

Supplementary Materials: High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast cancer

Hsin-Che Lin, Chih-Hung Chuang, Meng-Hsuan Cheng, Yu-Chih Lin and Yi-Ping Fang

Figure S1. SEM images of the (**A**) sBSANP-F75 (**B**) sBSANP-F62.5 (**C**) sBSANP-F40 (**D**) SN-38 crystals. Note: (**A**)–(**C**) maganification 500,000×; (**D**) maganification 5000×.

Table S1. models and coefficients for the in vitro release of SN38 control group and SN-38-loaded bovine serum albumin nanoparticles (sBSANP) with different albumin concentration in various liposomal formulations.

-	Zero Order	Frist Order	Huguchi	Korsmeyer–Peppas	Hixson-Crowell
	$C = C_0 - Kt$	$\log \mathcal{C} = \log \mathcal{C}_0 - \frac{K \cdot t}{2.303}$	$Q = \sqrt{D(2C - C_s)C_s t}$	$f = \frac{M}{M_{\infty}} = K \cdot t^n$	$\sqrt[3]{W_0} = \sqrt[3]{W} + K_{HC}t$
Release model	C ₀ is the initial concentration of drug. K is first order release constant.	C_0 is the initial concentration of drug K is first order release constant.	 <i>Q</i> is the amount drug released per unit area at time t. <i>D</i> is the diffusion coefficient in the matrix. <i>C</i> is the initial amount of drug in the matrix. <i>C_s</i> is the solubility of drug in the matrix. 	 f is the amount of drug released. M_∞is the amount of drug at the equilibrium state. M is the amount of drug released over time t. K is rate constant. n is the release exponent related to the drug release mechanism. 	 <i>W</i>₀ is the initial amount of drug in the system. <i>W</i> is the amount remaining in the system at time t <i>K</i>_{HC} is rate constant for Hixson-Crowell equation.
Control	y = 4.8427x + 1.9323 $R^2 = 0.9994$	y = -0.0317x + 2.0105 $R^2 = 0.9914$	y = 20.141x - 14.599 R ² = 0.9758	y = 0.8666x + 0.8271 $R^2 = 0.9988 (n = 0.867)$	y = 0.0978x - 0.0069 $R^2 = 0.9974$
sBSANP-	y = 2.3714x + 2.5079	y = -0.0124x + 1.9921	y = 0.234x + 0.8558	y = 0.7368x + 0.6709	y = 0.0416x + 0.0325
F75	$R^2 = 0.9985$	$R^2 = 0.9988$	$R^2 = 0.9781$	$R^2 = 0.9972$ (n = 0.723)	$R^2 = 0.9991$
sBSANP-	y = 2.0629x + 2.4022	y = 2.0629x + 2.4022	y = 2.0629x + 2.4022	y = 2.0629x + 2.4022	y = 2.0629x + 2.4022
F62.5	$R^2 = 0.9998$	$R^2 = 0.9998$	$R^2 = 0.9998$	$R^2 = 0.9998 \ (n = 0.668)$	$R^2 = 0.9998$
sBSANP- F40	y = 2.2961x + 1.2785 $R^2 = 0.9993$	y = -0.0118x + 1.9975 $R^2 = 0.9958$	y = 0.2607x + 0.6317 $R^2 = 0.971$	y = 0.7696x + 0.5903 R ² = 0.9853 (n = 0.770)	y = 0.0398x + 0.0133 $R^2 = 0.9974$

 $\ensuremath{\mathbb{C}}$ 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).