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Abstract: Co-amorphous drug–drug systems have been developed with the overall aim of improving
the physical stability of two or more amorphous drugs. Co-amorphous systems often show
good physical stability, and higher solubility and dissolution rates compared to their crystalline
counterparts. The aim of this study is to determine if eutectic mixtures of two drugs can form
stable co-amorphous systems. Three drug–drug mixtures, indomethacin–naproxen (IND−NAP),
nifedipine–paracetamol (NIF−PAR), and paracetamol–celecoxib (PAR−CCX), were investigated for
their eutectic and co-amorphization behavior as well as their physical stability in the co-amorphous
form. The phase diagrams of the crystalline mixtures and the thermal behavior of the co-amorphous
systems were analyzed by differential scanning calorimetry. The solid-state form and physical stability
of the co-amorphous systems were analyzed using X-ray powder diffractometry during storage at
room temperature at dry conditions. Initial eutectic screening using nifedipine (NIF), paracetamol
(PAR), and celecoxib (CCX) indicated that IND−NAP, NIF−PAR, and PAR−CCX can form eutectic
mixtures. Phase diagrams were then constructed using theoretical and experimental values. These
systems, at different drug-to-drug ratios, were melted and cooled to form binary mixtures. Most
mixtures were found to be co-amorphous systems, as they were amorphous and exhibited a single
glass transition temperature. The stability study of the co-amorphous systems indicated differences in
their physical stability. Comparing the phase diagrams with the physical stability of the co-amorphous
mixtures, it was evident that the respective drug–drug ratio that forms the eutectic point also forms
the most stable co-amorphous system. The eutectic behavior of drug–drug systems can thus be used
to predict drug ratios that form the most stable co-amorphous systems.

Keywords: physical stability; co-amorphous; eutectics; phase diagram

1. Introduction

Poorly water-soluble crystalline drugs lead to low bioavailability and are a major challenge in
the development of drug formulations for oral drug delivery [1]. Solubility can be improved on
the molecular level, e.g., by salt formation, and on the colloidal level, e.g., by the use of lipid-based
formulations [2]. For so-called “brick dust” molecules, i.e., poorly water-soluble drugs with medium
polarity and (very) high melting points [3,4], improving the solubility on the particulate level is
preferred. Improving solubility on the particulate level includes size reduction, nanosizing, the use
of metastable polymorphic forms, and amorphization [2]. Amorphization is a deliberate process
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of converting ordered molecules, via either the thermodynamic or the kinetic pathway [4], into a
disordered state with the overall aim of improving dissolution and solubility (supersaturation) of the
drug in an aqueous phase [4]. The molecules in an amorphous solid form are arranged randomly and
as a result exhibit higher free energy, enthalpy, and entropy than their respective crystalline forms [4,5].

A drawback to the use of amorphous drugs stems from the mobility of molecules in the glassy
form [6,7]. Amorphous drugs have been found to be mobile (and thus physically unstable) at
temperatures higher than the secondary glass transition temperature, the so-called Tgβ [8]. Most
amorphous drugs were found to have this Tgβ at very low temperatures and this implies that when they
are stored at room temperature (RT), they will revert from the amorphous form to their respective lower
energy crystalline states [8,9]. Physical stability is therefore the main problem facing the development
of amorphous drugs into solid dosage forms, such as capsules and tablets [10].

The main strategy involved in improving the physical stability of amorphous drugs is the formation
of a glass solution [5,11–13]. Glass solutions can be classified into polymeric and non-polymeric
systems [13,14]. Polymeric systems involve the dissolution of drug molecules into polymeric amorphous
carriers, forming the well-known amorphous solid dispersion (ASD) [14–16]. ASDs stabilize amorphous
drugs and additionally may increase their aqueous solubility, as well as the time the drug can maintain
a supersaturated state in an aqueous medium [17]. Other stabilization processes that do not use
polymers are termed non-polymeric glass solutions [13]. Co-amorphous systems are one group of
these non-polymeric glass solutions and involve co-amorphization of two or more low molecular
weight, initially crystalline, compounds. They form a single-phase amorphous system characterized
by a single glass transition temperature (Tg) [13]. Co-amorphous systems can be formed between a
drug and a co-former using drug-excipient [18–20] and drug–drug combinations [21,22]. Crystalline
drug–drug systems, which are not thermolabile, are interesting starting materials for co-amorphous
systems as they may form eutectic mixtures. Eutectic mixtures, in this context, are drug–drug mixtures
that at some drug–drug ratio are miscible in the molten state, usually at a temperature lower than the
melting points of the individual drugs [4,5]. Eutectic mixtures can be used for combination therapy [23],
improving solubility [24], and as starting materials for co-amorphous systems as they may reduce
degradation [22].

In the development of co-amorphous drug–drug systems, selection of physically stable ratios of
the two drugs is crucial. In view of this, this study focuses on determining if eutectic mixtures lead to
physically stable co-amorphous systems and thus to use the eutectic behavior of drug–drug mixtures
to predict drug–drug ratios that form the most stable co-amorphous systems.

2. Materials and Methods

2.1. Materials

Naproxen (NAP, MW = 230.3 g/mol) was purchased from Sigma Aldrich (Steinheim, Germany).
Indomethacin (IND, MW = 357.8 g/mol) and paracetamol (PAR, MW = 151.2 g/mol) were purchased
from Fagron A/S (Copenhagen, Denmark). Celecoxib (CCX, MW = 381.4 g/mol) was purchased from
Dr. Reddy’s (Hyderabad, India). Nifedipine (NIF, MW = 346.3 g/mol) was purchased from Hangzhou
Dayangchem (Hangzhou, China). All materials were used as received.

2.2. Differential Scanning Calorimetry

Thermal analysis was performed using a differential scanning calorimetry (DSC) (Discovery DSC,
TA Instruments Inc. New Castle, DE, USA). Samples of approx. 3–5 mg were crimped into Tzero
aluminum pans and sealed with Tzero lids. For the determination of the eutectic points, crystalline
physical drug–drug mixtures were equilibrated at 100 ◦C and further heated to 180 ◦C using a heating
rate of 10 ◦C/min. For the determination of the Tg, the samples were melted at 180 ◦C and then quickly
cooled to 0 ◦C and kept isothermal for 5 min. The samples were then heated again, using the modulated
temperature mode with an amplitude of 0.212 ◦C, a period of 40 s, and a heating rate of 5 ◦C/min.
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2.3. X-Ray Powder Diffractometry

Solid-state forms were determined with an X’Pert PRO diffractometer (PANalytical, Almelo,
Netherlands) using Cu Kα radiation (λ = 1.5406 Å) at 45 kV and 40 mA. Samples were placed on
aluminum plates and measured over the angular range 5◦–35◦ 2θ at a scanning speed of 0.058◦

2θ/min and a step size of 0.026◦ 2θ. The diffractograms were analyzed using X’Pert HighScore Plus
(version 2.2.4) software (PANalytical, Almelo, Netherlands).

2.4. Screening for Eutectic Mixtures

Binary crystalline physical mixtures of NIF, NAP, CCX, PAR, and IND were prepared at 1:1 molar
ratios and placed on a hot plate whilst increasing the temperature gradually until a melt was observed.
Combinations that melted below the melting temperature of the drug with the highest melting point
and that were miscible in the molten form were considered for analysis by DSC and preparation of
co-amorphous systems.

2.5. Determining Eutectic Points

Crystalline physical mixtures (cPM) of the indomethacin–naproxen (IND−NAP), paracetamol–celecoxib
(PAR−CCX), and nifedipine–paracetamol (NIF−PAR) binary systems were prepared by mixing and grinding
usingamortarandpestle. ThecPMsweremelted inaDSC(see Section 2.2)andthe temperaturecorresponding
to the onset of the first melting event and the peak of the second melting signal were used to construct the
phase diagrams [25]. The onset temperature of binary systems that showed a single melt endotherm and the
corresponding drug–drug ratios were recorded as the eutectic point. All measurements were performed
on independent triplicates. All drug–drug percentages expressed throughout this paper are in molar ratio
(mol/mol, %).

2.6. Theoretical Values (Schröder–Van Laar Equation)

The eutectic behavior determined by DSC was compared with the predicted melting point (Tm)
values calculated from the simplified version of the Schröder–Van Laar Equation [26,27].

ln(X) =
∆H0

R

(
1

T0
−

1
T

)
(1)

where ∆H0 represents the heat of fusion (J·mol−1) and T0 represents the melting point (in Kelvin) of
one of the pure drugs in the mixture. T is the melting point of the binary mixture at a specific mole
fraction, X, and R is the gas constant (8.314 J·K−1

·mol−1).

2.7. Preparation of Co-Amorphous Systems

Co-amorphous systems were prepared from the cPM by melting at 5 ◦C above the melting point
of the drug with the highest melting point. The molten drugs were stirred with a spatula to avoid
the formation of two amorphous phases and were quickly cooled using an ice gel pack. The formed
glass was then gently milled into powder, using a mortar and pestle, for further characterization and
physical stability studies.

2.8. Physical Stability Studies

Physical stability studies were performed using the co-amorphous PAR−CCX, NIF−PAR, IND−NAP
samples, and their neat amorphous starting materials. The samples were stored at 0% relative humidity
(RH) using phosphorus pentoxide (P2O5) at RT. All the neat amorphous drugs were analyzed daily until
they recrystallized. For co-amorphous IND−NAP samples, XRPD analyses were performed on a daily basis
for one week, then weekly until all triplicate samples recrystallized. For co-amorphous PAR−CCX samples,
XRPD analyses were performed weekly for one month, then monthly until all triplicate samples crystallized.
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For NIF−PAR, XRPD analyses were made daily until all samples crystallized. All measurements were
performed on independent triplicates.

3. Results

A eutectic system is a mixture of two compounds which do not interact to form a new chemical
compound, but at a specific ratio, i.e., the eutectic point, exhibit a single Tm which is lower than
the Tm of the individual components [25,28]. Eutectic mixtures are miscible in the molten form and
when amorphized may improve the physical stability and solubility of the resulting co-amorphous
system [22].

3.1. Screening for Eutectic Mixtures

Initial screening of binary crystalline mixtures of NAP, IND, CCX, PAR, and NIF showed that at
the 1:1 molar ratio, PAR−CCX, NIF−PAR, and IND−NAP were molten and miscible at relatively low
temperatures and are thus candidates that may form a eutectic mixture. Previous studies by Beyer et al.
and Löbmann et al. have indeed shown that IND−NAP can form eutectic mixtures and has a eutectic
point at around 55% to 60% NAP [21,22]. After the initial screening, DSC was used to determine the
phase diagrams and the eutectic points of PAR−CCX, NIF−PAR, and IND−NAP samples. The various
drug–drug combinations were prepared in steps of 10% molar ratio (mol/mol, %). The thermograms in
Figure 1 show a melting endotherm of which the onset temperatures do not change with increasing
drug concentration. This temperature is the solidus temperature below which the mixture is in its
solid state (crystalline mixture). For the second melting endotherm, however, the onset temperatures
shift towards or away from the solidus temperature depending on drug molar ratios. This is a clear
indication that above a certain temperature, i.e., the liquidus temperature, the drug–drug mixtures will
be in the molten state. The observed melting temperatures for the drug–drug mixtures were recorded
and the phase diagrams were constructed.
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Figure 1. Differential scanning calorimetry (DSC) thermograms of the crystalline physical mixtures of (a)
indomethacin–naproxen (IND−NAP), (b) nifedipine–paracetamol (NIF−PAR), and (c) paracetamol–celecoxib
(PAR−CCX). The black arrows indicate the liquidus temperatures.
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3.2. Phase Diagrams

The experimentally determined solidus and liquidus temperatures were plotted against the
drug concentration to construct the phase diagrams. In addition, theoretical values, based on the
Schröder–Van Laar equation (see Section 2.6), were added and are shown in Figure 2. The figures
are typical of eutectic systems and show the liquidus and solidus curves and the experimental and
theoretical points at which these curves meet; i.e., the eutectic points [29–31]. The eutectic ratios
and their corresponding temperatures (Te), both experimentally and theoretically determined for all
analyzed drug–drug mixtures, are shown in Table 1. The theoretical eutectic points did not differ by
more than 10% from the experimentally determined values. This shows that these systems can form
eutectics and are suitable candidates for the investigation of the importance of the eutectic mixture in
determining the most stable co-amorphous systems.

Table 1. Experimental and theoretical eutectic point and Te values for IND−NAP, NIF−PAR, and
PAR−CCX.

Eutectic point and Te IND−NAP NIF−PAR PAR−CCX

Experimental eutectic point mixture (mol/mol, %) 40:60 40:60 50:50

Experimental Te (◦C) 127.9 143.0 140.6

Theoretical eutectic point mixture (mol/mol, %) 43:57 44:56 52:48

Theoretical Te (◦C) 129.7 137.2 134.2

Te: eutectic point temperature.Pharmaceutics 2019, 11, x  6 of 12 
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3.3. Preparation and Characterization of the Co-amorphous Systems

Fresh cPM were prepared at different molar ratios, and the thermodynamic pathway (melting
and rapid cooling) was used to produce co-amorphous systems. Rapid cooling, using ice gel packs,
was used since varying the cooling rate can have an effect on the physical stability of the samples [21].
Solid-state characterization was performed with XRPD and the results are shown in Figure 3. Figure 3a
shows the diffractograms of the co-amorphous IND−NAP samples. NAP could not be amorphized
on its own and the diffractogram shows recrystallization after fast cooling from the melt. IND−NAP
samples with a low concentration of IND, i.e., drug–drug ratios containing between 10% and 20% IND,
did show diffraction peaks of crystalline NAP after melt quenching. From Figure 3b,c, diffractograms
of samples containing 10% NIF and 80%–90% PAR, respectively, did show peaks of PAR.

Pharmaceutics 2019, 11, x  7 of 12 

 

 
Figure 3. Diffractograms of (a) IND-NAP samples, (b) NIF-PAR samples, and (c) PAR-CCX samples 
after melt quenching. Included are the diffractograms of starting materials (CR. NAP, CR. IND, CR. 
PAR, CR. NIF, and CR. CCX) and the single drugs after melting and cooling (A.NAP, A. IND, A. PAR, 
A. NIF, and A. CCX). 

In contrast, the remaining drug–drug mixtures did show a halo without distinct peaks in the 
XRPD diffractograms. A halo pattern in a diffractogram is a characteristic property of amorphous 
solids. To confirm if a co-amorphous system has been formed, the drug–drug mixtures that showed 
a halo pattern in the diffractograms were subjected to DSC analysis and the results are shown in 
Figure 4. These drug–drug mixtures exhibited a single Tg and for IND-NAP (Figure 4a), the Tg ranges 
from 18.2–42.9 °C (with increasing IND concentration). The Tg range for NIF−PAR samples and 
PAR−CCX samples (Figure 4b,c), are 28.0–44.3 °C (with increasing NIF concentration) and 36.3–54.7 
°C (with increasing CCX concentration), respectively. Characterization using DSC and XRPD 
confirms that IND−NAP samples containing 30%–90% IND, NIF−PAR samples containing 20%–90% 
NIF, and PAR−CCX samples containing 10%–70% PAR respectively were co-amorphized 
successfully.  

Figure 3. Diffractograms of (a) IND-NAP samples, (b) NIF-PAR samples, and (c) PAR-CCX samples
after melt quenching. Included are the diffractograms of starting materials (CR. NAP, CR. IND, CR.
PAR, CR. NIF, and CR. CCX) and the single drugs after melting and cooling (A.NAP, A. IND, A. PAR,
A. NIF, and A. CCX).

In contrast, the remaining drug–drug mixtures did show a halo without distinct peaks in the
XRPD diffractograms. A halo pattern in a diffractogram is a characteristic property of amorphous
solids. To confirm if a co-amorphous system has been formed, the drug–drug mixtures that showed
a halo pattern in the diffractograms were subjected to DSC analysis and the results are shown in
Figure 4. These drug–drug mixtures exhibited a single Tg and for IND-NAP (Figure 4a), the Tg ranges
from 18.2–42.9 ◦C (with increasing IND concentration). The Tg range for NIF−PAR samples and
PAR−CCX samples (Figure 4b,c), are 28.0–44.3 ◦C (with increasing NIF concentration) and 36.3–54.7 ◦C
(with increasing CCX concentration), respectively. Characterization using DSC and XRPD confirms
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that IND−NAP samples containing 30%–90% IND, NIF−PAR samples containing 20%–90% NIF, and
PAR−CCX samples containing 10%–70% PAR respectively were co-amorphized successfully.
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Figure 4. DSC thermograms showing the change in Tgs of the various co-amorphous (a) IND-NAP
samples, (b) PAR-CCX samples, and (c) NIF-PAR samples.

3.4. Physical Stability of Co-Amorphous Systems

A physical stability analysis was performed to determine the tendency towards recrystallization
of the co-amorphous systems when stored dry at RT. Figure 5 shows the diffractograms of the
various co-amorphous systems. After storing co-amorphous IND−NAP samples for 14 days,
all diffractograms (Figure 5a) showed diffraction peaks except for those samples containing 40%
and 50% IND. Diffractograms of co-amorphous NIF−PAR samples after dry storage for 14 days
(Figure 5b), revealed that samples containing 30% and 40% NIF showed an amorphous halo and
therefore maintained their amorphous form.

A general trend that can be observed in the diffractograms in Figure 5 is the recrystallization
pattern of the various co-amorphous systems, above or below the drug concentrations that showed a
halo. It can be seen that these co-amorphous systems recrystallized into one of the starting materials,
i.e., no diffraction peaks of the other starting material could be detected. This trend of recrystallization
was also found in our previous co-amorphous drug-amino acid studies. In that study, we found that
when co-amorphous systems recrystallize into one of the starting materials, this material has to be
regarded as the excess component in the system [32].
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Figure 5. Diffractograms of (a) IND−NAP samples and (b) NIF−PAR samples after storage at 0%
relative humidity (RH) and at RT for 14 days. Included in the diffractograms are crystalline starting
materials (CR. IND, CR. NAP, and CR. NIF) and the diffractogram for NIF a day after melting and
cooling (A. NIF).

3.5. Eutectics and Physical Stability

IND−NAP, NIF−PAR, and PAR−CCX form eutectic mixtures and can be cooled quickly from the
molten state to form a co-amorphous system. The co-amorphous systems, however, showed differences
in their physical stability (time taken for the onset of crystallization). Here we relate the physical
stability to the eutectic behavior. The physical stability data of the different co-amorphous systems
have been superimposed on their respective phase diagrams and the results are shown in Figure 6.
IND−NAP samples (Figure 6a) containing 10%–20% IND recrystallized immediately after preparation.
In contrast, co-amorphous IND-NAP sample formed from the eutectic ratio of the two drugs, i.e., 40%
IND and 60% NAP, are physically stable between 31 and 38 days, which for IND is a more than tenfold
increase compared to the neat amorphous drug. Increasing the concentration of IND above the ratio at
the eutectic point reduces the physical stability gradually towards that of neat amorphous IND.

The onset of crystallization of NIF−PAR samples is shown in Figure 6b. Neither NIF nor PAR
are physically stable and will crystallize within one day of storage at 0% RH and at RT. Therefore, the
physical stability of the co-amorphous forms was determined daily for 20 days. NIF−PAR samples
containing from 30%–50% NIF were stable between 13 and 20 days, and the most stable sample was
found to be the NIF−PAR samples that contained 40% NIF (recrystallized between 17 and 20 days), i.e.,
at the drug–drug ratio that corresponded to the eutectic point mixture.

The onset of crystallization of PAR−CCX samples is shown in Figure 6c. The physical stability
for samples with a PAR concentration of 10%–30% is similar to that of neat amorphous CCX, which
is stable for less than 20 days. When increasing the PAR concentration to up to 40%, the physical
stability increases considerably to over 49 days. At the eutectic point (PAR−CCX sample containing
50% PAR), the sample exhibits higher physical stability compared to the other PAR−CCX samples
studied, and recrystallizes between 86–114 days. However, further increasing the concentration of
PAR to 60% decreases the physical stability to below 35 days. Samples with a high concentration of
PAR recrystallized almost immediately after preparation.

In summary, this study shows that the physical stability of co-amorphous systems can be deduced
from the eutectic behaviors of their respective crystalline mixtures. The most stable co-amorphous
ratios were found at ratios where the crystalline mixtures of the drugs had their respective eutectic
points. The observed trend in using eutectics to predict physical stability should be extended to systems
that have their eutectic points at low or high concentrations since the eutectic ratios of the studied
co-amorphous samples are close to 1:1 molar ratios.
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4. Conclusions

In this study, we have studied three eutectic drug–drug mixtures, IND−NAP, NIF−PAR, and
PAR−CCX, and confirmed that the respective co-amorphous drug–drug mixtures are most stable at
a ratio corresponding to the eutectic point mixture of the respective crystalline drug–drug mixtures.
The eutectic behavior of drug–drug mixtures can thus serve as a screening tool for finding optimally
stable co-amorphous systems, and in the selection of physically stable co-amorphous drug–drug ratios,
the composition making up the eutectic point may be selected for further development.
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