ki), the greater is the Vd. 

4.3.2. Prediction of Vd 

Various methods have been developed to predict Vd, and the equations are presented in Table 

4. In general, Vd is well correlated with body weight, indicating that the exponent of Vd is around 1 

(usually between 0.8 and 1.1) [115]. Furthermore, for the prediction of Vd, the two species in AS are 

acceptable compared to the use of three or more species. In the study of Mahmood and Balian [108], 

the average exponents using the simple AS for the prediction of Vd are 0.89 and 0.90 in case of 3 and 

2 species, respectively. 

The effect of protein binding on the prediction of Vd by AS has been investigated. As 

mentioned above, it is well known that protein binding properties vary between species. 

Furthermore, only unbound drugs penetrate blood vessels and biological membranes. For a drug 

with low binding affinity to plasma and tissue protein or drugs that are only distributed in the 

extracellular space, they can be scaled since total body water and extracellular water shows inverse 

correlation with animal size in AS [116]. 

Sawada et al. [117] have reported that considering the unbound fraction in the prediction of Vd 

may increase the accuracy of prediction results than the volume against unbound fraction in the 

plasma. In another study of Sawada et al. [118], the authors investigated the prediction of 

disposition of beta-lactam antibiotics and reported large differences in free volume of distribution 

between species. However, additional work revealed no advantage in consideration of the unbound 
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fraction when Sawada et al.’s work was re-evaluated by adding six more drugs from the study of 

Mahmood [115]. 

Table 4. Methods for prediction of volume of distribution (Vd). 

Method Equation Comment * Ref. 

Simple AS V = a(W)� (93) 

The prediction of Vd is 

well predicted equally 

with using two species 

in AS  

[108] 

Average 

fraction 

unbound 

in tissue 1 

V = V�������1 + R�/�� + f� ∙ V�(
V�

V�
−

V� ∙ f�

α�
) (94) 

It is useful to analyze 

and predict an 

alteration in apparent 

Vd then identify the 

cause of alteration. 

It is particularly useful 

for drugs with low Vd 

(<15 L or 0.2 L/kg) 

[119] 

Proportionality V�����,���� =
V������ ∙ f�,�����

f�,������

 (95) 

It is assumed that the 

volume of distribution 

at a steady state of free 

drug is identical 

between species 

[120] 

One species AS V�����,���� = −0.35V���
�.�� (96) 

Statistical modeling is 

applied in this model 
[121] 

QSAR 

log�Vd��,������ = 0.1859

∙ log�Vd��,���� × log�Vd��,����

− 0.3887

∙ log�Vd��,���� × log(MW)

+ 0.3089

∙ log�Vd��,���� × log(MW)

+ 0.003306 ∙ log(MW) × c log P

+ 1.71 

(97) 

Vdss, human (mL/kg) is 

predicted by QSAR 

modeling with 

quadratic term 

descriptors 

[122] 

* Each comment corresponds to all the equations within each major section of the table defined by 

horizontal lines. 
1 Where Vd is apparent volume of distribution, Vplasma is plasma volume, VE is extracellular space 

minus the plasma, VR is physical volume into which the drug distributes minus the extracellular 

space, fu is the fraction unbound in plasma, and RE/I is the ratio of distributed albumin in the 

extravascular space to that in the intravascular space. It is 1.4. αR equals to Cu/CR where Cu is 

unbound drug concentration at distribution equilibrium and CR is concentration in VR. 

4.3.3. Prediction of Elimination Half-Life by AS 

Elimination half-life (t1/2) is one of the most important PK parameter determining the dosage 

regimen and drugability. Predicted CL cannot estimate the t1/2 since the Vd and CL are required for the 

estimation of t1/2 as presented by the equation: 

t�/� =
0.693V�

CL
 (98)

Because of the hybrid nature of the t1/2, this parameter has been poorly estimated by AS 

[89,114]. Instead of direct scaling of t1/2, Mahmood [89] has suggested the calculation of t1/2 as a 

secondary parameter using Equation (98). Another approach for prediction of human t1/2 is based on 

the mean residence time (MRT) [114]. The MRT represents the average staying time of the drug in a 
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body organ or compartment as the molecules diffuses in and out [28] and the parameter is 

estimated by the following equation: 

MRT =
V��

CL
 (99)

where CL is calculated by the Equation (1). Since Vss is the summation of the volume of the central 

compartment (Vc) and peripheral compartment (Vp) in a two-compartment PK model, MRT can also 

be expressed with the equation below combined with Equation (2) [28]: 

MRT =
V� + V�

k ∙ V�

 (100)

Mahmood [114] investigated the prediction of MRT by AS. Results showed good agreement. 

Therefore, the t1/2 was predicted using the predicted MRT by following equation: 

t�/� =
MRT

1.44
 (101)

5. Prediction of Absorption Related PK Parameters 

Absorption rate constant (ka) is generally expressed by first or zero order constant. It could be 

estimated from various PK models. However, ka is originally an apparent parameter that can be 

best estimated through first-order loss of drug from the gastrointestinal tract, not through 

first-order appearance of drug in the plasma [52]. 

AS was applied to predict turn-over parameters. Turn-over rate refers to the amount that a 

compound is secreted or synthesized per unit time [52]. Therefore, in general, neither is ka scaled 

from animal data, nor is the affinity parameter (i.e., Km) in Michaelis-Menten equation applied by 

body weight scaling. [88]. Although AS equation for scaling the first order kinetic parameter (i.e., k) 

has been suggested by Kenyon [88] as shown in Equation (102) in Table 5, further evaluation is 

required. 

Various empirical relationships of effective permeability (Peff) with physicochemical properties 

or Caco2 in vitro data have been reported. They are shown in Table 5. The ka was estimated with 

the predicted Peff combined with Equation (112). Another way to predict ka is to use the mean value 

of absorption parameters from animal data. Liu et al. [123] have reported a method for human PK 

projection of imigliptin using IVIVE, AS, and PK/PD modeling. In their study, the absorption 

parameter was applied as the mean value in non-clinical animal models such as rats, dogs, and 

monkeys. 

Equations for predicting the fraction of absorption (Fa) have been reported by a few 

investigators. In Equation (115), Fa is predicted by a mechanism-based model using equilibrium 

solution for ka. Other relationships between Fa and Peff are presented in Equation (116). The 

empirical equation could be used for prediction of Fa using in vitro permeability data. 

Table 5. Methods for prediction of absorption parameters. 

Method Equation Comments * Ref. 

AS k� = animal k� × (
W�����

W������
)��.�� (102) The unit of ka is h in time-1 [88] 

QSAR1 

logP��� = −2.883 − 0.01PSA
+ 0.192logD�.�

− 0.239HBD 
(103) The choice of model for 

prediction depends on the 

availability of descriptor data 

Effective permeability in 10-4 

cm/s 

[124]  
logP��� = −2.546 − 0.011PSA

− 0.278HBD 
(104) 

logP��� = −3.067 + 0.162clogP
− 0.01PSA
− 0.235HBD 

(105) 
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Use of Caco2 

data 2 

P���,����� = 0.4926 log P���,�����

− 0.1454 (at pH
= 7.4) 

(106) 

All tested drugs 

[125] 

P���,����� = 0.6532 log P���,�����

− 0.3036 (at pH
= 6.5) 

(107) 

P���,����� = 0.6836 log P���,�����

− 0.5579 (at pH
= 7.4) 

(108) 
Only passively diffused 

drugs P���,����� = 0.7254 log P���,�����

− 0.5441 (at pH
= 6.5) 

(109) 

P���,����� = 0.4898 log P���,�����

+ 0.3311 (at pH
= 7.4) 

(110) 

Only carrier-mediated drugs 
P���,����� = 0.542 log P���,�����

+ 0.06 (at pH
= 6.5) 

(111) 

Sinko et al. 5 k� =
2P���

R
 (112) 

The absorption rate constant 

is proportional to the Peff 
[126] 

Mechanism 

based 

modeling 3 

F�,���� = 0.884F�,��� + 7.47  (113) 

Fa is expressed as percent 

unit 

The equation is the result of 

the correlation between Fa,pred 

and Fa,exp 
[127] 

k�,�� =
P�S

V�
 (114) 

ka,eq is expressed as the unit 

of min-1 

ka,eq is a key determinant for 

Fa and can be used as PK 

modeling  

F� =
k�,��

k� + k�,��

 (115) 

Compartmental 

absorption and 

transit model 4 

F� = 1 − (1 + 0.54P���)
�� (116) 

Fa is expressed as the 

fractional value. 
[128] 

* Each comment corresponds to all the equations within each major section of the table defined by 

horizontal lines. 
1 In this equation, passive intestinal absorption in humans was predicted. Abbreviations are: Peff, 

effective permeability; PSA, polar surface area; logD5.5, octanol/water distribution coefficient at pH 

5.5; HBD, number of hydrogen bond donors; clogP, calculated logP value. 
2, 5 Peff is calculated by the equation of Peff = Q(1-Cout/Cin)/2πRL, where Peff is effective permeability, Q 

is perfusion rate (mL/min), Cout and Cin are outlet and inlet drug concentration, respectively, R is the 

radius of human jejunum (1.75 cm) [129], and L is the length of perfusion segment (10 cm). Caco2 

permeability and human effective permeability are expressed with values of x10-6 cm/s and x10-4 

cm/s, respectively. 
3 ka,eq is the equilibrium solution for ka, Pm is drug permeability across intestinal mucosa (x10-6 cm/s), 

S is the absorptive surface area which is set at 200 m2, Vc is the volume of distribution in 

well-perfused organs, ki is the rate constant of intestinal transit, which is set to be 5.025x10-3 min-1 as 

an inverse value of the average transit time [130] in human small intestine (approximately 199 min). 
4, 5 Peff is human effective permeability in cm/h. 

6. Conclusion 

Investigating the CL pathway is a significantly important issue in drug development. Drug CL 

parameters have an impact on the determination of dosing regimens for both normal and special 

populations, such as pediatric, elderly, and patients with renal or hepatic impairment, drug–drug 

interactions, and so on. 
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Prediction of PK parameters from non-clinical studies is essential in the drug discovery and 

development process. Over the last five decades, numerous translational approaches have been 

developed to predict human PK parameters. Both IVIVE and AS methods provide insight based on 

non-clinical studies for decision-making in the drug discovery and development process. 

In the overall prediction of total clearance, AS represents a powerful method for the use of 

non-clinical data from single or multiple species. However, it is difficult to determine the variation 

in transporters and/or enzyme expression, affinity, and specificity with AS. 

The proposed ECM model combined with the prediction of contribution could represent a 

breakthrough in AS and conventional IVIVE methodology. 

Integration of the in vitro data and in vivo animal data is recommended for accurate prediction 

of specific ADME processes in humans [7] and recently, the combined methods were applied to a 

drug development process [123,131]. Since the choice of method depends on data availability and 

each method has advantages and disadvantages, the designing of an overall non-clinical study to 

generate appropriate data for scaling is one of the key steps in the practice of investigation. 

Despite its uncertainty, ongoing refinement of IVIVE and AS methods will increase the 

accuracy of predictability and increase our understanding of the underlying rationale into 

mechanisms of extrapolation from in vitro or in vivo to human. 
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Appendix: Abbreviation list in alphabetical order 

Abbreviation Description 

ADME absorption, distribution, metabolism, excretion 

AS allometric scaling  

AUC0-inf area under the concentration-time curve from zero to infinity 

BDDCS biopharmaceutics drug disposition classification system  

BW brain weight 

CB drug concentration in blood 

CL clearance 

CLH hepatic clearance  

CLint intrinsic clearance 

CLint, H hepatic intrinsic clearance 

CLint,H, human  human hepatic intrinsic clearance 

CLint,H, pred predicted hepatic intrinsic clearance 

CLint,in vitro in vitro intrinsic clearance 

CLint,met  intrinsic metabolic clearance 

CLint,sec  intrinsic secretory clearance 

CLmet metabolic clearance 

cLogP partition coefficient  

clogP calculated logP 

CLorg organ clearance 

CP drug concentration in plasma 

CR  concentration in VR 

CRBC drug concentration in red blood cells 
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Cu unbound drug concentration at distribution equilibrium 

DMPK drug metabolism and pharmacokinetic  

DN dispersion number  

ECM extended clearance model  

ER extraction ratio 

ERH hepatic extraction ratio 

ERH, obs observed hepatic extraction ratio 

ERH, pred predicted hepatic extraction ratio 

F fraction of absorption 

f��
�  unbound fraction in the intracellular water of ionized compound 

f��
�  unbound fraction in the intracellular water of neutral compound 

f�
�  unbound fraction in the plasma of ionized compound 

f�
� unbound fraction in the plasma of neutral compound 

Fa fraction of absorption  

fb unbound fraction in blood 

FCIM fraction unbound intercept correction method 

FH hepatic availability  

FI ionization factor 

fnH fractional contribution of hepatic elimination 

fnmet  fractional contribution of metabolic elimination 

fnsec fractional contribution of biliary elimination 

fp unbound fraction in plasma  

FPO oral bioavailability  

fu, mic non-specific binding factor to microsomes  

fu,liver unbound fraction into the liver  

Ha number of hydrogen-bond acceptors 

HBD number of hydrogen-bond donor 

Hct hematocrit  

HLM human liver microsomes  

IIV inter-individual variability  

ISEF inter-system extrapolation factor 

ISTD internal standard 

IVIVE in vitro-in vivo extrapolation 

IW intracellular water 

ka absorption rate constant  

ka,eq  equilibrium solution for ka 

ki  the rate constant of intestinal transit 

Km Michaelis constant 

L length of perfusion segment  

MA multiexponential allometric scaling  

MLBF monkey liver blood flow  

MLP maximum life-span potential  

MPPGL microsomal protein per gram of liver 

MPR microsomal protein recovery  

MRT mean residence time  

MW  molecular weight  

NCA non-compartmental analysis  

Peff effective permeability  

PK pharmacokinetic 

PLR plasma to whole liver concentration ratio  



Pharmaceutics 2019, 11, 168 27 of 33 

 

Pm drug permeability across intestinal mucosa  

PSA polar surface area 

PSbile biliary clearance 

PSefflux, total 
apparent sinusoidal total efflux clearance from the intracellular side of 

hepatocytes back into blood  

PSinf, act  sinusoidal efflux from hepatocytes back into blood  

PSuptake,total total apparent uptake clearance  

QH hepatic liver flow 

QSAR quantitative structure activity relationship  

R radius of human jejunum 

RAF relative activity factor 

RB/P blood to plasma ratio 

RE/I  
ratio of distributed albumin in the extravascular space to that in the 

intravascular space 

Rfu unbound fraction in plasma ratio between rats and humans 

rhCYP recombinant human CYP system  

RN efficiency number  

ROE rule of exponent 

S absorptive surface area  

t1/2 half-life  

V volume of distribution  

Varea, Vβ volume of distribution by area  

Vc volume of distribution of central compartment  

VE  extracellular space volume minus the plasma volume 

Vmax maximal rate of the reaction 

Vmet metabolic rate  

Vplasma plasma volume 

VR 
physical volume into which the drug distributes minus the extracellular 

space 

Vss volume of distribution at steady state  

W body weight 

ε2  variance for each sinusoid in the whole liver 
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