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Abstract: The field of neuronanomedicine has recently emerged as the bridge between neurological
sciences and nanotechnology. The possibilities of this novel perspective are promising for
the diagnosis and treatment strategies of severe central nervous system disorders. Therefore,
the development of nano-vehicles capable of permeating the blood–brain barrier (BBB) and reaching
the brain parenchyma may lead to breakthrough therapies that could improve life expectancy and
quality of the patients diagnosed with brain disorders. The aim of this review is to summarize
the recently developed organic, inorganic, and biological nanocarriers that could be used for the
delivery of imaging and therapeutic agents to the brain, as well as the latest studies on the use
of nanomaterials in brain cancer, neurodegenerative diseases, and stroke. Additionally, the main
challenges and limitations associated with the use of these nanocarriers are briefly presented.

Keywords: neuronanomedicine; nanotechnology; neurological sciences; central nervous system
disorders; nano-vehicles; organic nanocarriers; inorganic nanocarriers; delivery of imaging and
therapeutic agents

1. Introduction

Neuroscience is a multidisciplinary field that studies the macro- and microscale neuroanatomy,
the functional organization of specific brain areas, and the electrophysiology of neurons and synapses.
Moreover, neuroscience represents the means to understand the underlying mechanisms involving
the structure and function of individual channels and receptor proteins, the development and repair
signaling, and the assembly of proteins into molecular machines that regulate neuronal functions [1].
A complete knowledge of brain function is fundamental for developing novel and efficient strategies
that will allow for the long-term and minimally invasive diagnosis and treatment of neurological
diseases [1,2].

Neurological disorders comprise a wide variety of sporadic and hereditary [3] pathological
conditions, including brain cancer, neurodegenerative diseases, multiple sclerosis, and stroke, which
can manifest mild to severe symptoms [4,5]. Due to the increase in elderly populations, the prevalence
of these diseases is becoming a great concern [5]. Neurological pathologies are characterized
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by processes involving protein aggregation which subsequently lead to neurodegeneration or
dysregulation of immune mechanisms, or by the progressive loss of neuronal structure and
function, associated with abnormalities in brain development and function and neuronal death [6,7].
However, diagnosis, management, and monitoring strategies for neurological disorders are currently
unsuccessful mostly due to the complexity of the nervous system [8,9]. Additionally, their diagnosis
and treatment involve high precision, dedication, and experience [9].

Furthermore, the presence of the blood–brain barrier (BBB) and the blood–cerebrospinal fluid
barrier (BCSFB) represents the main cause for limitations in the management of neurological
diseases [7]. The BBB comprises the neurovascular unit which includes specialized endothelial cells,
pericytes, astrocytes, neurons, and the extracellular matrix [10]. The BBB represents the dynamic
interface between the brain and the circulating blood, acting as a gateway to protect the brain from
toxins and cells and to maintain its proper microenvironment [11,12] through the tight junctions,
an intricate system of proteins between the endothelial cells [10]. By contrast, the BCSFB consists
in epithelial cells only, which are responsible for the physical and chemical properties. Similarly,
the tight junctions between the epithelial cells prevent the paracellular diffusion of molecules into
the cerebrospinal fluid. If the molecules penetrate the barrier, they may enter into the interstitial
fluid of the brain [13]. Since the delivery of contrast and therapeutics is restricted by the two barriers,
the need to design novel approaches that can effectively target and reach the central nervous system is
fundamental for the diagnosis and treatment of brain disorders [7].

Advances in nanotechnology have allowed for a better understanding of the pathological
conditions of the nervous system and the development of formulations that could enhance the therapy
of neurological diseases [14]. Comprising knowledge from multiple disciplines, including chemistry,
physics, engineering, and biology [15,16], nanotechnology is defined as the field which aims to
control matter at atomic and molecular levels [17–19]. The nanotechnology processes, also termed
as nanofacture or ultraprecision engineering [20], have allowed for the development of non-invasive
approaches for the delivery of therapeutic and imaging agents across the brain barriers [21,22].
Therefore, the combination of nanotechnology, specifically nanomedicine, and neuroscience has led to
the birth of a novel field, neuronanomedicine, through which nanomaterials, nanoformulations, and
nanofacturing processes are effectively employed in neurology for understanding physiological and
pathological mechanisms and for diagnosing and treating the disorders of the central nervous system.

The scientific interest in designing nanotechnology-based approaches, including nanoparticles,
liposomes, dendrimers, micelles, carbon nanotubes, quantum dots, viral vectors, and extracellular
vesicles, which have the potential to deliver the appropriate amount of the therapeutic and imaging
agent to the brain, has grown rapidly [21,23]. Hence, the subject of this paper is to review the
nanocarriers presently used to diagnose and treat the most prevalent neurological disorders (Figure 1).
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2. Nanocarriers for Brain Targeting

Delivering drugs to the brain represents a challenge because conventional neuropharmaceuticals
do not possess the appropriate physicochemical characteristics regarding molecular size, lipid solubility,
and surface charge [24]. Hence, owing to the capacity to modulate their interactions with endothelial
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cells in the brain through surface functionalization, various nanocarriers have been employed [25].
Therefore, the encapsulation of therapeutic and imaging agents into specific nanocarriers might
overcome the challenges associated with the conventional delivery methods across the BBB [26].
Additionally, after intravenous administration, nanocarriers are capable of crossing the tissues in the
organism and reach the central nervous system [27]. A summary of the advantages and disadvantages
associated with each nanocarrier type, as well as the surface functionalization strategies is presented
in Table 1. Furthermore, the specific pathways to cross the BBB for each nanocarrier is presented in
Figure 2.

Table 1. The main advantages, disadvantages, and surface functionalization strategies for the organic
and inorganic nanocarriers.

Nanocarrier Type Advantages Disadvantages Surface Functionalization
Strategies

Polymeric
nanoparticles

biocompatibility, biodegradability, drug
protection, ease of preparation, good
tolerance
controlled pharmacokinetics
tunable physicochemical properties

neurotoxicity

polysorbate 80
RVG29 peptide
anti-Aβ1-42 antibody
monoclonal antibody (OX26)
anti-Aβ (DE2B4)
g7 ligand
TGN peptides
QSH peptides
L-valine
chlorotoxin

Solid-lipid
nanoparticles

biocompatibility, high physical stability,
bioavailability, drug protection, strict
control of release, ease of preparation, good
tolerance, and biodegradability without
generating toxic by-products
no neurotoxic effects reported
hydrophobic drug entrapment efficiency
lipophilicity
possibility of passively cross the BBB

reduced hydrophilic
drug entrapment
efficiency
sterilization difficulties

apolipoprotein E

Liposomes

possibility of entrapping both hydrophilic
and hydrophobic compounds
improved drug protection and targeting
efficiency
lipophilicity
possibility of passively cross the BBB

neurotoxicity
physicochemical
instability
tendency of fusion
rapid clearance
sterilization difficulties

phosphatidylserine-targeting
antibody
polyethylene glycol transferrin
PFVYLI peptide
penetratin peptide
glucose-vitamin C complex
phosphatidic acid
apolipoprotein E

Dendrimers

possibility of entrapping both hydrophilic
and hydrophobic compounds
biodegradability
stimuli-responsiveness
enhanced targeting efficiency

neurotoxicity
synthesis variability
rapid clearance
organ accumulation

polyethylene glycol
glioma homing peptides
sialic acid
glucosamine
concanavalin A

Micelles

no neurotoxic effects reported
improved drug bioavailability
physicochemical stability
sustained and controlled release

use only for lipophilic
drugs
low drug loading
capacity

Tween 80

Inorganic
nanoparticles

unique optical, electrical, and magnetic
properties
tunable size, shape, composition, structure,
and porosity
prolonged enhanced permeability and
retention effect
enhanced on-demand drug release by
applying external stimuli (near-infrared
radiation and magnetic field)

neurotoxicity
high tendency of
aggregation
non-degradableorgan
accumulation
need further
functionalization for BBB
crossing

cyclo RGD peptides
phosphonate polyethylene glycol
bovine serum albumin folic acid
CBP4 peptide
KLVFF and LPFFD peptides
CLPFFD peptides
L-DOPA
hif-prolyl hydroxylase 2 silencing

Carbon nanotubes
unique structure, exceptional electrical,
mechanical, optical, and thermal properties,
and high surface area

neurotoxicity
need further
functionalization for BBB
crossing

Pittsburgh Compound B
polysorbate and phospholipid
coating

Quantum dots exceptional optical and electrical properties

neurotoxicity
need further
functionalization for BBB
crossing

polyethylene glycol
asparagine-glycine-arginine
peptides
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2.1. Organic Nanocarriers

2.1.1. Polymeric Nanoparticles

Polymeric nanoparticles used as nanocarriers involve matrix architectures, most commonly in the
form of nanocapsules and nanospheres [28,29]. The most widely used polymers for manufacturing
these nanocarriers are biocompatible and biodegradable and of synthetic origin, such as polylactic acid,
polyglycolic acid, polylactide-co-polyglycolic acid, poly(ε-caprolactone), and polymethyl methacrylate,
and of natural origin, such as chitosan, alginate, gelatin, and albumin [28,30]. The pharmacokinetics
of the encapsulated agents is mainly influenced by the structure of the polymer and the entrapping
method [31].

The mechanisms for brain uptake and drug release of polymeric nanoparticles have been
intensively studied in order to design nanocarriers that can efficiently deliver therapeutics to the
central nervous system through systemic and local administration. Hence, the main strategies
involve endocytosis or transcytosis through the endothelial cells, accumulation in the brain capillaries
resulting in the transfer to the brain parenchyma owing to the high concentration gradient, membrane
fluidization through lipid solubilization due to the surfactant effect, tight junctions opening [32], and
restricted efflux phenomenon by coating polymers with polysorbates [31]. Furthermore, to improve
the transcytosis across the BBB, the surface of the polymeric nanoparticles can be functionalized by the
conjugation of targeting peptides or cell-penetrating ligands [32].

2.1.2. Solid-Lipid Nanoparticles

Solid-lipid nanoparticles are the new generation of colloidal nanocarriers consisting of
surfactant-stabilized triglycerides, monoglycerides, hard fats, complex glyceride mixtures, or waxes,
that are solid at both room and body temperatures [28,33,34]. Their structure usually involves a
hydrophobic solid matrix core in which phospholipids are embedded through the hydrophobic tail
regions. Therefore, the entrapment efficiency for hydrophobic drugs in the core is higher than conventional
nanocarriers [33]. Commonly used solid lipids for the formulation of these nanocarriers are stearic acid,
cetyl alcohol, cholesterol butyrate, carnauba wax, beeswax, and emulsifying wax [34,35].
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With a size similar to other nanocarriers, between 50 and 1000 nm [35], solid-lipid nanoparticles
combine the advantages of liposomes and polymeric nanoparticles, while outcoming the associated
individual disadvantages [33]. Hence, solid-lipid nanoparticles are characterized by biocompatibility,
high physical stability, bioavailability, drug protection, strict control of release, ease of preparation,
good tolerance, and biodegradability without generating toxic by-products [36,37].

As they have the capacity to target the central nervous system and naturally cross the BBB due to
their highly lipophilic nature, solid-lipid nanoparticles have been extensively used as nano-vehicles for
the delivery of chemotherapeutic drugs into the central nervous system [37,38]. The main mechanisms
involved in the brain uptake of solid-lipid nanoparticles are the paracellular pathway through the
opening of the tight junctions in the brain microvasculature, passive diffusion, active transport, and
endocytosis [39]. Moreover, since apolipoprotein E receptors are predominantly expressed in the brain,
the functionalization of solid-lipid nanoparticles with this protein has become an important strategy in
enhancing the brain targeted drug delivery [38,40,41].

2.1.3. Liposomes

Liposomes are artificial and spherical vesicles, consisting of single or multiple amphiphilic lipid
bilayers which surround an aqueous solution core [42–45]. As they can entrap both hydrophilic and
hydrophobic compounds in the aqueous core and in the phospholipid bilayers, respectively [42,43],
they have been extensively used as drug delivery systems to improve the safety and efficiency of
therapeutics targeting. Hence, liposomes have been formulated as nanocarriers to efficiently deliver
therapeutic molecules, including drugs, vaccines, enzymes, proteins, and nucleic acids [42], and
imaging agents for diagnostics [46].

Furthermore, liposomes have demonstrated their potential in neurological applications as they can
cross the BBB through passive or active targeting and deliver the appropriate quantity of therapeutic
and diagnosis agents to the brain [47]. The main paths for liposomes to reach the brain parenchyma
include the adsorption-mediated transcytosis, the receptor-mediated endocytosis, and the disruption
of the BBB through external forces [48].

2.1.4. Dendrimers

Dendrimers are a class of nanoscaled artificial, highly branched, globular macromolecules [49,50].
Their tree-like topological structure includes an initiator core, branched repeat units from the core, and
functional terminal groups on the external layer of the repeat units [49]. The most common molecules
for dendrimer formulations are polyamidoamine, polypropylenimine, and polyaryl ether [50]. As they
are able to encapsulate both hydrophilic and hydrophobic molecules, these unrivalled polymer-based
nanostructures [51] have been extensively used as nanocarriers to transport various therapeutic and
imaging agents [50,52].

Dendrimers possess the capacity to overcome the BBB, and therefore, they have been widely
applied in the therapy of central nervous system disorders [53]. Furthermore, they have the ability
to cross various cell membranes or biological barriers through the endocytosis-mediated cellular
internalization. Specifically, the cellular uptake is mediated by the reversible modulation of the tight
junction proteins, such as occludin and actin. Moreover, specific ligands can be conjugated to the
surface of the dendrimers for an enhanced brain targeting and facilitated transport across the BBB [54].

2.1.5. Micelles

Micelles are amphiphilic nanocarriers with a particle size within the range of 5–50 nm that
spontaneously form under certain conditions of concentration and temperature of the aqueous
solution [55]. The mechanisms for generating micelles mainly involve the self-assembly of amphiphilic
molecules. Their architecture is characterized by a core formed by the hydrophobic/non-polar regions
of the molecules, known as the tail, and the outside surface comprising the hydrophilic/polar regions
of the molecules, known as the head. Therefore, micelles have gained great scientific interest due to
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their ability to deliver poorly water-soluble and lipophilic compounds and their potential to improve
drug bioavailability by providing chemical and physical stability and a sustained and controlled
release [35].

Micelles penetrate the BBB mainly through the mechanisms of endocytosis and/or transcytosis.
Furthermore, the penetration capacity can be enhanced by conjugating specific ligands and antibodies
or by applying external thermal or mechanical forces to disrupt the BBB [56].

2.2. Inorganic Nanocarriers

2.2.1. Inorganic Nanoparticles

The significant amount of work in the area of inorganic nanoparticles synthesis and surface
modification has contributed immensely to their applicability in the medical field [57]. Moreover, their
unique intrinsic optical, electrical, and magnetic properties have paved the way for novel biomedical
applications, such as targeted drug delivery, cancer therapy, bioimaging, and biosensing [57,58].

Inorganic nanoparticles, specifically metal, semiconductor, and metal oxide nanoparticles, have
attracted great scientific interest owing to the possibility of tuning their size, shape, composition,
structure, and porosity and to decorate their surface to facilitate the conjugation of ligands and
polymers, thus enhancing their biological performances [58,59]. As they lack the property of
biodegradability, silver, iron oxide, and titanium oxide have been mostly applied for tissue bioimaging
in disease diagnosis. However, several inorganic nanoparticles, such as gold and silica nanoparticles,
have been used as nanocarriers across the BBB [60]. Moreover, as superparamagnetic iron oxide
nanoparticles (SPIONs) are relatively large in size with a mean particle diameter higher than 50 nm,
and exhibit unfavorable pharmacokinetic behavior that leads to liver and spleen accumulation due
to the opsonization and scavenging by the mononuclear phagocyte system, ultra-small SPIONs
(USPIONs) have been developed [61] for drug delivery applications.

Furthermore, to increase brain uptake of these nanoparticles, the application of external stimuli,
including near-infrared radiation and magnetic field, could enhance the on-demand drug release
across the BBB and improve tissue imaging. Moreover, inorganic nanoparticles are characterized by a
prolonged enhanced permeability and retention effect which makes them a great candidate for brain
cancer therapy [59].

2.2.2. Carbon Nanotubes

Carbon nanotubes are the most commonly used among the class of carbon-based nanomaterials,
comprising graphite sheets rolled into tubes with diameters within the nanoscale. Depending on
their architecture, carbon nanotubes can be single-walled or multi-walled, with open ends or closed
with fullerene caps [62]. Carbon nanotubes have gained great scientific attention in various fields
owing to their unique structure, exceptional electrical, mechanical, optical, and thermal properties,
and high surface area [63,64]. Their main nanomedical applications involve drug, hormone, and
enzyme delivery, gene therapy, tissue engineering, and biosensing [64,65]. Owing to the possibility of
functionalization using specific chemical compounds to modify their physical and biological properties,
carbon nanotubes have been applied as nanocarrier systems [66]. As they cannot cross the BBB through
passive diffusion, the conjugation of compounds that could facilitate the active transport to the brain is
essential for the emerging applications in neuronanomedicine.

2.2.3. Quantum Dots

Quantum dots are zero-dimensional nanomaterials which have attracted considerable scientific
interest owing to their exceptional optical and electrical properties [67]. Their application in the fields
of medicine and biology has emerged as nanoscaled systems for drug delivery, targeted cancer therapy,
bioimaging, and transplanted cell labeling and tracking [68]. Similar to carbon nanotubes, quantum
dots require subsequent surface functionalizations through which brain targeting and BBB crossing
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could be possible. Thus, the mechanisms for reaching the brain parenchyma mostly involve the
carrier-mediated transport.

2.3. Biological Vectors

2.3.1. Viral Vectors

The use of viral vectors is based on the ability of viruses to enter and insert genetic material into
the host’s cells. The application of viral vectors in the central nervous system is mainly represented
by gene therapy, which usually involves the delivery of a normal copy of a defective gene and the
reduction of the deleterious functions [69]. The most intensively studied and commonly applied in
clinical trials for gene therapy and cancer oncolytic therapy are retrovirus vectors, lentivirus vectors,
adenovirus vectors, herpes simplex virus type 1, and adeno-associated virus vectors, which possess
transgene capacity and expression properties [70].

The main strategies for the transportation of viral vectors across the BBB are the receptor-mediated
pathway across the endothelial cells by transcytosis and the transient disruption of the BBB, which
allows for the paracellular transport into the brain parenchyma. One method of disruption involves
the intravenously administration of a highly concentrated mannitol solution which will result in the
osmotic shrinkage of the cells [71].

Studies reported the use of herpes simplex viral vectors to combat stroke by repairing or replacing
genes that lead to neuronal damage. Similar results were obtained by using the adenovirus-mediated
vectors. Although there are promising solutions and results, gene therapy is still in its infancy due to
ethical issues and high risks of therapy failure [72].

2.3.2. Extracellular Vesicles

Extracellular vesicles represent a heterogenous class of cell-derived membrane structures,
originating from the endosomal system, termed as exosomes, or shedding from the plasma membrane,
termed as microvesicles. Extracellular vesicles can be ubiquitously found in biological fluids and have
a role in various physiological and pathological processes [73]. Recently, they have attracted great
attention as an additional mechanism for intercellular communication throughout the body, allowing
for protein, lipid, and genetic material exchange [73,74].

In the central nervous system, extracellular vesicles are involved in the maintenance of
normal neuronal functions and the development of neurodegenerative disorders. The pathways
of BBB crossing by extracellular vesicles are mainly through adsorptive-mediated transcytosis or
receptor-mediated transcytosis. However, the underlying and precise mechanisms of crossing in
physiological and pathological conditions are not completely understood [74].

The applications of extracellular vesicles as nanocarriers for brain disorders include the use
of autologous exosomes containing glyceraldehyde-3-phosphate dehydrogenase that can deliver
small-interfering RNA to neurons, microglia, and oligodendrocytes. Moreover, they were also used for
the delivery of the APP cleaving enzyme for the downregulation of the BACE1 protein. The intranasal
administration of curcumin-containing exosomes for the inhibition of brain inflammation and
autoimmune responses has been reported. Exosomes can also be used to deliver Stat3 inhibitor
JSI-124 to inhibit tumor growth in a glioblastoma model [75].

Considering the abovementioned characteristics, solid-lipid nanoparticles might be preferred for
the treatment applications using hydrophobic drugs as they are highly lipophilic, biodegradable, there
are no neurotoxic effects reported in the literature, and they can cross the BBB through the paracellular
pathway. Nevertheless, if the nature of the therapeutic agent is hydrophilic, polymeric nanoparticles
can be applied, but their reported neurotoxicity must be considered. However, for the bioimaging
applications, inorganic nanoparticles are the preferred nanocarrier type, as carbon nanotubes and
quantum dots exhibit more serious neurotoxic effects.
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3. Nanomedicine in Central Nervous System Disorders

The central nervous system comprises hundreds of various highly organized subtypes of
neurons and glia, thus being the most complex and specialized body system. Consequently, diseases
associated with the central nervous system are equally complex, causing various diagnostically
definitive disruptions in behavior [76]. As nanomaterials are considerably advantageous in regard
to their effective targeting, non-invasiveness, stability, biodegradability, and possibility to control
the encapsulation and release of the drugs, they have gained a great interest in the area of
neuromedicine [48]. Therefore, significant advances have been made in the development of
nanotherapeutics capable of crossing the BBB for the diagnosis and/or treatment of the central nervous
system disorders (Figure 3) [77], which will be thoroughly described (Tables 2 and 3).
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3.1. Brain Cancer

The transport of anti-cancer drugs through the BBB for the treatment of brain tumors remains
one of the major challenges in brain cancer therapy. Thus, the development of nanotechnology-based
strategies for an efficient brain uptake and controlled release of the active compounds is essential.
The characteristics of the nanocarriers mostly depend on the cancer type, tumor characteristics, stage,
and location [78].

Novel approaches for the diagnosis of brain cancer involve the use of nanoparticles, liposomes,
micelles, and quantum dots for various neuroimaging techniques. Therefore, silica shells double-coated
with semiconducting polymer layers were synthesized for fluorescence and photoacoustic brightness
imaging [79]. Moreover, phosphonate polyethylene glycol and cyclo RGD functionalized iron-oxide
nanoparticles [80] or bovine serum albumin and tumor-specific folic acid [81] functionalized iron-oxide
nanoparticles were applied for magnetic resonance imaging. Another strategy for the diagnosis of
glioblastoma involves coating gold nanoparticles with the CBP4 peptide for an enhanced binding
to the CD133 biomarker [82]. Furthermore, liposomes incorporating heptamethine cyanine dye
IR780 [46] and iron-oxide nanoparticles and a near-infrared fluorescence dye [83] were studied for
near-infrared fluorescence imaging and magnetic resonance imaging. Magnetic resonance imaging
using gadolinium-incorporated micelles was used for the quantitative hemorrhage-risk evaluation due
to the correlation between the extravasation of micelles and the hemorrhagic edema site [84]. Another
study focused on the use of polyethylene glycol-coated quantum dots as neuroimaging systems at the
tumor site through IVIS imaging system. However, to acquire the images, it was necessary to remove
the skulls of the mice [85].

Studies regarding the treatment of brain cancer focused on the delivery of various anti-cancer
drugs using nanocarriers. Specifically, poly(lactide-co-glycolic) acid nanoparticles containing



Pharmaceutics 2019, 11, 101 9 of 23

doxorubicin, cisplatin, and boldine resulted in an efficient internalization into the glioma cells, inducing
cytotoxic effects [86] and an effective target-specific delivery [87]. Other polymeric nanocarriers
for the treatment of brain cancer include polyethylene glycol and poly(ω-pentadecalactone-
co-p-dioxanone) [88] or polyethylene glycol and poly(lactic-co-glycolic) acid [89] block copolymer
nanoparticles which led to an improved drug release efficiency and a decrease in tumor size. Moreover,
the administration of amphiphilic polymer-lipid nanoparticles containing docetaxel led to the in vivo
accumulation at the tumor site, with an enhanced tumor growth inhibition and increased median
survival compared to the equivalent clinical dose of docetaxel solution [90]. Liposomal formulations
have also been utilized for the delivery of various anti-cancer drugs, namely methotrexate [91],
doxorubicin, erlotinib [92], 5-fluorouracil [93], and paclitaxel [94]. The passage through the BBB has
been enhanced by coating the liposomes with different molecules. The results showed an extended
blood-circulation time by coating with polyethylene glycol [91], an enhanced translocation across
the BBB by attaching transferrin for receptor targeting [92,93], and a higher accumulation of the
nanocarriers at the tumor site by conjugating the glucose-vitamin C complex [94]. As previously
mentioned, the conjugation of dendrimers with molecules such as polyethylene glycol and glioma
homing peptides [95], or sialic acid, glucosamine, and concanavalin A could significantly increase
tumor penetration and consequently the amount of drug at the tumor site and reduce the efflux
of the nanocarriers [96]. Other chemically functionalized nanocarrier systems for targeting brain
tumors are micellar formulations for the delivery of curcumin [97] and multi-walled carbon nanotubes,
which showed an increased tumor uptake for the targeted systems [98]. Additionally, the in vitro
cytotoxic effects of USPIONs on glioblastoma multiforme was evaluated using rat CNS-1 cell cultures.
Results showed that the USPIONs entered the cells through clatherin-coated pits which were further
internalized in vacuoles and the effects of USPIONs on cell viability and mitopotential were dose- and
time-dependent [99].

3.2. Neurodegenerative Diseases

Neurodegenerative diseases are increasingly prevalent age-dependent disorders which represent
a major threat to human health. The most common neurodegenerative diseases are Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, each characterized by their
own pathophysiology, from memory and cognitive impairments to motor dysfunctions, affecting the
ability to move, speak, or breathe. As effective treatment strategies are urgently needed, extensive
studies regarding the potential of nanotechnology have been performed [100].

Characterized by conformational changes of native proteins which lead to the aggregation
and formation of insoluble amyloid fibrils, neurodegenerative diseases therapy mostly relies on
the development of adequate platforms that could detect the amyloid formations [101]. Neuroimaging
applications of nanotechnology for diagnosing these diseases mainly focus on the use of inorganic
nanomaterials as imaging nanocarriers, including iron-oxide nanoparticles [102], gadolinium-based
nanoparticles [103], and plasmonic nanoparticles [101]. Furthermore, the administration of carbon
nanotubes conjugated with the Pittsburgh Compound B could lead to a more effective early diagnosis
of Alzheimer’s disease and therapy monitoring [104].

The treatment of neurodegenerative diseases through nanotechnology approaches focuses
on both organic and inorganic nanocarriers. Polyethylene glycol and/or poly(lactic-co-glycolic)
acid biodegradable polymeric nanoparticles functionalized with specific antibodies [105,106] or
oligopeptide drugs [107] have been applied for the elimination of amyloid fibrils in Alzheimer’s
disease. Furthermore, in vitro studies showed that the use of polymeric nanocarriers for the delivery
of curcumin resulted in an enhanced drug delivery with reduced oxidative stress, inflammation,
and plaque load [108]. In vivo studies regarding the administration of chitosan nanoparticles for
the delivery of saxagliptin demonstrated the capacity to prevent premature release and enhanced
site targeting compared to the equivalent dose of free saxagliptin in solution [109]. The treatment of
Parkinson’s disease through the administration of polymeric nanocarriers has also been studied. Thus,
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administering chitosan nanoparticles through the intranasal route for the delivery of selegiline [110]
and pramipexole [111] increases the brain targeting efficiency and the amount of drug reaching the
brain by decreasing the pre-systemic metabolism. Moreover, the in vitro and in vivo studies on the
delivery of apolipoprotein E and α-mangostin by using phosphatidic acid-conjugated liposomes [112]
and transferrin-modified liposomes [113], respectively, confirmed the potential for an enhanced BBB
permeation and efficient drug delivery. Polyamidoamine dendrimers containing carbamazepine [114]
and micelles containing curcumin [115] have been reported for the treatment of Alzheimer’s disease.
Inorganic nanomaterials, such as gold nanoparticles and carbon nanotubes have been studied for
reducing the β-amyloid induced Alzheimer’s disease. Therefore, the functionalization of gold
nanoparticles with β-amyloid specific peptides led to an enhanced BBB permeation for the in vitro
models [116] and adsorption of berberine onto the surface of the multi-walled carbon nanotubes
increased the amount of the drug in the brain [117]. Additionally, gold nanoparticles in the form of
L-DOPA functionalized multi-branched nanoflower-like gold nanoparticles have shown potential in
the treatment of Parkinson’s disease [118]. Furthermore, improvement of motor dysfunctions and
decreased apoptosis could be achieved through the administration of cerium oxide nanoparticles,
which have the capacity to protect neurons against reactive oxygen species-induced damage [119].

3.3. Stroke

As it can cause disability or even death, stroke represents a major concerning medical emergency.
There are two types of stroke characterized by different mechanisms for triggering. Thus, a cerebral
blood vessel blockage is the main cause for the ischemic stroke, while the hemorrhagic stroke is
triggered by the rupture of the cerebral blood vessel [120]. Although the prevalence of the ischemic
stroke is higher, causing inflammation, damages to the neurovascular unit and even neurological
death, the available treatments are limited [120,121]. Current strategies for both emergency treatment
and recovery focus on the development of inorganic and organic nanoparticles, such as metal and
metal oxide nanoparticles, polymeric nanoparticles, and liposomes [122,123].
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Table 2. A summary of the nanotechnology-based neuroimaging approaches for the diagnosis of brain cancer, neurodegenerative diseases, and stroke.

Central Nervous
System Disorder Nanocarrier Type Functionalization Imaging Agent Neuroimaging Technique Study Model Reference

Brain cancer

silica shells double coated
with semiconducting

polymer layers
cyclo RGD peptides - fluorescence and photoacoustic

brightness imaging

in vitro—4T1 human breast cancer
epithelial cells

in vivo—tumor-bearing female mice
[79]

iron oxide nanoparticles

phosphonate polyethylene
glycol and cyclo
RGD peptides

- magnetic resonance imaging in vitro—U87-MG cells
in vivo—tumor-bearing nude mice [80]

bovine serum albumin and
tumor-specific folic acid

fluorescein
isothiocyanate magnetic resonance imaging in vitro—U251 cells [81]

gold nanoparticles CBP4 peptide fluorescein
isothiocyanate confocal microscopy in vitro—U373 human glioma cells [82]

liposomes

- heptamethine cyanine
dye IR780 near-infrared fluorescence imaging

in vitro—U87MG human glioma
cells and T98G human

glioblastoma cells
in vivo—glioblastoma

mouse models

[46]

phosphatidylserine-targeting
antibody

iron oxide
nanoparticles and a

near-infrared
fluorescence dye

near-infrared fluorescence imaging
and magnetic resonance imaging

in vitro—U87MG human
glioma cells

in vivo—tumor-bearing nude mice
[83]

micelles - gadolinium magnetic resonance imaging in vivo—Wistar male rats [84]

quantum dots
polyethylene glycol and

asparagine–glycine–arginine
peptides

- IVIS imaging
in vitro—primary rat BCECs,

astrocytes and C6 glioma cells
in vivo—Sprague–Dawley male rats

[85]

Neurodegenerative
diseases

gadolinium-based
nanoparticles KLVFF and LPFFD peptides - fluorescence microscopy in vivo—APPswe/PS1A246E/TTR

mouse model [103]

carbon nanotubes Pittsburgh Compound B gadolinium
complexes

single photon emission computed
tomography/computed

tomography and γ-scintigraphy
in vivo—female C57BL/6 mice [104]

Stroke Iron-oxide nanoparticles - - microwave imaging
in vitro—gel brain phantom

in vivo—New Zealand rabbits and a
middle-aged human male

[124]
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Table 3. A summary of the nanotechnology-based treatment strategies for brain cancer, neurodegenerative diseases, and stroke.

Central Nervous
System Disorder Nanocarrier Type Functionalization Active Compound Study Model Reference

Brain cancer

poly(lactide-co-glycolic) nanoparticles poloxamer 188 doxorubicin in vitro—U-87 MG, ATCC cell line [86]

- cisplatin and boldine in vivo – tumor-bearing swiss albino mice [87]

polyethylene glycol and
poly(ω-pentadecalactone-co-p-dioxanone)

nanoparticles
- VE822 in vitro—RG2 cells

in vivo —Tumor-bearing male Fischer 344 rats [88]

polyethylene glycol and
poly(lactic-co-glycolic) acid nanoparticles RVG29 peptide docetaxel

in vitro—C6 cells
in vivo—tumor-bearing adult Sprague–Dawley

male rats
[89]

amphiphilic polymer-lipid nanoparticles polysorbate 80 docetaxel
in vitro—MDA-MB-231 cells

in vivo—tumor-bearing severe combined
immune deficiency mice

[90]

liposomes

polyethylene glycol methotrexate in vivo – male Sprague–Dawley rats [91]

transferrin and PFVYLI peptide doxorubicin and erlotinib in vitro—U87 tumor cells, brain endothelial
cells, and glial cells [92]

transferrin and penetratin peptide 5-fluorouracil in vitro—U87 tumor cells and brain
endothelial cells [93]

glucose-vitamin C complex paclitaxel in vitro—C6 cells
in vivo—C6 glioma-bearing Kunming mice [94]

dendrimers

polyethylene glycol and glioma
homing peptides -

in vitro—U87MG cells
in vivo—U87MG tumor-bearing BALB/c

nude mice
[95]

sialic acid, glucosamine, and
concanavalin A paclitaxel in vitro—U373MG human astrocytoma cell line

in vivo—Sprague–Dawley rats [96]

micelles Tween 80 curcumin in vitro—G422 cells [97]

multi-walled carbon nanotubes Angiopep-2 -

in vitro—primary porcine brain endothelial cells
and primary rat astrocytes

in vivo—GL261 glioma-bearing female
C57/Bl6 mice

[98]

USPIONS - - in vitro—rat CNS-1 cells [99]
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Table 3. Cont.

Central Nervous
System Disorder Nanocarrier Type Functionalization Active Compound Study Model Reference

Neurodegenerative
diseases

polyethylene glycol nanoparticles anti-Aβ1-42 antibody - in vivo—NIHS adult male mice [105]

poly(lactic-co-glycolic) acid nanoparticles monoclonal antibody (OX26) and
anti-Aβ (DE2B4) - in vitro—porcine brain capillary

endothelial cells [106]

poly(lactic-co-glycolic) acid nanoparticles g7 ligand curcumin in vitro—primary hippocampal cultures from
rat brains [108]

polyethylene glycol-polylactic acid
nanoparticles TGN peptides and QSH peptides coumarin-6 and H102 in vitro—brain endothelial cells

in vivo—5XFAD transgenic mice [107]

chitosan nanoparticles

L-valine saxagliptin in vivo—female Wistar rats [109]

- selegiline ex vivo—male Sprague–Dawley rats [110]

- pramipexole dihydrochloride ex vivo—goat nasal mucosa
in vivo—male Sprague–Dawley rats [111]

liposomes

phosphatidic acid and
apolipoprotein E quercetin and rosmarinic acid in vitro—brain microvascular endothelial cells

and Aβ1-42-insulted SK-N-MC cells [112]

transferrin α-mangostin in vitro—brain endothelial cells
in vivo—Sprague–Dawley rats [113]

polyamidoamine dendrimers - carbamazepine ex vivo—human red blood cells
in vitro—N2a cell linein vivo—zebrafish [114]

micelles - curcumin in vitro—U87MG cell line
in vivo—female Sprague–Dawley rats [115]

gold nanoparticles

CLPFFD peptides, neutral methoxy
terminated polyethylene glycol
ligands, and negatively-charged

monosulfonated
triphenylphosphine ligands

- in vitro—porcine brain capillary endothelial [116]

L-DOPA -
in vitro—human brain endothelial cell line

hCMEC/D3, brain microvascular endothelial
cells, and mouse microglia N9 cell line

[118]

multi-walled carbon nanotubes polysorbate and phospholipid
coating berberine

in vitro—human red blood cells and
SH-SY5Y cells

in vivo—male Wistar rats
[117]

cerium oxide nanoparticles - - in vivo—adult male Wistar rats [119]

Stroke

poly(lactic-co-glycolic) acid nanoparticles chlorotoxin Lexiscan and Nogo-66 in vivo—male C57BL/6 mice [125]

polyamidoamine dendrimers polyethylene glycol -
in vitro—rat primary astrocytes and mouse

brain endothelial cells
in vivo—male C57BL/6 mice

[126]

iron oxide nanoparticles hif-prolyl hydroxylase 2 silencing siRNA in vivo—female BALB/c nude mice [127]
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One pilot study performed on a gel brain phantom, New Zealand rabbits, and a middle-aged
human male reported the potential of administering SPIONs for the rapid diagnosis of the emergent
stroke through microwave imaging. Injection of the nanoparticles resulted in the possibility to
approximate an area of reduced attenuation difference associated with ischemic hypo-perfusion of the
left carotid circulation [124].

Studies for stroke therapy reported the use of poly(lactic-co-glycolic) acid nanoparticles
functionalized with chlorotoxin as a targeting ligand for the co-delivery of Lexiscan and Nogo-66,
for the simultaneous improvement of the BBB permeability and effective targeting of the stroke
site. This system has proved its potential for stroke therapy as results showed an increased stroke
survival [125]. Furthermore, polyethylene glycol conjugated polyamidoamine dendrimers have been
applied as nanoplatforms for the delivery of drugs that could eliminate blood clots from the vessel [126].
The delivery of siRNA and endothelial progenitor cells represent a promising strategy for ischemic
stroke therapy. Therefore, SPIONs have been used as nano-vehicles for gene therapy and for cell
tracking, simultaneously. In addition, to further increase the migration and the survival rate of the
cells, hif-prolyl hydroxylase 2 silencing might be used [127].

3.4. Clinical Applications

Due to the unmet medical need in the treatment of brain diseases, AstraZeneca has been focusing
on key aspects of neurodegenerative diseases, analgesia, and psychiatry. Recent works have been
studying the MEDI1814, a monoclonal antibody as a potential disease-modifying treatment for
Alzheimer’s disease. This strategy is based on the ability of MEDI1814 to selectively target β-amyloid
42 [128], which is highly associated with Alzheimer’s disease [129]. As early trials have proved that
MEDI1814 can reduce the levels of the β-amyloid 42, AstraZeneca and Lily are co-developing it as part
of the BACE alliance.

Scientists at BiOasis have developed the xB3 patented platform, formerly known as
Transcend-peptide, for applications in neuromedicine. This platform involves the use of a human
transport protein found circulating at low levels in the blood, which has shown high efficiency in
delivering molecules across the BBB through receptor-mediated transcytosis. Preclinical studies proved
the capacity of xB3 to transport molecules such as monoclonal antibodies, enzymes, small-interfering
RNA, and other types of gene therapies into the brain, thus having a great potential to treat brain
cancers and metabolic and neurodegenerative diseases.

Moreover, the Cerense® technology (Pharmidex Pharmaceutical Service, London, UK), formerly
LipoBridge® by Genzyme, and G-Technology® (to-BBB, Leiden, The Netherlands), using BBB targeting
delivery systems are in the clinical development pipeline. On one hand, the Cerense® technology
utilizes short-chain oligoglycerophospholipids that can transiently open the BBB tight junctions and
facilitate the drug transport. On the other hand, the G-Technology comprises liposomes coated with
polyethylene glycol and covered with glutathione to facilitate drug transport across the BBB through
receptor-mediated transcytosis [130].

4. Challenges and Limitations

The continuous emergence of nanotechnology in the biomedical field has raised some concerns
regarding the potential health risks as opposed to the associated benefits. In certain conditions,
the numerous advantageous physicochemical properties of nanomaterials, such as reduced size,
reactive surface, high surface to volume ratio, or tunable shape might cause serious toxic effects [131].

On one hand, their unique tunable characteristics might provoke unpredictable biological
responses when introduced into the body [131]. As it leads to highly reactive and colloidal instability,
the high surface to volume ratio is a cause for nanomaterial aggregation [132]. Consequently, as they
form clusters no longer in the nanoscale, the cellular uptake is decreased, and apoptosis might
be induced. Furthermore, research studies suggest the capacity of nanomaterials to translocate
from the administration site to secondary vital organs, including the brain, liver, heart, lungs, and
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kidneys [133]. As nanomaterials could exert serious toxic effects at the accumulation site, thorough
in vivo experiments that investigate organ toxicity and carcinogenicity are vital [134].

Moreover, the administration of nanomaterials for neurological purposes might lead to immediate
and direct neurotoxic effects. Therefore, oxidative stress, induced cell apoptosis and necrosis, and
immune responses and inflammation as main neurotoxic effects, result in the activation of specific
signaling pathways that will further affect the function of the BBB. Additionally, the neurotoxic effect
could directly alter the structure and activity of the neurons, or, due to the activation of glial cells and
interactions between glial and neuronal cells, it might result in a cascade of effects. Neurotoxic effects
manifest immediately or after certain periods of time, leading to reversible or permanent consequences
that can affect parts of the nervous system or the whole system [135]. Table 4 summarizes the main
neurotoxic effects of the previously described nanocarriers.

Table 4. A summary of the main neurotoxic effects of the organic and inorganic nanocarriers for BBB
crossing [135].

Nanocarrier Type Neurotoxic Effect

Polymeric nanoparticles neuronal apoptosis; neuroinflammation; increased oxidative stress

Liposomes necrosis; neuroinflammation; hemorrhage; macrophage infiltration

Dendrimers
cell proliferation and migration inhibition; abnormal mitochondrial
activity; apoptosis; affected neuronal differentiation; increased oxidative
stress; DNA damage; decreased locomotor function

Gold nanoparticles increased oxidative stress; cognition defects; astrogliosis

Silver nanoparticles increased oxidative stress; apoptosis; necrosis; neuroinflammation

Iron oxide nanoparticles synaptic transmission and nerve conduction alterations;
neuroinflammation; apoptosis; macrophage infiltration

Titanium oxide nanoparticles increased oxidative stress; neuroinflammation; apoptosis; synaptic
transmission alterations and plasticity; genotoxicity

Silica nanoparticles cognitive dysfunctions and impairment; neurodegeneration; synaptic
transmission alterations

Carbon nanotubes
neuroinflammation; cell proliferation inhibition; apoptosis; increased
oxidative stress; mitochondrial membrane potential reduction; lipid
peroxidization; astrocyte function reduction; neurobehavioral toxicity

Quantum dots increased oxidative stress; cell function damage; neurobehavioral
toxicity; cognitive impairment

Another challenge for the administration of nanomaterials in biological systems is the formation
of the biocorona on the surface. The biocorona might lead to alterations of the physicochemical
properties, functionality, and biodistribution, and induce highly toxic effects [136].

On the other hand, the application of nanotechnology in the field of biomedicine is limited by
the lack of standardized model systems, experimental assays, and in vivo monitoring systems to
accurately determine the toxic effects of nanomaterials. Current BBB models involve the use of primary
co-cultures of mouse brain endothelial cells and astrocytes, primary mono-, co-, and triple-cultures
of rat endothelial cells/astrocytes/pericytes, bovine co-cultures of endothelial cells and astrocytes,
porcine monocultures of endothelial cells, and human cultures using either the cCMEC/D3 endothelial
cell line or stem cells. As the BBB is a highly dynamic barrier and its properties change in various
physiological and pathological conditions, these models should be further refined to allow for the
translation of results to the in vivo settings [137]. Additionally, the mechanisms underlying the
impact of nanomaterials on biological systems are incompletely understood and further research work
is fundamental in order to limit the risks associated with the neuronanomedicinal strategies [131].
One possible solution to accelerate the transition from the in vitro and animal model studies is the
implementation of recently developed techniques of lab-on-a-chip and organ cultures. This strategy
could allow for more rapid and accurate results regarding the efficiency of the nanomedical approach
and the safety of applying it to the human body.
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5. Conclusions and Perspectives

Neuronanomedicine has merged the fields of neuroscience and nanotechnology, through which
nanomaterials, nanoformulations, and nanofacturing processes are effectively applied in neurology to
further understand the physiological and pathological mechanisms. By this means, novel strategies
for diagnosing and treating the disorders of the central nervous system have emerged. Specifically,
nanotechnology mostly focuses on the development of organic and inorganic nanocarriers, but also
on the use of biological entities, such as viral vectors or extracellular vesicles, that could efficiently
deliver imaging and therapeutic agents across the BBB, into the brain parenchyma. Although studies
are showing promising results, there are several limitations regarding the immediate and long-term
interactions of these nanocarriers with the biological tissues. Additional coatings using extracellular
matrix-derived polymers or anti-microbial materials and antibiotic treatments might offer possible
solutions to reduce neurotoxic effects and to avoid bacteria adherence on the surface of the nanocarrier.

Besides the development of standardized experimental assays, future perspectives might
also focus on the development of nanotechnology approaches for neuronal cell regeneration and
reconstruction. Furthermore, there are promising possibilities in the field neurosurgery that could
benefit from the advantages of nanotechnologies. One example is represented by the implementation of
nanorobotics in neurosurgery that involves several manipulation technologies, such as the assembly of
nanosized objects and biological cell and molecules manipulation. Moreover, this could also represent
a solution for the early diagnosis and therapy monitoring of central nervous system disorders.
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