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Abstract: Embedding of active substances in supramolecular systems has as the main goal to 

ensure the controlled release of the active ingredients. Whatever the final architecture or 

entrapment mechanism, modeling of release is challenging due to the moving boundary 

conditions and complex initial conditions. Despite huge diversity of formulations, diffusion 

phenomena are involved in practically all release processes. The approach in this paper starts, 

therefore, from mathematical methods for solving the diffusion equation in initial and boundary 

conditions, which are further connected with phenomenological conditions, simplified and 

idealized in order to lead to problems which can be analytically solved. Consequently, the release 

models are classified starting from the geometry of diffusion domain, initial conditions, and 

conditions on frontiers. Taking into account that practically all solutions of the models use the 

separation of variables method and integral transformation method, two specific applications of 

these methods are included. This paper suggests that “good modeling practice” of release kinetics 

consists essentially of identifying the most appropriate mathematical conditions corresponding to 

implied physicochemical phenomena. However, in most of the cases, models can be written but 

analytical solutions for these models cannot be obtained. Consequently, empiric models remain 

the first choice, and they receive an important place in the review. 

Keywords: boundary conditions; diffusion equation; drug carriers; release kinetics 

 

1. Introduction 

Supramolecular drug systems (SMDS) constitute a very wide concept. Supramolecular 

chemistry can be understood as the “chemistry of multi-molecular complexes”, i.e., approximately 
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whole chemistry. Since such an approach would push the discussion beyond the concrete aspects 

in the meta-science domain, the present review aims to focus on microscopic, multiphasic drug 

carriers.  

No matter what their physicochemical and pharmaceutical form might be, drug systems 

should have two essential characteristics: biocompatibility and controlled release capacity. 

Controlled release is imposed by the necessity of providing a therapeutic agent at the action site in 

the therapeutic window, i.e., between efficacy and toxic levels. The site of action is generally 

unknown, but it is commonly accepted that the active substance is transported to the “receptor” 

trough the bloodstream. Under those circumstances, the less ambitious but more feasible task of 

the majority of research and development activities is oriented toward pharmacokinetic goals, by 

means of pharmaco/toxico kinetics and dynamic modeling. 

When the pharmacokinetic windows are not known, a series of technological factors and 

methods are used for assurance of controlled release kinetics of active substances.  

In vitro evaluation of the results, correlation with in vivo results, and finally the prediction of 

pharmacokinetics of active substances involve high-level mathematical models and methods 

developed for describing the so-called “mass transfer phenomena”.  

It is to underline that mathematical models involved in the description of mass transfer are 

common methods for describing all type of transfer phenomena. The phenomena of mass, heat, 

and impulse transfer are quite different fields in physics but are described by practically identical 

mathematical equations. From the point of view of material support of transfer, these phenomena 

are classified as follows: 

- diffusion phenomena, when the support is represented by molecules; 

- convective transport by currents in fluids, described by fluid mechanics; 

- radiative transport of elementary particles. 

Mathematical equations and methods are in fact common for all these processes. In fluid 

mechanics, we have the Navier–Stokes equation, and, in case of heat transfer, we have the Fourier–

Kirchhoff equation.  

As a consequence of the above-presented similarities there are also correspondences between 

models. For example, almost all solutions of the heat transfer equation and from fluid mechanics 

are transferrable, and they are indeed applied in the analysis of diffusion phenomena. 

As underlined by Crank in “The Mathematics of Diffusion” [1], all heat transfer solutions are 

translated into mass transfer solutions, replacing the constant k (thermal diffusivity) with another 

constant, D ( the diffusion coefficient). In the preface of the first edition, the author stated that “the 

mathematical theory of diffusion is founded on that of heat conduction” and, correspondingly, the 

early part of this book was developed based on “Conduction of heat in solids” by Carslaw and 

Jaeger” [2]. In fact, the main ideas come from the theory of heat transfer by Fourier published in 

1822 and later applied to diffusion by Fick in 1855. 

A fundamental characteristic of transfer phenomena modeling is that the solutions are very 

“smooth” functions, having a behavior in the domain where transfer takes place, determined by 

their values on the frontier. It is essential to take note that frontiers in both in vitro and in vivo 

transfer phenomena are most frequently “the interfaces”. The authors of the present paper 

considered in a series of research papers that even pharmacodynamic effects are most frequently 

the results of accumulation and effects at interfaces and particularly “membrane interfaces”[3].  

All models of transfer phenomena are described by differential equations, and the solutions of 

real practical interest are particular solutions, defined by properties on frontiers called “boundary 

conditions”. 

The present paper attempts to analyze the release kinetics from supramolecular drug delivery 

systems, starting from boundary conditions determined by the phenomenological conditions, 

simplified and idealized in order to lead to problems which can be analytically solved. 

2. Mathematical Methods for Solving Transfer Equations in Initial and Boundary Conditions 

Imposed by Particular Systems 
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2.1. Diffusion Equation 

The evaluation of in vitro and in vivo release kinetics of active substances from drug systems 

plays an important role in predicting and management of both efficacy and safety. Kinetics is more 

than a scientific goal; it is an essential quality parameter of all type of drugs.  

Keeping in mind the high diversity of supramolecular drug systems and apparently huge 

number of phenomenological local characteristics, a classification of models seems to be an 

impossible task. 

On the other hand, in practically all these release processes, the diffusion phenomenon is 

involved, described by the diffusion equation. 

2

2

c
D

t x

c 


 
. (1) 

In this form, the equation has an infinite number of solutions, including the banal solution 

( , ) 0c x t  . 

The above equation only makes sense when the problem concerns a solution satisfying some 

“initial and boundary conditions”. Cauchy’s problem refers to the existence and uniqueness of 

solutions for given coefficients and boundary conditions. Unfortunately, the number of methods 

for solving the equation is low, and analytical solutions (i.e., solutions described explicitly by 

functions) can be obtained only in simple initial and boundary conditions. On the other hand, after 

some simplifications and idealizations, a great number of different release processes lead to these 

“good conditions”. Since meaningful solutions are connected with the initial and boundary 

conditions, the modeling of release kinetics consists of identifying the most appropriate 

mathematical conditions connected with the implied physicochemical phenomena. 

Consequently, a natural classification of the release models (or at least of the quantitative ones) 

has to start from the geometry of the diffusion domain and its frontier and from initial conditions. 

Last but not least, frontiers are most frequently boundaries between subdomains, where 

discontinuities and critical changes of physicochemical properties are the rule.  

2.2. Initial and Boundary Conditions 

Boundary conditions (BC) were classified more than a century ago in standard papers on the 

theory of heat transfer, and this classification was translated into the mass transfer case by Crank 

[1] as follows: 

BC1. A surface having a prescribed concentration, in contact with a medium with a 

concentration proportional with that of surface, is defined by a partition coefficient, similar to the 

case with equilibrium between a liquid and its vapors. 

BC2. A flux across interface ( )D F t
x

c
 


 (Neumann condition). 

BC3. An impermeable surface 0
x

c



. 

BC4. Newton’s law of cooling, or “radiation boundary condition”, a flux proportional to the 

difference in temperature between surface and medium, which, on other hand, is equal to the heat 

loss in the direction of normal to the surface. In terms of concentration, the condition is 

 0 0s

C
C C

n



  


. (2) 

The transfer across a membrane of thickness l corresponds to  0 0s

C
C C

x



  


 for x = l and 

 0 0s

C
C C

x



  


  for x = 0. 

BC5. Transfer from a well-stirred release medium of fixed volume V and uniform 

concentration leads to the following condition: 
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0
c c

V D x
t x

 
 

 
. (3) 

BC6. The conservation principle at an interface between two media of different properties 

gives 

1 2
1 2 1 2

C C
D D C PC Q

x x

 
  

 
, (4) 

where P and Q are two constants. 

BC7. If in the medium exists as a source of substance (for example, a chemical reaction) at a 

rate per unit volume A, the boundary condition is 

2

2

c
D A

t x

c 
 

 
. (5) 

BC8. Moving boundary conditions could be considered as issuing from the immobilization of 

molecules in pores or holes. Boundaries changing in time, X(t), are connected to the flux coming to 

or leaving it via the following relationship: 

1 2
1 2

C dX
D D L

x x dt

C 
  

 
, (6) 

where L is the capacity of the immobilizing site in the unit volume for diffusing molecules.  

Diffusion phenomena are essentially implicated in all release kinetics from practically all 

pharmaceutical formulations. Solutions of diffusion equations have, in this context, a great 

importance for all models describing and predicting the evolution of drug concentration in release 

media. In the non-mathematical literature, it is customary to present direct solutions associated 

with different phenomenological conditions without specification of initial and boundary 

conditions.  

A classification of models as a function of initial and boundary conditions is useful for at least 

two reasons, shown below. 

1. Different combinations of phenomenological conditions can lead to the same initial and 

boundary conditions and, consequently, to the same mathematical solutions. It 

frequently happens that experimentally determined release kinetics to fit a theoretical 

law are deduced in completely different phenomenological conditions. 

2. Derivation of solutions essentially implies the initial and boundary conditions, such 

that the in-depth analysis of phenomena and prediction possibilities are best achieved 

in connection with understanding of the mathematical aspects. 

As discussed in the section below, the classification of models starts from initial and boundary 

conditions for “abstract mathematical models”, and evolves toward evaluation of abstract models 

in phenomenological conditions compatible with the mathematical conditions. In all cases, the 

extent of similarity between real and ideal mathematical conditions with time course changes of 

phenomenological conditions is examined.  

Boundaries in drug systems are usually interfaces; however, for mathematical reasons, it is 

useful to consider also frontiers “at infinite distance”, in which case the calculus is simplified. 

Interfaces are fixed or moving boundaries. A particular characteristic of nanosystems is the fact that 

interfaces are very large and usually curved surfaces, which requires taking into account local 

domains with discontinuous conditions, leading to “generalized functions” or “distributions” as 

solutions. 

2.3. Release in an Infinite Medium from an Interface where Concentration Is Kept Constant: Laplace 

Transform Method 
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Let us use the abbreviation cs for the constant concentration at the interface. This suggests the 

case of “saturation concentration” (Figure 1), which helps us concretize mathematical phenomenon; 

however, the mechanisms for keeping a relative constant concentration at an interface are surely 

diverse and multiple. 

In this case, we have to solve the diffusion equation in the following initial and boundary 

conditions: � = 0, and �(0, �) = ��.  

We further consider that the concentration in the release medium is initially zero, i.e., 

0 and ( ,0) 0t c x  . 

Since the diffusion front advances with a finite velocity, in whatever time t, if we go far enough 

from the interface, the concentration will be zero, which, in mathematical terms, can be written as 

lim ( , ) 0
x

x c x t


   . (7) 

  

 

Figure 1. Spatial distribution of the active substance at different (tn1, …, tnk) time points. 

In these conditions, we obtain that the flux of drug across the interface is proportional to the 

square root of time. We can further compute the quantity Q(t) of drug transferred after time t across 

interface x = 0. 

1 dm
J

A dt
  and 

0 0

1 ( )t t dm Q t
Jdt dt

A dt A
   ; (8) 

0

( ) 1 2
2

t

s
s s

cQ t
Dc dt D t c Dt

A Dt  
   . (9) 

As a simple experimental model to verify these laws, we can consider the dissolution of an 

active substance or a drug formulation placed at the bottom of a vessel. If the concentration in the 

formulation is much higher than the solubility of the active substance, the concentration at the 

interface with the dissolution medium will actually be the saturation concentration sc . If the height 

of a vessel is enough to assure that, in the time interval in which we are interested, the front of the 

substance does not reach the upper surface, we comply with the conditions of the above 

mathematical model.  

Experimentally, this law leads to a linear dependence of the released amount of active 

substance, proportional to the square root of time. Such a dependence of the released amount on 

the square root of time is frequently obtained in literature; generally, the authors consider that this 

is the case of the Higuchi square root law, although phenomenological conditions of the respective 

experiment are very different from those used by Higuchi.  

Bolisetti et al. [4] empirically tested a number of models fitting the release data of repaglidine 

from floating gels of cubosomes and concluded that release follows Higuchi’s law. In the release 
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studies of coumarines from nanostructure-loaded mesoporous silica, Al-Kady et al. also presumed 

a Higuchi model [5]. Many other examples of such dependence are presented in the second part of 

this paper. 

2.4. Transfer at Liquid/Liquid Interfaces: Release from Microemulsions 

2.4.1. Stationary State Models 

In recent years, emulsions and self-emulsifying drug delivery systems were increasingly used 

to enhance the oral bioavailability of poorly water-soluble drugs, especially of highly lipophilic 

ones [6–12]. The release from micro- and nanoemulsions can be considered as a direct application 

of transfer across liquid/liquid interfaces. 

In fact, in the case of microemulsion, there is not a simple oil/water interface since the 

formation of stable emulsions is not possible without surface active agents which accumulate at the 

interface forming a monolayer. The study of the stability of microemulsions has to include both 

thermodynamic and kinetics aspects [13]. For measuring the release of active substances from 

microemulsions, two experimental methods are generally used: the membrane diffusion technique 

and the in situ method [14]. 

In the membrane diffusion models, we consider the drug partition between oil droplets, 

micelles, and the aqueous continuous phase, as well as transfer across the membrane separating 

the microemulsion from the release medium. By retaining from all involved processes only 

interfacial transfers from oil and water (Figure 2), Yotsuyanagy and Higuchi [14,15] expressed the 

fluxes as ow ow ok C   and wo wo wk C  , where wC  and oC  represents the concentrations of drug 

in water and oil phases, respectively. 

Friedman and Benita [16] evaluated the release of morphine from emulsions, considering 

distribution in three phases: the continuous aqueous phase, the oil droplets, and the surfactant 

micelles. 

The fluxes decrease to zero when �� approaches saturation value (��), and the concentration 

in oil is zero, such that the following equations are satisfied: 

 o
ow ow sw w

sw

C
k C C

C
    and  wo

wo wo so o

so

C
k C C

C
   , (10) 

where swC  and soC  represent the saturation concentrations of drug in water and oil phases, 

respectively. 

 

Figure 2. Release kinetics of a drug from microemulsions in an experiment using a dialysis 

membrane. 
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In all these models, it is accepted that we can speak about the concentrations in oil and water 

phases, i.e., the concentrations are uniform all the time. 

Applying the same simplifications as above, the transfer across the membrane separating the 

microemulsion from the release medium, the following formula was proposed for the flux across 

membrane: 

 p ow pd w pr r

m

D
k k C k C


   , (11) 

where m  is the membrane thickness, D is the drug diffusion coefficient inside the membrane, kpd 

is the drug partition coefficient between membrane and microemulsion aqueous phase, and kpr is 

the membrane release medium partition coefficient. 

2.4.2. Compartmental Models 

Applying the above expressions of fluxes, the differential equations describing the time course 

of concentrations of drug in water and oil phases are as follows: 

pw ow wo

w w w

dC
A A S

dt V V V

 
   ; (12) 

o wo ow

o o

dC
A A

dt V V

 
  . (13) 

Grassi et al. [17] applied the above model in the analysis of nimesulide release from 

microemulsions. The release of nimesulide from microemulsions was also evaluated by Siroti et al. 

[18], but a more complex model was considered, taking additionally into account the drug transfer 

from micelles. 

The identification of transfer parameters starting from experimental data is an extremely 

difficult mathematical task, with instability of solutions being the rule rather than the exception. 

A simplified approach, more empirical but leading to an easier way to mathematically solve 

the problem, is to discard the physicochemical significance of coefficients and to retain only the 

property of linear transfer between three compartments: oil, water, and external medium. 

w
ow o wo w wr w

dC
k C k C k c

dt
   ; (14) 

o
ow o wo w

dC
k C k C

dt
   . (15) 

The system can be easily solved by the method of Laplace transform, whereby the solutions 

are expressed as sums of exponentials. 

The model has the advantage that it can be coupled with pharmacokinetic compartmental 

models for predicting release in vivo and the absorption of active substances. For example, recently, 

Grassi et al. [19] reviewed such extended models and developed a model for the release of drugs 

and their percutaneous absorption.  

Finally, at transfer across interfaces, the main resistance could be in the transfer at the interface, 

in which case the concentration follows a sum of exponential behavior. Mircioiu et al. [20] modeled 

the transfer of chemical warfare agents and pesticides, such as chlorpyrifos, dichlorvos, or 

malathion, across the skin and synthetic membranes as first-order kinetic and/or square-root law 

transfer processes. Results suggested the possibility to apply synthetic membranes for predicting 

the percutaneous absorption of organophosphorus compounds.  

For the in vivo experiments, pharmacokinetics are well enough described by empiric 

compartmental models [21]; however, in some instances, physiological models similar to in vitro 

mechanistic models are unavoidable [22]. 
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In the case of the release of anti-tuberculosis drugs from Tween-embedded microemulsions 

[23], evaluation indicated that the release of pyrazinamide and isoniazid is non-Fickian, whereas it 

was found to be Fickian for rifampicin. Finally, in deciding the model, both mathematical and 

phenomenological criteria had to be used simultaneously [24]. 

2.5. Diffusion in Membranes: Method of Separation of Variables 

2.5.1. Diffusion in a Domain Bordered by Two Interfaces where Concentration Is Kept Constant 

We consider the release from (or into) a domain of thickness 2 , having an initial 

concentration ��  in an environment where the concentration remains constant over time, 0c  

(Figure 3). 

If concentration at the point x in the matrix at the moment t is c(x,t), the initial and boundary 

conditions can be written in the form below. 

0 0

1 1

0 0 0

      2 , (2 , )

0 ( ,0)

0 (0, )

c x c t c

c t c x c

c x c t c

 

 

 

 

. (16) 

  

Figure 3. Spatial distribution of the concentrations of active substance at different time intervals: 

(a) case 1 0c c , transfer into the membrane; (b) case 1 0c c , transfer out of the membrane. 

The diffusion equation to be solved is again Fick’s second law. 

The solution of the equation in the specified initial and boundary conditions is  

   
2

2

2

2 1

0 4

1 0

2 14 1
sin

2 1 2

tk
k xc c

e
c c k












  


. (17) 

A detailed demonstration of the above expression is presented in Appendix A. 

A very important case is when 0 0c  , named in the pharmaceutical literature as “sink” 

conditions. This situation refers to experiments when, due to the huge volume of the fluid in which 

the release occurs, the concentration is practically null. We can consider as an example the release 

of locally applied drugs, e.g., a transdermal therapeutic system, where the bloodstream 

permanently removes the active substance from the release site. Note that, in biopharmacy, as a 
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general rule, all release/dissolution experiments are planned to be performed in conditions as close 

to “sink” as possible. 

2.5.2. Diffusion in a Domain Bordered by Two Interfaces of Constant but Different Concentrations 

We further consider the case of transfer through a submerged membrane in a fluid medium in 

which the diffusion process has a much faster rate than the velocity of diffusion in the membrane. 

If, in addition, we consider that the volume of fluid is very high, we can again approximate that the 

concentration of active substance remains constant during the experiment (Figure 4).  

 

 

 

 

Figure 4. Distribution of concentration in a membrane separating two domains with constant 

concentrations. 

Applying again the method of separation of variables, similar to what is presented in 

Appendix A, the concentration in the membrane is defined by the following formula: 

 
2 2

20

1 0

12
sin

n n tDc c x n x
e

c c n






 
 

  
 

. (18) 

2.6. Diffusion Equation in Spherical and Cylindrical Coordinates 

2.6.1. Solutions of Diffusion Equation in Spherical Coordinates 

In cases when the curvature of interfaces is great it is more appropriate to use spherical 

coordinates (Figure 5). After writing the Laplacian in spherical coordinates and considering only 

radial flow, the diffusion equation becomes 

2

2

2C C C
D

t r rr

   
  

  
. (19) 
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Figure 5. Radial transfer across a hollow sphere in a release medium where the concentration of 

drug has a constant value 1c . 

The solution obtained in this case for c(x,t) inside the hollow sphere will be 

 

2 2

2
0

1 0

cos ( )2
1 sin

D t

b a

n
b n a

n

c c n r a
e

c c r b a


 




 

 
 

 
 

  , (20) 

as previously described by Crank [1] and by Carslaw and Jaeger [2]. The percentage amount of 

active substance entering (leaving) via the interfaces as a function of time will be 

 
 

2 2

2
2

2 2 2

cos6
1

D
t

b at

n
M b n a

M na ab b
e











 
  

  
  . (21) 

2.6.2. Release from a Non-Degrading Polymer 

A materialization of the above model is the release from a “core”, where the concentration of 

active substance is above the saturation concentration �� , and where diffusion occurs across a 

diffusion membrane in a well-stirred medium. 

The release rate of an anti-Parkinson drug from a non-degrading polymer (poly lactic-co-

glycolic acid - PLGA) was studied [25]. During the time of the experiment, the changes in the 

volume of the polymer matrix were negligible; therefore, the polymer microspheres were 

considered as non-biodegradable implants. The released amount followed an equation very similar 

to the above one, as shown below.  

2 2

2

2

2

16
1

D
t

t R

n
M

M n
e









 
  

 
  , (22) 

  

which corresponds to the case of a = 0 and b = R. 

2.6.3. Release from Lipid Dosage Forms 

The release of sodium salicylate from spherical beads based on Gelucire 46/07 (melting point 

= 46 °C, hydrophilic lipophilic balance value (HLB value) = 7) in simulated gastric fluid was well 

fitted [26] by the same equation written above. 

This is to underline that mathematical conditions are translations of phenomenological initial 

and boundary conditions associated with the carrier, drug, and release conditions. For example, 

Siepmann [27] considered, in the case of release from lipid dosage forms, the following 

phenomenological conditions:  
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i. The beads do not significantly swell or erode during drug release. 

ii. The beads are spherical in shape. 

iii. The drug is initially homogeneously distributed within the spheres. 

iv. Perfect sink conditions are provided throughout the experiments. 

v. Mass transfer resistance due to liquid unstirred boundary layers at the surface of the 

spheres is negligible compared to mass transfer resistance due to diffusion within the 

systems. 

vi. Drug dissolution is rapid and complete upon exposure to the release medium. 

vii. Diffusion with time- and position-independent diffusion coefficients is the release rate-

limiting mass transfer step. 

These conditions were mathematically reduced to what was written above for a “sphere 

loaded initially with a homogenous concentration �� < �� C0 < Cs and maintained in a solution of 

constant concentration �� . 

2.6.4. Release from Lipid Implants with Cylindrical Geometry 

Guse et al. considered the release of lysozyme from a cylindrical-shaped implant based on 

glyceryl tripalmitate. Assuming that diffusion is the dominant drug release mechanism, based on 

Fick’s second law for cylindrical geometry [28,29], they considered that the release is the translation 

of the following phenomenological conditions: 

i. The implants do not significantly swell or erode during drug release. 

ii. The implants are cylindrical in shape. 

iii. Diffusional mass transport occurs in radial and axial direction, with the same 

diffusivities. 

iv. The drug is initially homogeneously distributed within the implants. 

v. Perfect sink conditions are provided throughout the experiments. 

vi. Mass transfer resistance due to liquid unstirred boundary layers at the surface of the 

implants is negligible compared to mass transfer resistance due to diffusion within the 

systems. 

vii. Drug dissolution is rapid and complete upon exposure to the release medium. 

viii. Diffusion with time- and position-independent diffusion coefficients is the release rate-

limiting mass transfer step. 

Using infinite series of an exponential function[30], the following solution was derived:  

 

 
2 22

2 2 2 2 2

2 132 1 1
1 exp( ) exp

2 1

t n

pn

pM q
Dt Dt

M q R Hp





 
    
   

  . (23) 

The solution was found to describe well the release of lysozyme in the studied system. 

2.7. Release Controlled by Transfer across Membranes, Considered As Coupled Interfaces: Release From 

Liposomes 

Coupled interfaces are very frequently met in transfer models as membranes for the control of 

release from lipid or solid microsystems. Since in such cases the interest moves from distribution 

inside membranes to transfer across membranes, the mathematical models concern concentrations 

in the interior and exterior of the membrane, as well as the content of membrane being neglected 

(Figure 6). Mathematical models are much more complex and solutions are obtained only for 

stationary conditions.  

A non-sink ultrafiltration method was developed to monitor liposomal release kinetics of the 

anticancer agent, topotecan. Mathematical modeling of the release data allowed simultaneous 

determination of drug permeability and interfacial binding to the bilayer [31]. 
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A particular study concerned the release of local anesthetics from liposomes. Amphiphilic 

local anesthetics interact hydrophobically and electrostatically with lipid bilayers and modify their 

physicochemical properties, with the direct inhibition of membrane functions [32].  

A complex model concerned the release from 100-nm liposomes, composed of hydrogenated 

soybean, phosphatidylcholine, poly(ethylene glycol)–distearoylphosphatidylethanolamine (PEG–

DSPE), and cholesterol loaded with methylprednisolone, doxorubicin, or cisplatin [33,34].  

 

 

Figure 6. Release of active substance embedded in liposomes. 

The intra- and extra-liposomal domains were both considered to be well mixed, and it was 

assumed that encapsulated drugs may be released from liposomes via diffusion and/or liposome 

disintegration. The following equations were proposed: 

 L LL L L
L L

d V CdM dC dM
V C

dt dt dt dt
   , (24) 

where ��(�) , ��(�)  and ��(�)  are the drug content (moles), volume, and average drug 

concentration of the entire liposome compartment, respectively. The terms L
L

dC
V

dt
 and L

L

dM
C

dt
 

represent drug release via diffusion and due to volumetric changes in the liposome compartment, 

respectively.  

For calculation of LdC

dt
, the authors considered Fick’s first law, assuming the concentration 

gradient between the concentration of drug in liposomes ��   and external concentration ��   to be 

linear. 

The solution of the equation is  

  0 0

( ) 1
1 ( ) 1 exp ( )

(0) ( ) ( ) ( )

t
L

V V

L V V L

C t dt
r t k r t

C r t r t r t

  
     

   
 , (25) 

where ( )
( )

(0)
V

V t
r t

V
 , ( )

( )
(0)

L

L t
r t

L
 , and ��  is a constant depending on permeability across the 

liposomal membrane and the radius of liposomes. 

Taking into account the heterogeneity of the bilayer, Diamond and Katz [35] proposed a 

general model, considering local partition and diffusion coefficients at a depth x normal to the 

bilayer. 

Xiang and Anderson further simplified the above model by assuming that permeability across 

a bilayer may be rate-limited to a distinct region (barrier domain) within the bilayer [36]. The barrier 

domain was shown to exhibit a chemical selectivity similar to that expected for the hydrocarbon 

chain region in liquid crystalline bilayers, although its properties vary somewhat with the lipid 

bilayer phase structure [37–40]. 
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Sometimes, models for both the release and pharmacokinetics of drugs were attempted. For 

example, Kou et al. [41] proposed a model for the transfer of panciclovir embedded in liposomes 

applied on skin. The authors considered that, after the liposome was degraded, all of the 

encapsulated drug was exposed to the dermis tissue. 

Mathematically, the hypotheses correspond to the diffusion, transfer, and degradation of 

liposomes containing penciclovir across the epidermis and dermis, as described by the following 

equations with initial and boundary conditions: 

2

2
L L

L A

C C
D r

t x

 
 

 
 and L

L d L

dC
r k C

dt
    , (26) 

where LC is the concentration of the liposome, LD is the diffusivity of the liposome, Lr represents 

the liposome degradation in the dermis (first-order degradation assumed), and dk is the 

degradation rate constant for the liposome. 

For the diffusion of penciclovir in the epidermis and dermis, the degradation of liposome and 

the elimination of penciclovir are to be considered. The overall governing equation is 

2

2
P P

P d A e B

C C
D k C k C

t x

 
  

 
, (27) 

where PC denotes the concentration of penciclovir, PD  is the diffusivity of penciclovir, and ek

represents the first-order elimination constant of penciclovir. 

Unfortunately, the equations cannot be solved and the model cannot be verified in terms of 

applicability in describing the evolution of skin and plasma level concentrations.  

3. Mechanistic and Empirical Models in Systems with Moving Boundaries 

3.1. Matrix Systems 

3.1.1. Stefan’s Problem 

Mathematical modeling in systems where a boundary is moving more quickly than diffusion 

could be considered as originating in Stefan’s papers around 1890, starting from the phenomenon 

of ice melting. He introduced a class of differential equations and boundary conditions which can 

be solved to give analytical solutions. Denoting the melted depth of the ice block as s(t), he 

introduced a new type of boundary condition, derived from the conservation of energy 

requirement. 

  , , 0
ds c

s t t t
dt x


  


. (28) 

This is to underline that boundary terms have to be considered in a more large, mathematical 

meaning. For example, critical micelle concentration (CMC) is also a boundary. Diffusion 

coefficients are different below and above CMC. Time is also a dimension and has a finite or infinite 

boundary, such that initial conditions are, in the mathematical approach, a part of boundary 

conditions. Moving boundaries concern space, concentration, etc., which are variable during the 

diffusion process. More generally, we can discuss the problem of parameters in space; for example, 

the pH boundary was also studied as a parameter with discontinuous or critical evolution. 

As a consequence, the first step in modeling the release of active substances from micro- and 

nano-drug carriers is the identification of phenomenological conditions, as well as of critical 

parameters and their formulation as boundary conditions. Furthermore, problems regarding the 

existence and uniqueness of solutions, and finding of the analytical solutions will appear.  

Modeling of the release from matrix systems, where the drug is dispersed or dissolved, 

involving moving boundaries, was reviewed recently, with focus on analytical solutions [42]. 
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3.1.2. Steady-State Higuchi’s Moving Boundary Model 

In the pharmaceutical literature, these types of approaches started from the papers of Higuchi 

[43,44]. Well known and largely applied, Higuchi’s model considered that the solvent is gradually 

swelling the matrix, and the concentration gradient is linear, decreasing from the saturation 

concentration Cs at the interface with the core which was not attained by solvent, to concentration 

zero (sink conditions) at the matrix–dissolution medium interface (x = h) (Figure 7). 

He obtained, for the released amount of drug, the following expression: 

 ( ) 2 s sM t A C C Dt  , (29) 

where A is the initial concentration of the drug in the matrix, and it is supposed that sA C . 

 

Figure 7. Higuchi’s moving boundary model inside solid and semisolid formulations. 

An exact analytical solution associated with the same phenomenological conditions, but 

replacing the hypothesis of linear gradient of concentration with  ( ) s

c ds
D M t A C

x dt


 


, was 

derived by Carslaw and Jaeger for melting and solidification in the Chapter XI (“Change of State”) 

of their book “Conduction of Heat in Solids” [2]. An analytical solution in terms of diffusion was 

obtained by Koizumi et al. in 1975 [45]. 

3.1.3. Release from a Spherical Matrix 

Higuchi extended his initial method for release from a plane matrix to release from a spherical 

matrix [44] (Figure 8).  

The hypothesis concerning the linear gradient of concentration in the partially extracted matrix 

became 

 
 

( , ) s

a rR
C r t C

r a R





, (30) 

where r = r(t) is the coordinate, and R(t) and a are the radius of the “unreached core” and of the 

entire spherical particle, respectively. 
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Figure 8. Higuchi’s model for release from a spherical tablet of radius R, in the condition of a 

moving solvent front. 

The solution obtained by Higuchi for the time course of the amount released from a sphere 

was 

3 3 2
1

1 2
2

t sM CR R R R

M a A a a a

        
            

         
. (31) 

Integration of the equation gives the relationship between the moving boundary interface 

position (R) and time (t) as follows: 

3 2 3 2

2

6
2 3 1 2 4 1 lns sC Dt CR R R R R R

a a A a a a aAa

          
                 

           
. (32) 

When � >> ��, we can neglect 
sC

A
, and the equations take the approximate form  

3

1tM R

M a

 
  

 
, (33) 

and 

3 2

2

6
2 3 1sC Dt R R

a aAa

   
     

   
. (34) 

Koizumi and Panosuk [46] obtained, in similar conditions to Higuchi, a solution in the form of 

a series, which, after some simplifications, had the following mathematical expression: 

 2 4
( ) 4 2 3

9 2
s s

s s

s

C Dt C
M t a A C C Dt

a A C


  
     

   
. (35) 

3.1.4. Boundary Layer Effect 

Since in the boundary layer at the interface between pharmaceutical formulation and release 

medium there is no stirring, this will act as a “resistance” to release.  

Roseman and Higuchi [47] added this effect in the model and, for A >> Cs, obtained the 

following equation: 

2 22 s

a

DC tD h
h

D A


   and M = Ah, (36) 

where   is the thickness of the boundary layer, and Da is the diffusion coefficient in water. 
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At the beginning of release, when h << 1, it is possible to neglect h2, and the approximate 

solution results in 

  a sD C t
M t


 , (37) 

which means that M(t) is decreasing when  increases. 

As h increases, 2 2

a

D h
h

D


  and   2 s aM t AC D t ; thus, the effect of   disappears.  

3.2. Swellable Polymers 

3.2.1. Intrusion of Water into Matrix 

Release of lysozyme, bovine serum albumin (BSA), alcohol dehydrogenase, and thyroglobulin 

proteins from monolithic triglyceride cylinders [48] was controlled by diffusion in the water 

intruding the lipid matrix. The model considered the solution of the diffusion equation in 

cylindrical coordinates obtained [49] with the boundary condition of homogeneous drug 

distribution at t = 0 (before exposure to the release medium) and perfect sink conditions: 

 

 
2 22

2 2 2 2 2

2 132 1 1
1 exp( ) exp

2 1

t n

pn

pM q
Dt Dt

M q R Hp





 
    
   

  , (38) 

where Mt and M∞ represent the absolute cumulative amounts of drug released at time t and infinite 

time, respectively; ��  are the roots of the Bessel function of the first kind of zero order, and R and 

H denote the radius and height of the cylinder. The release strongly depended on the wettability of 

the material [50]. 

The same mechanism was also identified for the release from triglyceride microspheres [51,52]. 

When 0.1% Tween-80 was added to the release medium, the time to achieve 65 to 80% release 

decreased from 60 days to approximately 20 days. This could be explained by the fact that the 

surfactant improved the wetting of capillary walls, as well as the dissolution and release of active 

substance, phenomena also underlined by other authors [50,53]. 

3.2.2. Swelling Component of Release from Polymers 

The entering of liquid into the polymeric matrix promotes a series of complex processes and 

continuously modifies the diffusion conditions [30,54]. 

This is to consider primarily at least two different diffusion processes—that of the solvent 

inside the matrix and that of the drug into the penetrating liquid after its dissolution (Figure 9).  

 

Figure 9. Swelling of a spherical polymer particle following the intrusion of solvent across the outer 

surface. 

The problem of solvent diffusion into the matrix is similar to sorption by a swelling sheet of 

thickness l. If the diffusion coefficient and concentration at the interfaces can be considered 
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constant, the diffusion equation has an analytical solution [1] and the fraction “released” from the 

medium into the sheet is given by the following formula: 

 

 
2 2

2 2 2

2 18 1
1 exp

2 1

t

p

pM
Dt

M lp





 
   
   

 . (39) 

Diffusion occurring concomitant with swelling was evaluated first by Hopfenber et al. in 1978 

[55] and predictions were later attempted [56]; however, it soon became clear that this was too 

ambitious a task [57,58]. The diffusivity becomes concentration-dependent, increasing with both 

time and concentration of the liquid [59]. “Marginal” models, particularly for more symmetric 

particles, were further attempted [60–62].  

Some formulations contain a mix of both soluble and insoluble polymers. Consequently, a 

significant swelling of the insoluble polymer occurs after partial dissolution of polymers and the 

drug, leading to the quick appearance of pores or even large cavities full of liquid through which 

the drug diffuses. Release from those systems was, as a rule, not satisfactory and was described as 

neither Higuchi nor Fickian behavior [63–70]. 

The most frequently applied model is the power law. 

nM kt . (40) 

Case II systems are characterized by n = 1 and Case I systems are characterized by 1/ 2n  . 

Non-Fickian systems lie between Case I and Case II, in that n takes an intermediate value 

between 1/2 and 1, and the curves change sigmoidally from one type to the other. Consequently, 

non-Fickian behavior needs two or more parameters to describe the interacting diffusion and 

relaxation inherent effects. 

A simple expression of this observation can be heuristically written as the sum of the diffusion-

controlled and relaxation-controlled drug delivery  

1 2/tM M k t k t   . (41) 

The generalized expression / n
tM M kt  , similar to that from Crank, was introduced in 

pharmaceutical literature in 1985 [58] and is known as the “Peppas equation”. The power law was 

used extensively to describe the first 60% of the release curves [71–75]. 

However, in the case of several hydroxypropyl methyl cellulose (HPMC)-based matrix tablets, 

it was demonstrated that the power law can describe the entire drug release profile [76]. 

Furthermore, the authors proposed a hypothesis for the theoretical justification of cases where the 

equation can really be extended to all release data, based on the non-classical diffusion of the solutes 

in HPMC matrices as disordered media. Simulations of the drug release in fractal matrices [77] or 

the percolation model [78] were used. 

Sometimes, the rate of drug release follows neither the process of diffusion nor that of erosion; 

nevertheless, the equation could still be applied [79,80].  

Some erodible polymers were developed specially for prolonged release of the active 

substance following its adhesion to gastric mucosa [81–83]; however, in these cases, the models are 

no longer applicable.  

For other geometries, different exponent values corresponding to different drug release 

mechanisms were proposed in literature [63,84–86]. 

3.3. Erodible Polymers 

Release from erodible polymers was approached by many authors, with a great number of 

empiric and mechanistic models being developed. An excellent analysis and complete review of 

these models was performed by Arifin et al. [87]. 

The process of erosion of a polymeric matrix in a liquid happens only in part mechanically, 

with dissolution being, in most cases, the main process in its initiation and evolution. The liquid 
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diffuses into the polymer and locally dissolves both the drug and the polymer. Thus, the surface of 

the dosage form becomes a moving boundary.  

The simplest model assumes that the rate of erosion of a film of thickness l remains constant 

during the process (
dl

v
dt

 ), and the initial concentration of the drug is uniform in the dosage form. 

3.3.1. Kinetics of Release from a Sheet of Thickness 2l 

In this case, the thickness of the sheet depends on time, and follows the equation  

0tl l vt  , (42) 

where �� is the initial thickness and �� is the thickness at time t. Erosion ends at time 0
f

l
t

v
 .  

Replacing � in the expression of tl  results in 

0 (1 )t

f

t
l l

t
  . (43) 

Since the volume of the sheet is proportional to time, the amount of drug released at time t is 

also proportional to time and, upon combining the two expressions, it can be written in the form 

t

f

M t

M t

 . (44) 

3.3.2. Kinetics of Release from a Sphere of Initial Radius 0r   

Similar to the above case, for a sphere with radius 0r , 

0 0 (1 )t

f

t
r r vt r

t
    , (45) 

and 

3

1 1t

f

M t

M t

 
    

 
. 

(46) 

3.3.3. Kinetics of Release from a Cylinder of Radius 0r  and Height 2 0h  

In the case of a cylinder, it is necessary to consider the decrease in size following the erosion 

of length h and radius r. 

2 2

1 1 1tM vt vt

M r h

   
      

   
. (47) 

Release from bioerodible polymers is highly complex, since we have a continuous change in 

local conditions due to the coexistence of diffusion, chemical reactions, moving boundaries, volume 

changes, appearance of oligomers and monomers, pores, holes, etc., and mathematical modeling is 

consequently more difficult [88–90]. 

Depending on the rate of water diffusion in polymers and the rate of degradation, erosion 

evolution concerns mainly the surface or bulk structure [91] (Figure 10). If degradation is much 

slower than the diffusion of water and, therefore, the limiting step, the changes will be 

homogeneously distributed in the bulk of matrix. If degradation is more rapid, the surface erosion 

will be the main effect. For example, polyanhydrides are more reactive and, consequently, the 

surface erosion is predominant. For polylactides (PLA), degradation leads to rather bulk erosion. 

In fact, in all cases, both types of degradation coexist in different proportions. 



Pharmaceutics 2019, 11, 140 19 of 45 

 

 

Figure 10. Marginal-type erosion models. 

Most of the polymers used in practice are biodegradable in order to avoid problems connected 

with elimination of non-biodegradable, big molecules from a living body. Elimination decreases 

upon increasing the size of particles [92,93].  

Some polymers, for instance, polydimethylsiloxanes or polyurethanes, are biodegradable; 

however, since the degradation time is far greater than the time of active substance release, from 

the point of view of release kinetics, they are considered as “non-biodegradable”. They are long 

circulating systems that produce particular in vivo pharmacokinetics (e.g., residence time, 

distribution, clearance, half-life, etc.), providing a prolonged effect of the respective drugs. Such an 

example is that of micelles. Consequently, micelles of block copolymers including amphiphilic and 

hydrophobic surfactants were developed as carriers for poorly soluble drugs [94]. 

Initiation of erosion implies the need to additionally consider the hydrolysis following the 

penetration of water molecules, which leads to changes in all polymer characteristics; pores, holes, 

oligomers, and even monomers appear.  

3.3.4. Empirical Surface Erosion Models 

Empirical models are global characterizations of the release processes without taking into 

consideration all processes involved during release. Such an approach is clearly a much easier task, 

since, in a chain of processes, the global rate is given by the slowest process, with this approach 

being, in many cases, the most appropriate. The models are tested statistically. The disadvantage 

of empiric models is the fact that simulations and predictions are less performant than in the case 

of mechanistic, complex models, based on the physicochemical picture of the evolution of 

phenomena. 

The Hopfenberg model [95] considered that dissolution, swelling, and polymer chain scission 

can be described by as a final zero-order process and established the following formula: 

0

0

1 1

n

tM k t

M C a

 
   

 
, (48) 

where n = 3, 2, and 1 for spheres, cylinders, and thin films, respectively; a is the radius of the sphere 

or cylinder or half thickness of thin film, C0 is the initial drug concentration in the system, and k0 is 

the equilibrium rate constant.  

It is to note that the equation proved to be applicable for surface-eroding systems. The problem 

is that a is not constant in time.  

The formula is a generalization of the result found by Hixson–Crowell [96], starting from the 

fact that, for spherical particles, volume is proportional to a3 and area is proportional to a2. El-Arini 

and Leuenberger [97] modified the Hopfenberg model by accounting for the lag time (����) before 

the release process to start. 
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3

0

0

( )
1 1

lagt
k t tM

M C a

 
   

 
. (49) 

A more detailed model, based on the same assumptions of a zero-order reaction at the surface 

of the polymer, for example, detachment of monomers, following their diffusion in the release 

medium, was performed by Cooney [98].  

With the assumption of constant concentration difference existing between the surface and the 

dissolution medium (ΔC), and with the assumption that the surface-eroding matrix has a uniform 

drug distribution, we can obtain the following relationship for the release fraction: 

3

1 1t ero

s

M k C t

M a

 
   

 
, (50) 

where s  is the density of drug in the matrix. The equation is similar to that of Hopfenberg, with 

the sole difference being that the concentration gradient (which is constant) appears explicitly.  

3.3.5. Mechanistic Surface Erosion Models 

Heller and Baker [99] considered a more in-depth analysis of the permeability factor in 

Higuchi’s formula. 

02

2
tdM PCA

dt t
 , (51) 

where permeability P is no longer constant but is a function of the number Z of pores created 

following erosion.  

Here, it is considered that cleavage follows first-order kinetics.  

( )
dZ

k N Z
dt

  , (52) 

where N is the initial number of bounds. 

The solution is an exponential and, considering that 
0

P N

P N Z



, the Higuchi formula 

becomes 

0 02

2

Kt
tdM P e CA

dt t
 . (53) 

Harland et al. [100], as well as Kosmidis et al. [101], built a model for bulk erosion in conditions 

of both infinite and finite boundary conditions. They also took into consideration diffusion into fine 

pores [102]. 

Their model for diffusion from microspheres was based on the following equation: 

 
2

2

2
e sC C

r

c c
D k

t rr

c


 
  

 
 

  
 

 
, (54) 

where C and De are the drug concentration and effective diffusivity in liquid-filled pores, 

respectively; k is the drug dissolution rate constant, ε is the porosity of the polymer matrix, and 

sC  is the saturation concentration in the solution filling the pores. 

In the end, two analytical solutions were obtained, one appropriate for early diffusion and the 

other for later diffusion. This is to underline that the solution of a differential equation with usual 

initial and boundary conditions is unique. Different expressions of the solution can be found using 

different methods, but they cannot be considered as different functions.  
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3.4. Complex, Multiparameter Release Models 

3.4.1. Concomitant Depolymerization, Erosion, and Diffusion 

When degradation occurs, the matrix will become heterogeneous in terms of the distribution 

of the molecular weight of the polymer chains and pores created on the surface. This will induce 

further changes in the diffusion coefficient of the drug, which will become a function of both time 

and space. 

Models of release in these conditions were studied by Himmelstein and co-workers. A model 

for thin-film geometries to describe the drug release from surface-erodible polymer matrices was 

developed [103].  

Thombre and Himmelstein [104,105] developed a mathematical model for simultaneous 

transport reaction and delivery from a catalyzed bioerodible polymer matrix of polyorthoester. 

They considered the effect of the degradation process on the diffusion coefficient, with the 

diffusivity of all species (water, acid generator, acid, and drug) related to the extent of polymer 

hydrolysis according to the following expression: 

,0( )

,0

D D

D

C C

C
i iD D e

 

 , (55) 

where ��  is the diffusion coefficient of species i when the polymer is hydrolyzed, C is the 

concentration of species i at time zero and t respectively, and alpha is a constant. 

Other models took into consideration the increase in diffusion coefficients and drug release 

following a decrease in the molecular weight of polymers [106]. The authors considered that the 

PGLA matrix suffers degradation following first-order kinetics, and that drug diffusion is inversely 

proportional to the molecular weight. 

deg,0

0

0

rk twe
e

e

MD
D D e

D M
   . (56) 

By introducing the result to the Higuchi formula, the equation becomes 

deg

0 02 ( 1)rk t

t sdM C C D e
A

dt t


 . (57) 

This method and its result are similar to the results of Heller. 

Lee [107,108] suggested that both swelling and mass erosion could be modeled using the same 

type of diffusion equations. He considered time-dependent diffusion coefficients defined as 

  1 kt
t i iD D D D e

    . (58) 

Raman et al. [109] used the diffusion model for spherical geometry with diffusivity 

dependence on molecular weight to explain the piroxicam release from bulk-erosion poly(lactide-

co-glycolide) (PLG) microspheres. 

Molecular weight was considered to decrease exponentially like in the above models, but a 

time lag before the erosion of matrix started was additionally considered.  

He et al. [110] considered an exponential decrease in molecular weight, a time lag, and the 

time to maximum erosion rate, and obtained the following formula for the released fraction: 

 

 

deg

deg2 2
4 3

1

r max

r max

k t t

t e e
E k t t

M D t D t e
F

M r r e






 
    

  
. (59) 

Depending on of the sign of the difference max
t t  and the value of the last fraction, it is 

possible to explain the “S” shape of erosion curves, which is predicted by the Zhang model [111], 

including an initial “burst” and an intermediate rapid release. 
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Similar models were proposed by Siepmann [112] for experimental data concerning the release 

of 5-fluorouracil concomitant with bulk erosion of PGLA microspheres, and by Wada [113] for 

explaining the release of aclarubicin from PLA-based microspheres. Siepmann [114] also took into 

account the autocatalytic effect to explain the release of lidocaine from PLGA microspheres.  

3.4.2. Monte Carlo Simulation Models 

Zygourakis [115,116] considered the dissolution of drug and polymer and the lifetimes of 

drug, polymer, filler, or pore as pixels in two-dimensional grids. The lifetime of a pixel started to 

decrease upon contact with the solvent. The dissolution rates of the drug and polymer were 

defined, starting from the first law of diffusion, as 

 , ,d d d s d bd

d

k S C CdV

dt 


 , (60) 

and 

 , ,p p p s p bp

p

k S C CdV

dt 


 , (61) 

where the letters p and d refer to the polymer and drug, while b is the bulk, S is the surface, s is the 

saturation, V is the volume, and   is the thickness of the limit layer. When diffusion is negligible, 

these formulas became the usual dissolution equations. 

Both Monte Carlo simulation-based polymer degradation and diffusional mass transfer 

processes were taken into account in the models developed by Gopeferich et al. [115–121]. 

Macheras, in cooperation with a team of physicists, developed a complex theory for the study 

of the escape of particles from devices of fractal geometry [122]. The application of the theory in 

actual pharmaceutical finite systems is a much more difficult mathematical problem than analysis 

in infinite systems. Particles were considered randomly placed on the open sites of a matrix, from 

which they look to escape following random walks. A particle may stay immobile with a probability 

q, or move at a new randomly chosen neighboring site with probability 1 − q. When the particle is 

continuously moving (q = 0), the equation characterizing diffusion is obtained [77,123–125], but the 

result, as presented above, is much more general, in the frame of heat transfer, fluid mechanics, 

quantum theory, etc. 

The case 0q  allowed the authors to simulate diffusion processes with different diffusion 

coefficients.  

Monte Carlo simulation led to a differential equation of the form 

( )
dN

af t N
dt

  , (62) 

where a is a proportionality constant, and f(t)N denotes the number of particles that are able to 

reach an exit in a time interval dt. Assuming that f(t) is of the “fractal kinetics” form ( ) mf t t , they 

found the Weibull function as a solution for the number of particles remaining inside the lattice. 

0( ) exp( )bN t N at  . (63) 

As presented later in the paper, the same team suggested that the Weibull function is a 

theoretical base for almost all release kinetics in heterogeneous matrices [126]. Monte Carlo 

simulations of the release process allowed to evaluate how Weibull coefficients a and b depend on 

the diffusion coefficient in the case of matrices with high- and low-diffusivity areas. It was obtained 

that the exponent a is smaller for low diffusion coefficients and the relationship between a and q is 

quasi-linear [122]. 

3.4.3. Artificial Neural Network Models 
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Artificial neural networks were also used to model drug delivery [127–130]. Tools coming from 

the theory of dynamic systems, as well as from pharmacokinetics are shown in Figure 11, where 

input I = L(i), output O = L(o), and transfer G = L(f).  

The application of Laplace transform leads to a definition of the transfer function G between 

the transformations of input and output functions. 

I (pG O(pby relation G IpOp (64) 

 

Figure 11. Black-box model of transfer (weighting) function, defined in the space of image functions 

obtained after the application of an integral transformation. 

The neural networks attempt to simulate some of the neurological processing abilities of the 

human brain. Specific names are “neurons”, connected by synapses. Input neurons are, for 

example, characteristics of formulations such as drug content, compression force, or composition 

in terms of excipients. In the case of release models, output neurons represent the performance of 

the formulation.  

The model can be further applied to correlate the release kinetics with pharmacokinetics as a 

parameter in vivo. The combination of the two “correlations” provides a correlation between 

formulation properties and in vivo performance [131]. 

The estimated weighting function can be used to “train” the network, i.e., to define, following 

successive approximations, the optimal equations and weights allowing for the calculation of the 

output values based on the input values in order to make quantitative predictions. This type of 

analysis was performed by Takahara et al. [128] to simulate the effects of the amounts of 

microcrystalline cellulose and hydroxypropyl methylcellulose, as well as the effect of the 

compression pressure used to prepare trapidil matrix tablets on the resulting drug release kinetics. 

Ibric et al. [132] studied acetylsalicylic acid release from Eudragit RS-based matrix tablets, whereas 

Ghaffari et al. [133] applied neural network algorithms for modeling theophylline release from 

coated pellets. 

4. Release Models Based on Fick’s First Law 

Fick’s first law concerning the flux of substances J across virtual interfaces in homogenous 

solutions is given by the following formula: 

1 dm c
J D

A dt x


  


, (65) 

where m is the transferred mass, A is the area, D is the diffusion coefficient, and c is the 

concentration. 

If we extrapolate the transfer at virtual interfaces in solutions toward the transfer between 

actual interfaces of pharmaceutical formulations with the release medium, Fick’s equation can be 

used to formally derive mathematical models usually considered for the analysis of data in the case 

of diffusion-controlled release processes. 

4.1. Noyes–Whitney Model 
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In the “receptor solution” at the frontier with the pharmaceutical formulation appears the 

“limit” or “stationary” layer of thickness h, which is not affected by convection currents in the fluid. 

Let us consider that, in this limit layer, the concentration gradient is linear. It is natural to accept 

that the concentration of active substance in the immediate neighborhood of pharmaceutical 

formulation is equal to its maximum value �� (denoted frequently by S) given by its solubility. 

hc Sc

x h





. (66) 

Replacing the expression of concentration gradient, Fick’s equation is transformed into 

( )1 hc Sdm
D

A dt h


  . (67) 

This expression is known as the Nernst–Brunner equation [134], established more than one 

hundred years ago. 

This equation is theoretically very attractive; however, in practice, we cannot experimentally 

measure the thickness h of the limit layer, nor can we measure the diffusion coefficient D in 

proximity of the interface. The area of the interface A is also rather difficult to estimate and is not 

constant over time.  

If, for some time interval, we can assume that the expression 
D

A
h

  is constant, a simpler law 

is obtained. 

( )s h

dc
k c c

dt
  , (68) 

which was experimentally established by Noyes and Whitney a long time ago [135]. This 

differential equation can easily be solved with initial condition (0) 0hc   and the implicit solution 

is then obtained.  

ln(1 )h

s

c
kt

c
   . (69) 

If we can accept that, beyond the limit layer, homogenization is rapid and concentration is the 

same ( hc ) across the dissolution media, the representation of ln(1 )hc

S
   versus time leads to an 

approximately straight line. Such a linear dependence can be considered as evidence that the 

process follows the Noyes–Whitney law. We can observe that the Noyes–Whitney law is a model 

with a single parameter, k.  

4.2. “Empirical” Extensions 

If release is made in a medium of constant volume V and if we amplify with V the ratio h

s

c

c
, 

the new fraction h

s

V c

V c




 can be written as 

( )m t

m

, where m  is considered the maximum quantity 

of active substance which can be released in limited solubility restrictions, whereby the solution of 

the equation can be written in the following alternative form:  

( )
ln(1 )

m t
kt

m

   . (70) 

Most frequently, in dissolution tests, an increase in volume until 0hc   is attempted, often 

referred to as “sink conditions”. In such cases, the process ends when the entire quantity or 
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alternatively all the “fraction available for release” is released. Consequently, it is easy to write m

, but it is sometimes quite difficult to define it. 

In order to obtain a “more flexible” model, we can replace t by a power term t . 

( )
ln(1 )

m t
kt

m




    and 
( )

1 ktm t
e

m





  . (71) 

Thus, a more general model was obtained, but the model is “empirical” since there is no 

theoretical justification for making the t t  substitution. Such a model was applied first in 

describing dissolution data by Langenbucher [136]. 

The above equation can be rewritten in the form 

( )
1 tm t

e
m





  , (72) 

which mathematically represents the cumulative Weibull distribution and, consequently, we can 

think to the interpretation of   as a “scale factor” and   as a “shape factor” in the Weibull 

survival distribution. 

A linear dependence can be obtained by transforming the previous equation. A second-order 

logarithm expression is applied, and the following mathematical equation is obtained: 

ln( ln(1 )) ln ln( )r t     , (73) 

where 
( )m t

r
m

 .  

Consequently, if the graphical representation of ln( ln(1 ))r   versus ln( )t  appears to be a 

straight line, we can assume a Weibull empirical dependence between r and t. 

This function was and still remains most frequently applied to the analysis of dissolution and 

release studies involving nanoparticulate drug systems: nano- and micro-capsules [137,138], 

nanosuspensions [139], nanosized zeolits [140], PLGA nanoparticles [141], inorganic nanoparticles 

[142,143], solid lipid nanoparticles (SLN), and nano-structured lipid carrier (NLC) [144], as well as 

different liposomal formulations [145–148]. 

From analysis of the experimental data concerning the release of diltiazem and diclofenac 

[123], Papadopoulou et al. concluded that   is an indicator of the mechanism of transport of the 

drug through the polymer matrix; 0.75   indicates Fickian diffusion, while a combined 

mechanism (Fickian diffusion and swelling-controlled transport) is associated with   values in 

the range 0.75 <� < 1. For values of   higher than 1, the drug transport follows a complex release 

mechanism [126].  

We make the observation that the usual classification of the Weibull model as “empirical” is a 

superficial analysis. The Weibull distribution function is the simplest distribution applicable to a 

multi-step chain, for example, survival in cancer. The probability that a patient is alive at moment 

x is conditioned by his or her survival at all n previous moments (1 ) (1 )n
nP P    and can be 

written in the form 
( )n xe 

. 

The most common criticism is that this distribution function has no theoretical basis. However, 

as said Weibull, this objection applies practically to all other distribution functions related to real 

data from the natural or biological field, where, in almost all cases, the complexity is so high that it 

is utterly hopeless to find a theoretical base. 

Particularly, in the case of release kinetics, when drug release takes place at interfaces, the 

hypothesis of homogeneous conditions is no longer valid for the entire course of the process. 

Macheras [149] proposed a replacement of the “reaction constant” in the Noyes–Whitney equation 

(k) with a function of time 1
hk k t  . 

After integration, the amount of released drug is described by the Weibull equation. 
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11( ) 1 exp
1

hk
M t t

h
 

    
. (74) 

Consequently, the “empirical” attribute of Weibull and Peppas models does not refer to 

empirical models, but refers to the fact that the models are fitted to the experimental data without 

examination of the conditions that were considered in the deduction of the mathematical 

expressions of respective models. 

A further degeneration of the Weibull model for small t values can be considered. 

1 1 (1 )ttM
e t t

M

   



      . (75) 

Thus, the above discussed Peppas law is obtained. 

The Higuchi law appears, therefore, to be a particular case of Peppas law, for 1/ 2  .  

4.3. Applications of “Empirical” Models in Describing Release from Micro- and Nanostructured Carriers 

All the above deductions are mainly empirical and formal; however, this is to underline that 

mechanistic models are difficult to understand due to mathematically complex aspects and they 

are difficult to apply since they require a large amount of experimental data. These are the main 

reasons for the fact that the application of empiric models is more widespread than the application 

of mechanistic models. A number of papers where data are analyzed using empirical rather than 

mechanistic models are presented below. 

On other hand, as presented above, application of so-called “empirical” but in fact not 

empirical models allows, following a more in-depth analysis [126] of the β coefficient, an estimation 

of the drug release mechanisms.  

As a general rule in the selection of models, the simpler ones are preferred to the more complex 

ones, since they are more stable to variations of the experimental data. For example, the Higuchi 

model, a one-parameter model, is often preferred to the power law and Weibull models, which 

depend on two parameters, in spite of the fact that it cannot describe all experimental data. 

As presented in the tables below, square-root and power models were analyzed and were 

considered “good” in almost all experimental cases. Since the Weibull model has two parameters 

and since power models can be considered degenerated Weibull models, it is clear that Weibull can 

better fit the experimental data in all cited examples. Whatever the reasons to avoid the Weibull 

model (and maybe the main reason concerns the “empirical” label), in many cases, the analysis of 

obtained parameters can give essential information about the release mechanisms. For all the above 

models, we can see that decreasing the size to micro- and nano-domains causes many of the 

concepts from the continuous, homogeneous phases to become questionable, as we enter more and 

more into a fractal space. The concept of fractal geometry can be applied to describe the complexity 

of the heterogeneous nature of drug release processes both in vitro and in vivo [150–154]. 

4.3.1. Micro-Sized Polymeric Carriers 

As previously presented in the paper, release from a polymeric matrix is a complex process 

implying numerous phenomena. In the case of microsystems, there are many additional difficulties 

in modeling drug release data, as there is a great diversity in the physical form of formulations with 

respect to size, shape, arrangement of the sheets, etc. Diversity of active substances is great, and 

their physicochemical properties are modified following their combination with excipients in the 

engineering of micro and nano formulations. There are also problems in translating kinetics of drug 

release from “micro” products of homogeneous geometrical space to various irregular systems 

[155]. Consequently, as can be seen in Table 1, the fitting of release with solutions of empirical 

models is the rule rather than the exception. 
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Table 1. Examples of the application of empirical models in describing release kinetics from micro-

sized polymeric carriers. 

Drug 
Supramolecular 

System 
Main Excipients Release Experiment Empirical Model Reference 

Cefpodoxime 

proxetil 

Micro-balloons 

(hollow 

microspheres) 

Hydroxypropyl

methyl cellulose 

(HPMC) ethyl 

cellulose (EC) 

Method (M): United 

States 

Pharmacopoeia 

(USP) paddle 

apparatus 

Dissolution medium 

(DM): 0.1 N HCl 

(pH 1.2)  

Higher values of correlation 

coefficients were obtained in 

the case of Higuchi’s square 

root of time kinetic treatment; 

diffusion was the predominant 

mechanism of drug release. 

[156] 

Nimodipine 

Coumarin  
Microparticles PLGA 

DM: 50/50 (w/w) 

mixture of 

phosphate-buffered 

saline (PBS), pH 7.4 

and ethanol  

Higuchi model [157] 

Ethinyl 

estradiol (EE) 

Drospirenone 

(DRSP) 

Microparticles PLGA 

M: dialysis sac 

method 

DM: USP phosphate 

buffer pH 7.4 + 8% 

2-Hydroxypropyl--

β-cyclodextrin  

EE release from PLGA 

microparticles was faster than 

DRSP release; EE release is 

assumed to be primarily 

controlled by drug diffusion. 

[158] 

Sodium 

fluorescein 

(hydrophilic 

compound) 

Spray-dried 

microparticle 

Poly(glycerol 

adipate-co-ω-

pentadecalacton

e), L-arginine, L-

leucine 

DM: PBS, pH 7.4 (n 

= 3) 
Higuchi model  [159] 

Levonorgestrel  Microparticles 

PLGA; Methocel 

Polyvinyl 

alcohol  

DM: 0.9% sodium 

chloride + 0.5% 

sodium dodecyl 

sulfate 

Release kinetics followed 

predominantly a zero-order 

release profile. 

[160] 

Anastrozole  Microparticles PLGA 

M: modified dialysis 

method 

DM: 0.1N HCl (pH 

1.2) and phosphate 

buffer (pH 7.4). 

An initial burst release phase 

was followed by a gradual 

release phase with good 

correlation coefficients for the 

Higuchi model. 

[161] 

Centchroman Microparticles 
Glutaraldehyde 

Glyoxal 
NA 

A burst release of 29% 

centchroman within an initial 

period of 40 h was seen, and 

the remaining 70% was 

released in the next 60 h 

following zero-order release 

kinetics. 

[162] 

5-fluorouracil 

(5-FU) 
Microspheres 

Bovine serum 

albumin  

Galactosylated 

chitosan 

(coating) 

M: dynamic dialysis 

DM: phosphate 

buffered saline (pH 

7.4, PBS) 

Attenuated burst release in 

comparison with uncoated 

microspheres. 

Release followed Higuchi's 

square root model. 

[163] 

Methotrexate 

(MTX) 

5-fluorouracil 

(5-FU) 

Microspheres Chitosan DM: PBS, pH 7.4   

Biphasic release (more 

prominent for MTX 

microspheres). 

5-FU release followed 

Higuchi's model, whereas 

MTX was released more 

slowly with a combination of 

first-order kinetics and 

Higuchi's square-root model 

[164] 
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Drug 
Supramolecular 

System 
Main Excipients Release Experiment Empirical Model Reference 

Vitamin B12 Microparticles 
Bovine serum 

albumin (BSA) 

M: dialysis 

technique 

DM: pH 2, pH 6 and 

pH 10 buffers 

First stage: power law and 

Weibull equations.  

The second stage: super case II 

transport mechanism, as a 

result of diffusion, relaxation, 

and erosion. Application of 

Hixson–Crowell model 

confirmed the erosion 

mechanism. 

[165] 

Aspirin Microcapsules 

Ethyl cellulose,  

Cellulose 

Acetate 

Phthalate 

M: USP apparatus 2 

DM: pH-1.2 for 2 h 

followed by acetate 

buffer at pH 6.0 for 7 

h 

The best fit was the Higuchi 

model, indicating diffusion-

controlled release. The n in 

Korsemeyer–Peppas model 

varied between 0.5 and 0.7, 

suggesting a diffusion-

controlled release. 

[166] 

4.3.2. Nano-Sized Polymeric Carriers 

The release kinetics of active substances from nano-sized polymeric carriers following their 

small size in many cases can no longer be adequately described by models used in the case of micro-

sized carriers. Some reasons for failure could be as follows: 

- the release models developed for transfer across plane surfaces are no longer 

applicable; 

- their curvature implies specific properties, primarily high free energy and aggregation 

tendency; 

- continuum models lack the ability to describe the kinetics of drug release as the 

concentration of the drug in the nanosystems fluctuates and the notion of concentration 

profile becomes meaningless.  

In terms of their interaction with biological fluids, nanosystems tend to be stable (no 

degradation and/or dissolution in blood). Non-biodegradability is relative to the time scale 

associated with the drug release process. In fact, many studies of nanocarriers revealed that the 

encapsulated drug is completely released before polymer degradation occurs. Consequently, the 

release kinetics from nanocarrieres is even more frequently based on fitting experimental data with 

solutions of empirical models (Table 2). 
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Table 2. Examples of application of empirical models in describing release kinetics from nano-sized 

polymeric carriers. 

Drug 
Supramolecular 

System 

Main 

Excipients 
Release Experiment Empirical Model Reference 

Docetaxel Nanoparticles Chitosan 

Method (M): dialysis sac 

method 

Dissolution medium 

(DM): PBS pH 7.4 

Higuchi’s square-root and 

Korsmeyer–Peppas; 0.45 ≤ n ≤ 0.89 

indicates a combination of both 

diffusion of drug through the 

polymer and dissolution of the 

polymer. 

[167] 

Ofloxacin Nanoparticles 

Carboxymethy

l gum 

kondagogu; 

Chitosan 

M: dialysis sac method 

DM: phosphate buffer 

solution pH 7.4 

Higuchi model; ‘n’ exponent of 

Peppas equation (n < 0.43) 

suggested diffusion-controlled 

mechanism. 

[168] 

Aceclofenac  Nanoparticles 
Eudragit RL 

100- 

M: dialysis sac method  

DM: Sorenson's 

phosphate buffer  

Higuchi model 

(0.43 < n < 0.85) 
[169] 

Ellagic Acid 
Biodegradable 

nanoparticles 

PLGA 

polycaprolacto

ne (PCL) 

M: dialysis technique 

DM: phosphate buffer 

pH 7.4 

An initial burst release was 

followed by Higuchi’s square-root 

pattern in the case of PLGA and 

PCL nanoparticles. 

[170] 

Estradiol Nanoparticles PLGA 

M: dialysis technique 

DM: phosphate buffer 

pH 7.4 

Zero order for low-molecular-

weight nanoparticles; it was 

considered that degradation plays 

a dominant role and controls the 

release rate. High-molecular-

weight nanoparticles showed the 

best fit into the Higuchi's model. 

[171] 

Doxorubicin Nanoparticles 

Gelatin cross-

linked 

with genipin 

Fe3O4 

DM: PBS pH 7.4 

A correlation between the quantity 

of released drug and swelling of 

the nanoparticles was established 

using a power-law model. 

[172] 

Chloroquine 

phosphate 
Nanoparticles Gelatin 

DM: PBS pH 7.4 and 

distilled water 

Fick’s power law allowed 

establishing a correlation between 

the quantity of released drug and 

swelling of the nanoparticles. 

[173] 

Indomethaci

n 
Nanocapsules 

Pluronic F127 

Polylactide 

(PLA) 

Labrafac CC 

M: dialysis technique 

DM: PBS pH 7.4 

The release pattern was found to 

follow a power-law model, with n 

values ranging between 0.35 and 

1.03 (depending on the 

preparation method). 

[174] 

Tigecycline Nanoparticles 

Calcium 

phosphate 

(CP) 

PLGA  

DM: physiological 

solution at 37°C 

under static conditions 

The tigecycline content was 

released within a 35-day period. 

The in vitro data were best fitted 

with the Weibull model, and the 

release was defined as non-Fickian 

transport. 

[141] 

Moxifloxaci

n 

Nanosuspension

s 
PLGA 

M: USP apparatus 1 

DM: simulated tear fluid 

(pH 7.4) 

All formulations followed 

Korsemeyer–Peppas release 

kinetics with n values between 

0.45 and 0.89 (anomalous 

behavior). 

[175] 

4.3.3. Liquid Crystals 

Liquid crystals are formulations at the frontier between continuous and multi-particulate 

structures, with their essential property being the appearance of fluid ordered domains, appearing 

essentially as a consequence of including active substances in surfactant–cosurfactant structures. 

The most widely used liquid crystal system appears to be cubosomes. Research of cubosomes as a 

drug delivery system involved oral [176], intravitreal [177], and subcutaneous [178] routes of 

administration [179,180]. A novel vehicle based on cubosomes was used as an ophthalmic drug 

delivery system for flurbiprofen (FB) in order to reduce ocular irritancy and improve bioavailability 
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[181]. Transdermal enhancing effect of cubosomes was reported by some researchers [182]; this 

effect might be due to the structural organization of cubosomes, which is similar to that found in 

biomembranes [183,184].  

Liquid crystals present many advantages for drug delivery, including their ability to 

incorporate both hydrophilic [185] and hydrophobic drugs [182] and their possibility to function as 

sustained-release delivery systems [186]. 

What is surprising is that, in almost all cases, their release kinetics are fitted by solutions of 

simple empirical models (Table 3). The usual proposed model is the Higuchi square-root law [187]. 

A more in-depth analysis revealed that cubosomes should be classified as a burst release 

delivery system, whereby drug is released by diffusion from the cubic phase matrix and the critical 

factor is represented by the nature of surfactants. As the HLB of additives in matrix increases, 

release is shifted from anomalous (non-Fickian) diffusion and/or partially erosion-controlled 

release to Fickian diffusion. Initial lag time was observed for drug released from matrices with 

additives of HLB 1.5, 3, 4, and 5. Thus, the incorporation of additives of different HLBs led to a 

modification of molecular packing, which significantly affected the drug release pattern [176–

178,185,188–191].  

Table 3. Examples of experiments concerning release from liquid crystals, described by empirical 

models. 

Drug 
Supramolecular 

system 
Main excipients Release experiment Empirical model Reference 

Alpha lipoic 

acid (ALA) 

Cubosomes 

loaded gel 

Glycerol 

monooleate 

(GMO) 

Poloxamer P407 

M: USP Apparatus 5, 

paddle over disk 

assembly 

DM: hydro-alcoholic 

solution (1:1), 700 mL 

Higuchi model 

ALA release from cubosomes 

in gels was shown to be 

primarily controlled by 

diffusion through the matrix.  

[192] 

Doxorubicin 

Bicontinuous 

lipidic cubic 

phases (LCPs) 

GMO 

Phytantriol (PT) 

DM: pH 7.4 and pH 5.8 

buffer 

Higuchi model was 

n > 0.5 in all cases, indicating 

non-Fickian anomalous 

transport in which both 

diffusion and matrix effects.  

[193] 

Capsaicin Cubic phase gels  

GMO: 

propylene glycol 

(1,2-

propanediol, 

PG): water 

DM: isotonic phosphate 

buffered solution (PBS)  

Release kinetics were 

determined to fit Higuchi's 

square-root equation 

indicating that the release was 

under diffusion control.  

The calculated diffusion 

exponent showed the release 

from cubic phase gels was 

anomalous transport (n = 0.57–

0.60) 

[194] 

Salicylic acid Cubic phase gels 

GMO 

Myverol 18–99® 

distilled 

monoglycerides 

M: USP app I 

DM: Isotonic phosphate 

buffer  

Release mechanism could be 

fitted to both Higuchi and 

first-order models. 

[195] 

2-

pyrrolidone 

(model) 

In situ cubic 

phase forming 

monoglyceride 

drug delivery 

systems 

Monoglyceride 

(GMO or 

glycerol 

monolinoleate)  

Cosolvents 

(ethanol, PEG 

300, 2-

pyrrolidone, 

DMSO)  

DM: 0.1 M phosphate 

buffer, pH 7.4, with 0.1% 

sodium azide as 

preservative 

The release of oligonucleotide 

from the fully swollen cubic 

phase matrix followed a 

diffusion-controlled release 

mechanism square-root 

Higuchi model in 24-h 

intervals for all formulations. 

[196] 

Carbamazep

ine 
Nanoemulsion 

Castor oil; 

Lipophilic 

emulsifier 

(lecithin or 

polyoxyl 35 

M: dialysis technique 

DM: phosphate buffer 

pH 7.4 

Higuchi model best 

characterized the release 

profiles for the nanoemulsions 

and for the free drug, and 

drug release was described as 

[197] 
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castor oil); 

Tween 80 

a diffusion process based on 

Fick's law. 

L-

glutathione 

Microemulsions 

Liquid crystal 

systems 

- NA Higuchi model [198] 

4.3.4. Liposomes 

Although liposomes, following their spherical symmetry and relatively simple boundary 

conditions, are good candidates for mechanistic models, results that could be appropriately 

described by empiric models were also published. 

Oezyazici et al. [199] investigated metronidazole release from different types of lipid matrix 

tablets and found Higuchi’s model as being appropriate. The same model was proposed for 

describing the release of safingol from liposomes prepared with distearoylphosphatidylcholine and 

cholesterol. 

First-order models, and the Higuchi or Hixson–Crowell equations could appropriately fit the 

experimentally determined drug release kinetics from different liposomal formulations [189,200]. 

Weibull and power-law models were used for describing the release of indomethacin liposomes 

based on dipalmytolphosphatidylcholine and poly(2-methyl-2-oxazoline)-g-poly(2-phenyl-2-

oxazoline [146]. Release of baicalin from liposomes based on Tween-80, phospholipon® 90H, and 

citric acid in phosphate-buffered saline (pH 7.4, PBS) using a dialysis technique was best described 

by the Weibull model [147]. 

4.3.5. Solid Lipid Nanoparticles and Lipid Dosage Forms 

The main lipid dosage forms are lipid microparticles and spherical beads. The most frequently 

applied semiempirical model was the “power law” [189,200]. More detailed examples in this 

respect are presented in Table 4.  

A plot of “1 − (1 − r)0.5” versus the square root of time for in vitro release of interferon a (IFNa) 

from lipid cylindrical matrices based on tetraglycerol tripalmitate (squares), tetraglycerol 

monopalmitate (filled triangles), tetraglycerol dipalmitate, tetraglyerol distearate, or tetraglyerol 

monostearate led to a linear dependence [201]. 

Table 4. Examples of experiments concerning release from solid lipid nanoparticles and lipid 

dosage forms, described by empirical models. 

Drug 
Supramolecular 

System 
Main Excipients 

Release 

Experiment 
Empirical Model Reference 

Etofenamate 

Solid Lipid 

Nanoparticles 

(SLN) 

Compritol 888 ATO 

Precirol ATO 5 
NA 

Higuchi model for Compritol 888 

ATO SLNs; 

Zero-order release for Precirol 

ATO 5 SLNs 

[202] 

Curcuminoids SLN 

Poloxamer 188 

Dioctyl sodium 

sulfosuccinate  

Stearic acid 

Glyceryl 

monostearate 

M; vertical Franz 

diffusion cells  

DM: 50% (v/v) 

ethanol 

25% burst release of the 

curcuminoids within 10 min 

followed by controlled release 

pattern following Higuchi's 

square-root model for 12 h 

[203] 

Bixin SLN 

Trimyristin  

Glycerol 

monostearate 

M: diffusion using 

Franz diffusion 

cells 

Receptor medium: 

Sorensen buffer 

pH 7.7 

The release was first-order 

diffusion-controlled. 

The n-values obtained from the 

Korsmeyer–Peppas model (n = 

0.697) indicated the release 

mechanism was non-Fickian type. 

[204] 

Gatifloxacin SLN 

Stearic acid (SA)/ 

Compritol/Gelucire 

Poloxamer-188 

Sodium taurocholate 

M: Automated 

transdermal 

diffusion cells 

Receptor medium: 

phosphate buffer 

(pH 7.4) 

The release pattern was found to 

follow Korsmeyer–Peppas model 

(n = 0.15). 

[205] 
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4.4. Selection of the Mathematical Release Model 

In virtually all cases of supramolecular systems, there is no possibility to elaborate a 

mechanistic model, i.e., a model taking simultaneously into account the structure and properties of 

the system, as well as those of the drug and their interactions.  

For that reason, as presented above, empirical and semiempirical models are usually 

attempted in order to fit the experimental data. In spite of the fact that phenomenological conditions 

for the respective system are not verified, if the fitting of experimental data “works well”, the model 

is considered applicable. To illustrate this widespread approach, we chose three papers published 

in the last year, concerning the release from cubosomes, where an appropriate fitting of 

experimental data using empirical models can be obtained in virtually all cases. 

In a paper concerning comparative in vitro and in vivo studies on glycerol monooleate and 

phytantriol-based cubosomes containing oridonin [206], the zero- and first-order models, as well 

as Higuchi and Weibull equations, were tested. A linear relationship was established between the 

release rate and the square root of time for both cubosome formulations, indicating that the release 

kinetics fit Higuchi’s equation and were controlled by drug diffusion. The criterion for this selection 

was the correlation coefficient R2 (0.9924 and 0.9972). 

Another study [207] presented the development and characterization of novel small self-

assembled resveratrol-bearing cubosomes and hexosomes. To analyze the release kinetics of 

resveratrol from those formulations, the obtained data were fitted into zero-order, first-order, 

Higuchi, and Korsmeyer–Peppas models. The agreement of fit for most formulations was achieved 

with the Higuchi kinetic model (R2 ≥ 0.9724).  

Such examples can be multiplied since practically all release studies were analyzed similarly. 

A much more in-depth analysis was proposed in 2019 [208]. Authors systematically studied 

the release kinetics of fluorescein from colloidal liquid crystals obtained from monoglyceride and 

different non-ionic surfactants. 

The appropriate mathematical model and the hierarchy of the performances of the linear, 

Noyes–Whitney, square-root, Siepman–Peppas, and Weibull models applied to the release 

experiments was attempted.  

The essential difference from previous papers was the application of informatics criteria 

(Akaike information criterion (AIC) [209], Schwarz criterion (SC) [210]) and also the Fisher test to 

the correlation coefficient. 

The Akaike information criterion (AIC) [209] and Schwarz criterion (SC) [210] are based on the 

addition of statistical errors corrected by a penalty function, proportional to the number of 

parameters (p) evaluated in the following models: 

��� = � �� � � + 2�, (76) 

�� = � �� � � + � �� �, (77) 

where N represents the number of point data, and squared errors SS represent the sum of squared 

deviations of a model with a set of p parameters, calculated according to the following equation:  

 
2exp

1

n
calc

i i
i

SS y y


  . (78) 

The model equations having the lowest AIC or SC were selected for the evaluation of the time 

course plots. 

Fisher (F) test criterion permits comparing a simple model having q parameters with a complex 

model having supplementary k parameters, with p = q + k using the F ratio, according to the 

following equation: 

q p p

p q p

SS SS df
F

SS df df





, (79) 
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where ��� is the sum of standard errors for the selected reference mathematical model, while ��� 

corresponds to the more complex model. The number of degrees of freedom represents the 

difference between the amount of experimental data, n, and the number of parameters, ��� = � −

� and ��� = � − �. 

The analysis makes sense when the two models are nested, i.e., the model with a lower number 

of parameters can be considered as degenerated from the model with more parameters, by keeping 

the number of parameters constant. 

In the case of closely related fitting performances, the decisive criterion is connected with the 

involved phenomena. It is preferable to use the model whose initial and boundary conditions are 

compatible with the structure and properties of the concerned supramolecular system. However, 

if these correlations are difficult to make, the correlation coefficient, information criteria, and Fisher 

test together have to be applied for selection of the most performant model.  

Last but not least, it has to be considered if fitting works for the partial or full-range time of 

the experiments.  

Many papers concluded with the application of Higuchi’s law, without looking at conditions 

used to derive the law were fulfilled by the respective experimental conditions in classical 

formulations [211–213].  

5. Conclusions 

The predictability of release kinetics of active substances represents an essential characteristic 

applied to supramolecular carrier systems in order to be accepted as drugs. Both safety and efficacy 

depend on the rate and extent of availability of active substances at the place of absorption and at 

the site of action.  

The measuring, the modeling, and the prediction of release kinetics represent research of high 

complexity, implying an in-depth understanding of physicochemical, physiological, and 

mathematical aspects. Unavoidably, almost all approaches start from one domain, and from one 

scientific language, while neglecting the other domains. Although many papers, many books, and 

many reviews were written, all of these satisfied only specific cases from one or two marginal sub-

domains. Consequently, all future papers and reviews are welcome, but they surely cannot 

overcome some of these irreducible difficulties.  

On the other hand, it is continually emphasized that the more complex the model is, the more 

data are needed in order to validate it. Uncertainty, lack of uniqueness, and robustness increase 

with the number of parameters. 

Furthermore, since the complexity and diversity of mechanistic models is huge, a clustering of 

these models as a function of boundary conditions, as tried in this paper, would probably allow a 

better understanding of the phenomena, and more efficient research for new models.  

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 

Diffusion in a Domain Bordered by Two Interfaces where Concentration is Kept Constant 

Here, we consider the release from (or into) a domain of thickness 2 , starting from an initial 

concentration 1c  into an environment where the concentration maintains constant over time 0c . 

If concentration at the point x in the matrix at the moment t is c(x,t), the initial and boundary 

conditions can be written in the form 

0 0

1 1

0 0 0

          2 , (2 , )

0 ( ,0)

0 (0, )

c x c t c

c t c x c

c x c t c

 

 

 

 

. (A1) 
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The diffusion equation to be solved is the second law of Fick. 

2

2

C C
D

t x

 


 
. (A2) 

By making the change of variable, 

0

0 1

c c

c c






, (A3) 

and applying the general rules of differential calculus, it can be easily obtained that 

1 0

1 c

t c c t

 
 

  
 and

2 2

2 2
1 0

1 c

x c c x

 
 

  
, and substituting into the equation of C(x,t) results 

that   satisfies the same equation as C(x,t). 

2

2
D

t x

  


 
. (A4) 

With initial and boundary conditions modified, 

0

2 , (2 , ) 0

0 ( ,0) 1

0 (0, ) 0

x t

t x

x t







 

 

 

 

. (A5) 

We are looking for a solution in the form of a product between a function only of x and a 

function only of t. In these conditions, the method is sometimes called “the method of separation 

of variables”.  

( , ) ( ) ( )x t X x T t   . (A6) 

Substituting in the diffusion equation, we obtain 

' ''T X DTX , (A7) 

which can be rewritten in the form 

' ''

'

T X

DT X
   , (A8) 

where   is the common value of the two ratios. The system is equivalent to two differential 

equations. The first of these 
'T

D
T

   is with separate variables and integrates immediately. 

'T
dt Ddt

T
   . (A9) 

ln lnT Dt a   , where ln a   is the constant of integration. Consequently, T(t) can be expressed 

in the form 

( ) D tT t a e   . (A10) 

General solutions of the second equation " 0X X   have different forms depending on 

the sign of  .  

a) 0  , 

1 2( ) x xX x k e k e     . (A11) 

By imposing that the solution satisfies the boundary conditions, we get 
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0 (0, ) 0 (0) ( ) 0x t X T t      i.e.  0 0
1 2 0Dtk e k e ae       . 

Furthermore, because 0Dtae    and 0 1e  , we have 1 2 0k k   and 2 1k k  . 

At the other face of the tablets, the above equation becomes 

 2
1

0 2 02 (2 , ) 0 0Dtx t k e e e             . (A12) 

Since no parenthesis nor exponential of t can be zero, it remains to take 1 0k  . Hence, it was 

obtained that ( ) 0X x  , i.e., a trivial solution. 

b) 0  . In this case the general solution can be written in the form 

1 2( ) cos sinx xX x k k   . (A13) 

The solution has to satisfy the initial and boundary conditions as follows: 

0 (0, ) 0 (0) ( ) 0x t X T t     , 

Thus, 

 1 2 10 0 0(0) ( ) cos sin Dt DtX T t k k ke e         . 

Since the exponential cannot be null, then 1 0k  . 

 22 (2 , ) 0 sin 2 0Dtx t k e            

0sin 2      2 n  , which means practically a condition imposed to  . 

2 2

24
n

n 
 


. (A14) 

Thus, for every n, we obtained a function which meets the initial and boundary conditions and 

is a solution of the diffusion equation. We can further write the general solution as a linear 

combination of these particular solutions. 

0

( ) sin
2n

n

n
X x c x





  
. (A15) 

In order to obtain the values of the constants, we impose a general solution that satisfies the 

initial condition  ,0 1x  . 

0 0

0sin sin
2 2

1 1n n
n n

Dn x n x
c ce  

 

   
   
   

   
 

 . 

By multiplying both members through sin
2

m x


 and integrating between 0 and 2 , we 

get 

2 2

0 0

1 1
sin sin 1 sin

2 2 2n
n x m x m x

c dx dx
   

 
 

    
 

    
. (A16) 

As can be easily verified, 
2

0

sin 0
2

1
sin

2
n x m x

dx
 

 


 
; thus, except for n = m, the entire sum 

will reduce only to the term “m”. 

   

22

00

2
sin 1 cos

2 2

2 2
cos 1 1 1

1 1

1

m

m

m x m x
c

m

m
m m

dx 



 

 
 
 

   
     

   

      





 



 



. 
(A17) 
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The term in parenthesis is null for even numbers of m and m = −2 for odd numbers of m. We 

can then obtain the solution of the Cauchy problem. 

   
2

2

2

2 1

0 4

1 0

2 14 1
sin

2 1 2

tk
k xc c

e
c c k












  


. (A18) 
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