Supplementary Materials: High Potency of SN-38Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast cancer

Hsin-Che Lin, Chih-Hung Chuang, Meng-Hsuan Cheng, Yu-Chih Lin and Yi-Ping Fang

Figure S1. SEM images of the (A) sBSANP-F75 (B) sBSANP-F62.5 (C) sBSANP-F40 (D) SN-38 crystals. Note: (A)-(C) maganification 500,000×; (D) maganification 5000×.

Table S1. models and coefficients for the in vitro release of SN38 control group and SN-38-loaded bovine serum albumin nanoparticles (sBSANP) with different albumin concentration in various liposomal formulations.

	Zero Order	Frist Order	Huguchi	Korsmeyer-Peppas	Hixson-Crowell
	$C=C_{0}-K t$	$\log C=\log C_{0}-\frac{K \cdot t}{2.303}$	$Q=\sqrt{D\left(2 C-C_{s}\right) C_{s} t}$	$f=\frac{M}{M_{\infty}}=K \cdot t^{n}$	$\sqrt[3]{W_{0}}=\sqrt[3]{W}+K_{H C} t$
Release model	C_{0} is the initial concentration of drug. K is first order release constant.	C_{0} is the initial concentration of drug K is first order release constant.	Q is the amount drug released per unit area at time t. D is the diffusion coefficient in the matrix. C is the initial amount of drug in the matrix. C_{s} is the solubility of drug in the matrix.	f is the amount of drug released. M_{∞} is the amount of drug at the equilibrium state. M is the amount of drug released over time t. K is rate constant. n is the release exponent related to the drug release mechanism.	W_{0} is the initial amount of drug in the system. W is the amount remaining in the system at time t $K_{H C}$ is rate constant for Hixson-Crowell equation.
Control	$\begin{gathered} \mathrm{y}=4.8427 \mathrm{x}+1.9323 \\ \mathrm{R}^{2}=0.9994 \end{gathered}$	$\begin{gathered} \mathrm{y}=-0.0317 \mathrm{x}+2.0105 \\ \mathrm{R}^{2}=0.9914 \end{gathered}$	$\begin{gathered} y=20.141 x-14.599 \\ R^{2}=0.9758 \end{gathered}$	$\begin{aligned} & \mathrm{y}=0.8666 \mathrm{x}+0.8271 \\ & \mathrm{R}^{2}=0.9988(\mathrm{n}=0.867) \\ & \hline \end{aligned}$	$\begin{gathered} y=0.0978 x-0.0069 \\ R^{2}=0.9974 \end{gathered}$
$\begin{gathered} \hline \text { sBSANP- } \\ \text { F75 } \end{gathered}$	$\begin{gathered} y=2.3714 x+2.5079 \\ R^{2}=0.9985 \end{gathered}$	$\begin{gathered} y=-0.0124 x+1.9921 \\ R^{2}=0.9988 \end{gathered}$	$\begin{gathered} y=0.234 x+0.8558 \\ R^{2}=0.9781 \end{gathered}$	$\begin{aligned} \mathrm{y} & =0.7368 \mathrm{x}+0.6709 \\ \mathrm{R}^{2} & =0.9972(\mathrm{n}=0.723) \end{aligned}$	$\begin{gathered} y=0.0416 x+0.0325 \\ R^{2}=0.9991 \end{gathered}$
$\begin{gathered} \hline \text { sBSANP- } \\ \text { F62.5 } \\ \hline \end{gathered}$	$\begin{gathered} y=2.0629 x+2.4022 \\ R^{2}=0.9998 \end{gathered}$	$\begin{gathered} y=2.0629 x+2.4022 \\ R^{2}=0.9998 \end{gathered}$	$\begin{gathered} y=2.0629 x+2.4022 \\ R^{2}=0.9998 \end{gathered}$	$\begin{aligned} \mathrm{y} & =2.0629 \mathrm{x}+2.4022 \\ \mathrm{R}^{2} & =0.9998(\mathrm{n}=0.668) \end{aligned}$	$\begin{gathered} y=2.0629 x+2.4022 \\ R^{2}=0.9998 \end{gathered}$
$\begin{gathered} \text { sBSANP- } \\ \text { F40 } \end{gathered}$	$\begin{gathered} \mathrm{y}=2.2961 \mathrm{x}+1.2785 \\ \mathrm{R}^{2}=0.9993 \end{gathered}$	$\begin{gathered} \mathrm{y}=-0.0118 \mathrm{x}+1.9975 \\ \mathrm{R}^{2}=0.9958 \end{gathered}$	$\begin{gathered} y=0.2607 x+0.6317 \\ R^{2}=0.971 \\ \hline \end{gathered}$	$\begin{aligned} \mathrm{y} & =0.7696 \mathrm{x}+0.5903 \\ \mathrm{R}^{2} & =0.9853(\mathrm{n}=0.770) \end{aligned}$	$\begin{gathered} y=0.0398 x+0.0133 \\ R^{2}=0.9974 \end{gathered}$

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

