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Abstract: The aim of this work was to investigate effects of the formulation factors on tablet 
printability as well as to optimize and predict extended drug release from cross-linked polymeric 
ibuprofen printlets using an artificial neural network (ANN). Printlets were printed using digital 
light processing (DLP) technology from formulations containing polyethylene glycol diacrylate, 
polyethylene glycol, and water in concentrations according to D-optimal mixture design and 0.1% 
w/w riboflavin and 5% w/w ibuprofen. It was observed that with higher water content longer 
exposure time was required for successful printing. For understanding the effects of excipients and 
printing parameters on drug dissolution rate in DLP printlets two different neural networks were 
developed with using two commercially available softwares. After comparison of experimental and 
predicted values of in vitro dissolution at the corresponding time points for optimized formulation, 
the R2 experimental vs. predicted value was 0.9811 (neural network 1) and 0.9960 (neural network 
2). According to difference f1 and similarity factor f2 (f1 = 14.30 and f2 = 52.15) neural network 1 with 
supervised multilayer perceptron, backpropagation algorithm, and linear activation function gave 
a similar dissolution profile to obtained experimental results, indicating that adequate ANN is able 
to set out an input–output relationship in DLP printing of pharmaceutics. 

Keywords: three-dimensional printing; additive manufacturing; digital light processing 
technology; printlets; neural networks; optimization; prediction 

 

1. Introduction 

Three-dimensional printing (3DP) is an additive manufacturing process that allows the 
fabrication of three-dimensional solid objects of virtually any shape from a 3D model file [1–3]. The 
basic mechanism for most types of 3D printing is the same (layer-by-layer production of 3D objects 
from digital designs) [4], but the difference lies in input materials and operating principles. There are 
several types of 3D printing technologies: fused deposition modeling (FDM)—based on extrusion [5], 
selective laser sintering (SLS)—based on powder bed fusion [6], stereolithography (SLA), and digital 
light processing technology (DLP)—based on photopolymerization of the resin and others [2]. SLA 
3D printing was the first rapid prototyping method developed and perhaps the most popular due to 
its superior resolution and accuracy [7]. DLP is a “sister technology” to SLA as the only significant 
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difference between these technologies is the light source used to cure the resin. SLA printers use lasers 
combined with galvanometers to cure the resin while in DLP 3D printers, the light source is a 
specially developed digital light projector screen. Due to the presence of this screen, DLP is generally 
considered to be faster and more efficient than SLA [8]. The main drawbacks of SLA and DLP 
technology are the limited number of photocrosslinkable polymers that are available for medical 
applications, and these materials are currently not on the generally recognized as safe (GRAS) list of 
excipients [9]. 

Research in the field of oral drug delivery using SLA and DLP is still very limited. Wang et al. 
who fabricated 4-aminosalicylic acid and paracetamol loaded printlets, showed no drug degradation 
during the 3D printing process. [7]. In the study by Martinez et al. percentage of water in the initial 
formulation was varied, showing that the crosslinking density is slightly modified as the water 
content increases (up to 30%) and this dilution with water did not seem to significantly affect the 
speed at which the drug was released [9]. Influence of geometry on the drug release profiles was 
investigated by Martinez et al. [10]. In the study by Kadry et al. theophylline, as a model drug, and 
two photoreactive polymers, polyethylene glycol diacrylate (PEGDA) and polyethylene glycol 
dimethacrylate (PEGDMA), were used. Polymer concentration was varied to produce sturdy 
printlets with minimum polymer concentration applying, for the first time, DLP technology [11]. 
Optimization techniques have not yet been applied in 3D DLP fabrication and optimization of solid 
oral dosage forms.  

The most frequently used optimization technique is design of experiments (DoE), but with the 
development of computer science, artificial neural network (ANN) have attracted a lot of attention. 
Despite the advantages of DoE-based polynomial model fitting, often the developed models show 
bad fit resulting to a poor optimum estimation. An alternative approach that has been successfully 
applied in cases where conventional DoE methods prove inadequate is the use of feed-forward ANNs 
[12]. Neural networks create their knowledge by detecting the patterns and relationships in data. It 
is a biologically inspired computer-based system formed from hundreds of single units, artificial 
neurons, connected with coefficients (units) which constitute the neural structure. The artificial 
neuron takes one or more inputs and creates an output, which is passed on to another neuron. One 
of the most useful advantages of artificial neural networks is their ability to generalize. The 
multilayered perceptron (MLP) neural network is one of the simplest ANNs and consists of an input 
layer, output layer, and one or more hidden layers of neurons. During the ‘training process’ the 
system is able to establish the relationship between inputs and outputs using algorithms designed to 
alter the weights of the connections in the network to produce a desired signal flow. Although MLP 
has proved efficient in solving an important number of pharmaceutical development problems, no 
single software or modeling algorithm can solve ‘all’ problems [13–16]. There are a few examples in 
literature describing combination of DoE and ANN with recognized possibility as a powerful tool in 
predicting optimal conditions from a low number of experiments [17]. DoE enable determination of 
the quantitative relationship between selected input variables and responses while ANNs often 
exhibit superior performance in prediction of the responses for given values of inputs [18]. ANN can 
be used in completing one portion of data in the experimental design data pool, resulting in satisfying 
results for some outputs, considering the number of experimental data used for modeling [19]. 

The aim of this work was to investigate the effects of formulation factors on printability as well 
as to optimize and predict extended drug release from cross-linked polymeric ibuprofen printlets 
using ANN created in two different softwares. For a meticulous investigation of the effects of 
excipients on drug release, ANN was used because it is highly recommended to present the 
complicated relations and strong nonlinearity between different parameters [20]. The prediction and 
optimization method was applied to the development of ibuprofen extended-release 3D printlets 
using MLP and the backpropagation algorithm with linear and log-sigmoid activation functions. 

2. Materials and Methods  

PEGDA, average MW 700, was obtained from Sigma–Aldrich, Tokyo, Japan. Polyethylene glycol 
(PEG 400, average MW 400) was purchased from Fagron B.V., Rotterdam, The Netherlands. Ethanol, 
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absolute was purchased from Honeywell Riedel-de-Haën™, Seelze, Germany and 2-propanol was 
obtained from Merck KGaA, Darmstadt, Germany. Ibuprofen (Ph. Eur. 9.0) was used as a model 
substance, PEGDA as the photopolymerizable monomer, while PEG 400 and water were used to alter 
the cross-linking density. PEG 400 is chemically similar to PEGDA and the difference is that does not 
have photopolymerizable terminal groups. Riboflavin (Ph. Eur. 9.0) was used as the photo-initiator. 
The photo-initiator converts to reactive radicals upon exposure to light to catalyze the polymerization 
of the formulation. In photopolymerization reactions different photo-initiators can be used, and 
riboflavin is reported as pharmacologically non-toxic photo-initiator [9,21,22].  

2.1. Preparation of Photopolymer Solution 

Based on preliminary experiments, lower and upper limits (% w/w) of each component were 
selected as follows: PEGDA (30.0–74.6%), PEG 400 (10.0–54.6%), water (10.0–30%), and amounts of 
ibuprofen and riboflavin were kept constant, 5.0% and 0.1% respectively. Eleven formulations were 
prepared according to D-optimal mixture design from Design Expert software 7.0.0 (Stat-Ease Inc.,  
Minneapolis, MN, USA). Compositions of the formulations obtained by the software are given in 
Table 1. Firstly PEGDA, PEG 400, and ibuprofen were mixed with propeller mixer Heidolph RZR2020 
(Heidolph, Schwabach, Germany) until complete dissolution (approximately 60 min). Riboflavin and 
water were added next, keeping the solution protected from light and with constant mixing until 
complete dissolution (approximately 45 min). Compositions of three test formulations were selected 
so that they differ from the previous 11 and were prepared in the same way. Approximately the same 
concentration of PEGDA and PEG 400 was selected in the placebo formulation. Percentage of water 
was varied from 10 to 30 in formulations F1–F11, based on which 15% of water was chosen in the 
placebo formulation.  

Table 1. Composition (% w/w) of the initial resins used to print the printlets. 

Formulation PEGDA PEG 400 Water riboflavin ibuprofen 
F1 32.10 32.60 30.00 0.10 5.00 
F2 30.00 44.10 20.50 0.10 5.00 
F3 74.60 10.00 10.10 0.10 5.00 
F4 62.40 21.80 10.50 0.10 5.00 
F5 50.60 34.00 10.00 0.10 5.00 
F6 65.80 11.20 17.70 0.10 5.00 
F7 30.00 54.60 10.00 0.10 5.00 
F8 58.10 10.00 26.60 0.10 5.00 
F9 39.30 45.30 10.00 0.10 5.00 

F10 46.20 23.10 25.40 0.10 5.00 
F11 40.40 35.60 18.70 0.10 5.00 

Test 1 35.00 47.90 12.00 0.10 5.00 
Test 2 55.00 24.90 15.00 0.10 5.00 
Test 3 65.00  7.90 22.00 0.10 5.00 

F placebo 42.50 42.40 15.00 0.10 0.00 

2.2. Printing Dosage Forms 

In this study a DLP printer, based on photopolymerization process, was used for fabrication of 
solid oral dosage forms, called printlets. The DLP printer offers fast and efficient printing by 
projecting the light onto a whole layer at once, while the SLA printer prints each layer in a line by 
line pattern. The advantage of the Wanhao DLP printer is an open software and the possibility for 
adjustment of parameters for printing a particular mixture [11]. A schematic view of the printing 
process is shown in Figure 1. The template used to print the printlets (a cylinder, 10.00 mm diameter, 
3.02 mm height) was designed with Autodesk Fusion 360 (Autodesk Inc, San Rafael, California, USA) 
(Figure 2a) and exported as a stereolithography file (stl) into the 3D printer software (Creation 
Workshop X). All 3D printlets were printed with a Wanhao Duplicator 7 printer (Wanhao, Zhejiang, 
China) with layer thickness of 100 µm, bottom exposure 800 s, and 10 bottom layers. Trial-and error 
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approach was used to establish exposure time for successful printing. In screening formulations, 
ibuprofen content was 5.0% and the water content was varied from 5.0% to 30.0%. The minimum 
exposure time which lead to solidification was selected. This criterion for exposure time allowed 
printing to be as short as possible.  

 
Figure 1. Digital light processing technology (DLP) printing process. 

2.3. Characterization of Printlets 

2.3.1. Determination of Physical and Mechanical Properties 

Three-D printed printlets were washed with 2-propanol to remove any uncured liquid 
formulation on the surface immediately after fabrication, then they were weighed and measured 
(diameter and thickness, n = 10) using a caliper. The breaking force of printlets (n = 10) was measured 
using a hardness tester Erweka TBH 125D (Erweka, Langen, Germany). Microscopic observations of 
placebo and optimal printlets were done under a polarized light microscope Olympus BX 51P 
(Olympus, Tokyo, Japan). Photos were acquired using cellSens Entry Version 1.14 software 
(Olympus, Tokyo, Japan). 

2.3.2. Determination of Drug Concentration in 3DP Printlets 

Printed printlets were crushed using mortar and pestle (n = 3), and 200 mg of the crushed printlet 
was diluted with 10 mL of ethanol. Samples were placed in an ultrasonic bath Bandelin–Sonorex 
RK102H (Sonorex–Bandelin, Berlin, Germany) at room temperature and sonicated for 15 min to 
enhance extraction of ibuprofen. At the end of sonification, dispersions were cooled to room 
temperature and then filtered through a 0.45 µm Millipore filter (Merck Millipore Ltd. Carrigtwohill, 
County Cork, Ireland) A sample of 250 µL of the solution was diluted to 50 mL with phosphate buffer 
pH 6.8. Amount of drug in solution was determined using UV–Vis spectroscopy Evolution 300 
(Thermo–Fisher Scientific, Waltham, MA, USA) at the wavelength of 221 nm. Corresponding placebo 
samples were analyzed in order to nullify the possible effect of other printlet constituents on drug 
absorbance. 

2.3.3. Dissolution Test Conditions 

Drug release profiles were obtained using the paddle apparatus Erweka DT 600 (Erweka, 
Langen, Germany). The printlets were placed in 900 mL of phosphate buffer pH 6.8 for 8 h. The 
paddle speed of the USPII was fixed at 75 rpm, and the tests were conducted at 37 ± 0.5 °C. Buffer 
samples of 4 mL were withdrawn at predetermined time intervals, filtrated through a 0.45 µm 
Millipore filter (Merck Millipore Ltd. Carrigtwohill, County Cork, Ireland), and the absorbance of 
released ibuprofen was measured UV-spectrophotometrically at the wavelength of the relative 
maximum absorbance (221 nm). Studies were performed in triplicate. 

2.3.4. Kinetic Model 
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A number of mathematical models have been proposed to describe drug release from 
pharmaceutical delivery systems [23,24]. Drug release profiles were fitted into four mathematical 
models including zero-order, first-order, Higuchi, and Korsmeyer–Peppas. 

2.3.5. Differential Scanning Calorimetry (DSC) 

DSC was used to study the thermal properties of placebo and optimal printlets. DSC analyses 
were performed on a DSC 1 differential scanning calorimeter Mettler Toledo AG (Analytical, Zurich, 
Switzerland). Accurately weighed 5–10 mg of samples (optimal and placebo formulation) were 
placed in pierced aluminum pans, and subjected to heating at 10 °C/min in the range of −50–200 °C 
under nitrogen purge gas flow of 50 mL/min. An empty pan was used as a reference. 

2.4. Artificial Neural Network Modeling 

To get better insight in an input–output relationship in DLP printing of ibuprofen printlets in 
ANN modeling, two artificial neural networks, using different commercially available software, were 
used. Each software has unique potential in solving problems. 

(1) Neural Network 1. Commercially available STATISTICA 7.0 Neural Networks software 
(StatSoft Inc., Tulsa, OK, USA.) was used throughout the study. For prediction and 
optimization of ibuprofen release from 3D DLP printlets, supervised MLP and 
backpropagation algorithm with linear activation function were used. The data set was split 
into training (8 formulations), validation (2 formulations) and test (1 formulation) subsets. 
Amount of PEGDA, PEG 400, and water (% w/w) in formulations were selected as input 
factors affecting the release of ibuprofen. The cumulative percentage of ibuprofen release from 
3D DLP printlets at time points of 1, 2, 4, 6, and 8 h was used as output data (Table S1). A trial 
and error approach, conducted by varying the number of layers and number of nodes in the 
hidden layer(s), was used to train the neural network. Learning rate and momentum were 0.6, 
the number of layers was varied from 3 to 10, and the number of nodes in the hidden layer(s) 
from 4 to 10. The criteria to choose the ˝best MLP model˝ were minimal test error and 
maximum coefficient of determination R2 for observed vs. predicted values. After the training 
process, the prediction ability of the developed network was examined by external validation 
with the unseen samples of three test formulations.  

(2) Neural Network 2. Another approach was the usage of commercial software MATLAB 
R2014b (The MathWorks, Inc., Natick, MA, USA) to investigate the combination of process 
and formulation factors on optimization of ibuprofen release. A supervised MLP network and 
backpropagation algorithm with linear and log-sigmoid activation functions were used for 
the prediction. Percentage of PEGDA, PEG 400, and water in formulations were selected as 
input factors affecting the release of ibuprofen, as well as exposure times (s). The cumulative 
percentage of ibuprofen released after 2, 4, 6, and 8 h was the output data (Table S2). The most 
optimal MLP model was chosen based on the maximum R and minimal normalized mean 
square error between the calculated and target output for the test data. After the training 
process was finished, the prediction was examined by external validation with the unseen test 
(optimal formulation). 

2.5. Optimization of 3D Printed Printlets 

D-optimal mixture design was established by data predicted using evaluated MLP, because this 
approach of using DoE-based modeling to decipher the black-box nature of the ANNs resulted in 
satisfying results. Data obtained using DoE enable the development of more accurate models and 
improve process understanding [19]. The desirability function approach has been proven to be a 
useful statistical tool, the most widely used in industry, for solving multi-variable problems and 
optimization of one or several responses [19,23]. The objective function, D(X), called the desirability 
function is used in this method. It reflects the desirable ranges for each response (di) from zero to one 
(least to most desirable respectively). The simultaneous objective function is a geometric mean of all 
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transformed responses. The numerical optimization technique was used to generate the composition 
of formulation with desirable drug release. The criteria for the selection of the optimal formulation 
were the percentage of in vitro release at time points of 2, 4, 6, and 8 h—not more than 30%, 60%, and 
70%, and not <80%, respectively. The importance of the first two goals was set with two pluses, and 
the importance of the next two goals was set with three pluses, as they were more significant. After 
determination of the optimal composition of the formulation, the formulation was prepared, 
characterized by dissolution test, and the obtained results from the dissolution test were compared 
with the predictions by neural network 1 and neural network 2. Predictability was expressed through 
calculation of the coefficient of determination (R2), f1 (difference factor) and f2 (similarity factor). 
Difference and similarity factor are represented in Equations (1) and (2). 

𝒇𝟏 = ቆ∑ |𝑹𝒕 − 𝑻𝒕|𝒏𝒕ୀ𝟏∑ 𝑹𝒕𝒏𝒕ୀ𝟏 ቇ × 𝟏𝟎𝟎 
  (1) 

𝒇𝟐 = 𝟓𝟎 × 𝐥𝐨𝐠𝟏𝟎 ⎢⎢⎢
⎡ 𝟏𝟎𝟎ට𝟏 + ∑ ሺ𝑹𝒕 − 𝑻𝒕ሻ𝟐𝒏𝒕ୀ𝟏 𝒏 ⎥⎥⎥

⎤
 

   

(2) 

where n is the number of dissolution sampling times, and Rt and Tt are the mean percent dissolved 
at each time point, t, for the experimental and predicted values of drug released, respectively. 

3. Results and Discussion  

3.1. Printing Process 

With 5.0% of the water in screening formulations, printlets were successfully fabricated with an 
exposure time of 100 s. There was no solidification of the resins with lower exposure time. The 
increase in water content up to 10.1% required exposure time to be at least 400 s, and with 30.0% 
water in the formulation, printing was possible at exposure time of 800 s due to which the process 
lasted for a long time. The water content affected the exposure time to the light projector so that with 
the increase in the content of water in the formulation, longer exposure time was required, and that 
was criteria for setting printing parameters in the way presented in Table 2. The minimal exposure 
time which lead to solidification was selected to keep printing time as short as possible. 

Table 2. Printing process parameters. 

Formulation Exposure Time  
(s) 

Bottom Exposure  
(s) 

Layer Thickness  
(mm) 

Bottom Layers 

F1 800.00 800.00 0.10 10.00 
F2 800.00 800.00 0.10 10.00 
F3 400.00 800.00 0.10 10.00 
F4 400.00 800.00 0.10 10.00 
F5 500.00 800.00 0.10 10.00 
F6 600.00 800.00 0.10 10.00 
F7 400.00 800.00 0.10 10.00 
F8 800.00 800.00 0.10 10.00 
F9 400.00 800.00 0.10 10.00 
F10 800.00 800.00 0.10 10.00 
F11 600.00 800.00 0.10 10.00 

Test 1 400.00 800.00 0.10 10.00 
Test 2 500.00 800.00 0.10 10.00 
Test 3 600.00 800.00 0.10 10.00 

F placebo 600.00 800.00 0.10 10.00 

It was observed that for every formulation it is necessary to find adequate printing parameters 
with a trial and error approach because there is no guideline for process parameters selection for 
mixtures containing photopolymers for pharmaceutical application. A similar observation was 
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reported in the study by Robles-Martinez et al. [24]. Exposure time for every formulation was longer 
than reported in the published paper by Kadry et al., but in this published paper 2-hydroxy-4'-(2-
hydroxyethoxy)-2-methylpropiophenone was used as the photo-initiator, theophylline as the active 
substance, and the content of the formulation was different as well as their characteristics [11]. 

3.2. Characterization of Printlets 

3.2.1. Physical and Mechanical Properties and Drug Content 

A DLP printer was able to fabricate 3D printlets with ibuprofen similar to results obtained by 
Martinez et al [9]. A DLP printlet as well as a 3D model are presented in Figure 2. All fabricated 
printlets had a smooth surface and consistency in shape. Measured tablet weight, dimensions, 
hardness, and drug load (mean ± SD) are shown in Table 3. 

 
 

(a) (b) 
Figure 2. (a) 3D model of DLP printlet; (b) DLP printlet 

For better determination of the effects of the formulation factors on obtained mechanical 
characteristics of printlets, the content of PEGDA, PEG 400, and water were evaluated as the input 
variables for D-optimal mixture design. Three responses, weight, hardness, and drug load, 
separately, were fitted to linear, quadratic, special cubic, and full cubic models. The best-fitting 
mathematical model was selected based on several statistical parameters including adjusted R-
squared, predicted R-squared, and predicted residual sum of square (PRESS) (Table 4). The focus was 
on the model maximizing the adjusted R-squared and the predicted R-squared. The linear model was 
considered the best fitted model for each of the three responses.  

Table 3. Measured tablet weight, dimensions, hardness, and drug load (mean ± SD). 

Formulation Weight (mg) Diameter (mm) Thickness (mm) Hardness (N) Drug Load (mg) 
F1 387.00 ± 45.20 11.13 ± 0.62 3.00 ± 0.00 47.33 ± 3.21 24.11 ± 2.51 
F2 378.00 ± 29.00 10.86 ± 0.31 3.09 ± 0.20 32.00 ± 17.00 23.00 ± 1.58 
F3 323.40 ± 21.60 10.81 ± 0.31 3.00 ± 0.00 108.33 ± 23.71 15.00 ± 1.00 
F4 296.70 ± 4.50 10.17 ± 0.26 3.02 ± 0.04 92.33 ± 29.02 14.40 ± 0.22 
F5 354.40 ± 21.10 10.55 ± 0.38 3.00 ± 0.00 33.00 ± 4.58 22.30 ± 0.13 
F6 278.90 ± 11.50 10.04 ± 0.09 3.00 ± 0.00 132.33 ± 18.88 18.30 ± 0.75 
F7 345.10 ± 32.70 10.52 ± 0.32 2.99 ± 0.02 n.d.1 21.70 ± 2.05 
F8 400.10 ± 42.90 12.40 ± 0.55 2.97 ± 0.23 29.67 ± 3.51 27.10 ± 2.91 
F9 340.50 ± 19.50 10.60 ± 0.17 2.94 ± 0.13 19.00 ± 8.66 23.00 ± 1.13 
F10 375.00 ± 28.70 11.53 ± 0.43 2.92 ± 0.11 37.00 ± 16.52 25.80 ± 1.98 
F11 377.50 ± 37.30 11.40 ± 0.47 2.99 ± 0.12 35.00 ± 24.25 25.50 ± 2.53 

1 n.d. not determined 

Mathematically, the relationship for the studied variables was expressed in the following 
Equations (3), (4), and (5) in actual values. Dimensions of printlets were similar to 3D model but 
variation in mass and dimension became greater for printlets containing more water. From Equation 
(3), water had the greatest impact on weight. Water dilutes the formulation, reduces viscosity, and 
consequently the reproducibility of printing with SLA printer [9]. Instead of the advantages of the 



Pharmaceutics 2019, 11, 544 8 of 17 

 

DLP printer, previously mentioned, the reproducibility problem with customized resins has not been 
overcome with this technology. 

weight = 2.68392 × 𝑃𝐸𝐺𝐷𝐴  +3.78589 × 𝑃𝐸𝐺400 + 6.42698 × water            (3) 

hardness = 1.52104 × 𝑃𝐸𝐺𝐷𝐴 − 0.53285 × 𝑃𝐸𝐺400 − 0.28236 × 𝑤𝑎𝑡𝑒𝑟           (4)   drug load = 0.11399 × 𝑃𝐸𝐺𝐷𝐴 + 0.24544 × 𝑃𝐸𝐺400 + 0.53252 × 𝑤𝑎𝑡𝑒𝑟             (5) 

From results and Equation (4) it was observed that the content of PEGDA affected the hardness 
of the printlets. For printlets with a higher content of PEGDA, greater force was required to break 
printlets. PEG 400 and water had negative effects. With a higher content of PEG 400 or water, a lower 
force was measured to break the printlet. Printlet F7 was too elastic, and the hardness tester could 
not break them. Content of ibuprofen in printlets was greatly affected by the amount of water, with 
higher water content higher drug content was observed. From Equation (5) there was also a positive 
effect of PEGDA and PEG 400 on drug load. In a research paper by Martinez et al. it had been 
demonstrated that the solubility of ibuprofen was increased with the presence of solvents like 
polyethylene glycol 300, which decreased the polarity of the aqueous solution [9]. Even if the 
represented mathematical models do not achieve high values of R2 (R2 values reached 0.58, 0.57, 0.62, 
respectively), information extracted through the analysis of the mathematical expressions can help to 
improve understanding of the effects of formulation factors on characteristics of printlets. 

Table 4. Model summary statistics. 

Weight Linear Quadratic Special Cubic Cubic 
Adjusted R2 0.4828 11,760.57 0.0573 0.5331 
Predicted R2 0.2042 −2.6704 −4.744 −15888.43 

PRESS 11,760.57 54,239.56 84,882.21 2.35 × 108 
Hardness Linear Quadratic Special Cubic Cubic 

Adjusted R2 0.4575 0.5454 0.4311 n.d. 
Predicted R2 0.0542 −1.4961 −4.3319 n.d. 

PRESS 13,171.03 34,759.87 74,249.53 n.d. 
Drug load Linear Quadratic Special Cubic Cubic 

Adjusted R2 0.5184 0.6846 0.6145 0.7212 
Predicted R2 0.2228 −0.1716 −0.8126 −9,486.5367 

PRESS 139.12 209.72 324.46 1.70 × 106 
1 n.d. not determined 

3.2.2. Dissolution Test 

Dissolution profiles for all formulations are shown in Figure 3. Printlets fabricated with cross-
linkable photoreactive polymers, such as PEGDA, remained intact throughout the dissolution test 
similar to published studies [11,25]. The fastest dissolution after 8 h was from formulation F7 (90.72 
± 5.06%) that had the highest concentration of PEG 400 (54.6% w/w), and the slowest dissolution after 
8 h was from F8 (38.04 ± 1.41%) that had the lowest concentration of PEG 400 (10% w/w) and high 
concentration of PEGDA (58.1% w/w). In this study, it was observed that PEG 400 had a great 
influence on the drug release profile, as it was concluded in the study by Wang et al. [7] that changes 
in the ratio of PEGDA/PEG 300 played an important role in drug release rate. The reduction in the 
concentration of PEGDA probably increases the drug release rate because of the lower degree of 
cross-linking in the tablet matrix and increases in the proportion of PEG 400 affected the greater 
molecular mobility in the tablet core. Formulation F2 had a high concentration of PEG 400 (44.1% 
w/w) and the lowest concentration of PEGDA (30% w/w) but dissolution after 8 h was slower than 
expected (45.69 ± 0.61%) probably because of the interactions of excipients. The effect of excipients on 
ibuprofen released after 8 h of dissolution on a 3D surface plot is shown in Figure 4. Martinez at al. 
[9] showed that dissolution is the slowest from the formulation containing no water and gets faster 
as the water content is increased, but this clear proportion between water and dissolution rate could 



Pharmaceutics 2019, 11, 544 9 of 17 

 

not be observed in this study. Martinez et al. used printing with the same process parameters for all 
formulations, but for the formulations and printer used in this study, it was necessary to adjust the 
exposure time. By comparing these observations, it can be concluded that not only excipients and 
their interactions but also printing process parameters could effect drug dissolution rate. Effects of 
excipients could not be evaluated just by observing modulation in their concentration; it was 
necessary to apply advanced software. Content of PEGDA, PEG 400, and water were evaluated as 
the input variables for D-optimal mixture design to determinate their effects on drug release, but the 
proposed mathematical model was not significant. Because the relationships between the drug 
release profile of 3D DLP printlets and formulation factors were not well understood, artificial neural 
networks were used for further research. 

 

 

Figure 3. Dissolution profiles of ibuprofen printlets F1–F11 and Test 1–Test 3, Δ exposure time 

400 s, × exposure time 500 s, ▪ exposure time 600 s, • exposure time 800 s. 

  
(a) (b) 
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(c) 

Figure 4. Interaction effect of excipients on ibuprofen released after 8 h of dissolution. (a) x- 
polyethylene glycol (PEG) 400 (%), y-water (%), (b) x- polyethylene glycol diacrylate (PEGDA) (%), 
y-water (%), (c) x-PEG 400 (%), y-PEGDA (%), z axis on all graphics—cumulative % of ibuprofen 
released after 8 h of dissolution test.  

3.2.3. Drug Release Kinetic 

To interpret the mechanism of drug release from the printlets, data were fitted into various 
kinetic models such as zero-order, first-order, the Higuchi equation, and the Korsemeyer–Peppas 
equation. The highest R2 coefficient determines the suitable mathematical model that best describes 
drug release kinetics and n gave insights into the mechanism of drug release [26,27]. The most proper 
model fitted to data based on having the closest R2 to 1 was the Higuchi model (R2 was between 
0.9746 to 0.9993 for all formulations, Table 5) meaning drug release was afforded through a diffusion 
process, square root time dependent. In formulations F2 and F the optimum was predominately zero 
order kinetics but R2 for the Higuchi model was also high. The values of n less than 0.45 reveal that 
the diffusion pattern is a kind of Fickian diffusion and values of n between 0.45 and 0.89 reveal that 
the diffusion pattern is anomalous transport [28]. In the evaluated formulations there was 
predominately Fickian diffusion as a mechanism of drug release, and during the dissolution test no 
erosion or swelling of printlets was observed.  

Table 5. Parameters obtained by fitting dissolution data to various mathematical models. 

Formulation 
Zero Order  First Order Higuchi Korsmeyer–Peppas  
k0  R2  k1  R2  kh  R2  kkp  R2  n 

F1 0.0707 0.9859 0.0021 0.9428 1.9807 0.9945 5.3769 0.9780 0.3588 
F2 0.0643 0.9881 0.0022 0.9348 1.7921 0.9861 3.9965 0.9777 0.3843 
F3 0.0614 0.9866 0.0021 0.9498 1.7126 0.9886 4.5005 0.9739 0.3619 
F4 0.0727 0.9642 0.0023 0.8935 2.0614 0.9982 4.1796 0.9977 0.4024 
F5 0.0997 0.9379 0.0025 0.8345 2.8606 0.9922 3.9337 0.9950 0.4609 
F6 0.0744 0.9427 0.0026 0.8285 2.1292 0.9940 2.3934 0.9932 0.4895 
F7 0.1445 0.9775 0.0027 0.8961 4.0722 0.9985 4.7498 0.9985 0.4767 
F8 0.0510 0.9285 0.0020 0.8493 1.4654 0.9871 4.0217 0.9962 0.3671 
F9 0.0856 0.9746 0.0023 0.9089 2.4164 0.9993 4.8273 0.9972 0.4027 
F10 0.0857 0.9591 0.0020 0.8963 2.4347 0.9957 7.4583 0.9968 0.3489 
F11 0.1082 0.9744 0.0023 0.9089 3.0557 0.9989 5.5710 0.9958 0.4147 
Test 1 0.1552 0.9758 0.0031 0.8732 4.3715 0.9959 3.0129 0.9980 0.5535 
Test 2 0.1045 0.9641 0.0031 0.8563 2.9500 0.9891 1.8925 0.9944 0.5656 
Test 3 0.0776 0.9685 0.0029 0.8875 2.1940 0.9959 1.9670 0.9969 0.5144 
F optimal 0.1286 0.9892 0.0029 0.9516 3.5609 0.9749 3.5776 0.9544 0.4872 

ko-zero order rate constant, k1- first order rate constant, kh- Higuchi dissolution constant, kkp- Korsmeyer 

release rate constant, R2- coefficient of determination, n- drug release exponent, 
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3.3. Development of Artificial Neural Network Models 

(1) Neural network 1. In the process of creating the most appropriate neural network 1 it was 
found that increasing the number of layers decreased the coefficient of determination 
(Figure 5). One hidden layer is normally adequate to provide an accurate prediction and 
more than one hidden layer can be used for modeling complex problems [29]. Selected MLP 
had a minimum root mean square (RMS = 0.0296) and the highest coefficient of 
determination (R2 = 0.9994) for obtained vs. predicted values of cumulative drug release for 
two formulations. Hence, a network consisting of three input and five output units, with 
eight hidden units arranged in a single hidden layer was selected. MLP was tested with a 
set of test data. Three test formulations (Test 1, 2, 3) were prepared and examined in the 
same test conditions as formulations F1–F11. A correlation plot was constructed of the 
experimentally obtained responses and those predicted by MLP. The square coefficient R2 
was 0.9478 (Figure 6a).  

(2) Neural network 2. For the second version of the ANN, where exposure times were used as 
inputs as well as percentage of PEGDA, PEG 400, and water, correlation plots of predicted 
and obtained values of drug release for all formulations (training, validation, and test) 
showed that the MLP model had a regression plot with coefficient R= 0.99877, which 
indicated that the optimum MLP model was reached (Figure 6b). An optimal neural network 
with neural network 2 was achieved using five hidden layers with the number of units being 
5, 5, 6, 5, and 6 per layer. The data set consisted of training (90% of samples) and validation 
(10% of samples) subsets.  

Architecture of developed neural networks is presented in Figure 7. 

  
(a) (b) 

Figure 5. Coefficient of determination (R2) for neural network 1 with different numbers of hidden 
nodes and layers (a) for 3 and 4 layers (b) for 5 to 10 layers. 

  
(a) (b) 
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Figure 6. Predicted and experimental cumulative % of ibuprofen release (a) for the test dataset in 
neural network 1 and (b) for the whole dataset (training, validation, and test) in neural network 2. 

 
(a) 

 
(b) 

Figure 7. (a) Architecture of neural network 1 and (b) architecture of neural network 2. 

3.4. Optimization and Characterization of Optimal Formulation 

The optimal formulation according to the desirability function approach consisted of: PEGDA 
30%, PEG 400 52.89%, water 12.02%, riboflavin 0.10%, and ibuprofen 5.00%, and printing was done 
in the same way as test formulations with exposure time of 400 s, bottom exposure 800 s, layer 
thickness 0.1, and 10 bottom layers. Predicted drug release at time points of 2, 4, 6, and 8 h was 41.96%, 
63.34%, 70.00%, and 79.99% respectively. Fabricated optimal and appropriate placebo formulation 
was observed under a polarized light microscope and cross-sections are shown in Figure 8. On cross-
section of printlets, layers were clearly visible which demonstrated the printing process, but inside 
of layers in both placebo and optimal printlet undefined structures could be observed. The reasons 
for their appearance have not been clarified.  

  
(a) (b) 

Figure 8. (a) Cross-section of placebo tablet; (b) cross-section of optimal tablet 

DSC curves of placebo and optimal printlets are represented in Figure 9. The combination of a 
sharp peak near 0 °C and a broad peak below 0 °C was observed for the optimal printlet, suggesting 
co-existence of free and loosely bound water in this formulation. Loosely bound water is associated 
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with non-freezing water and interacts weakly with the ether oxygen, a hydrogen bonded complex 
between water molecules similar to that in bulk water [30]. The broad endotherm near 100 °C in both 
placebo and optimal formulations reflects water loss upon heating [9]. No melt endotherm 
characteristics for ibuprofen are seen, indicating that the drug dissolves in the polymer and/or the 
water. The solubility of the drug is increased with the presence of solvents like PEG 400, which 
decreases the polarity of the aqueous solution [9,31]. The exothermic peak near −40°C present in 
optimal printlets and non-present in placeboes indicates a glass transition temperature of ibuprofen 
and the presence of ibuprofen in the amorphous phase [32,33].  

 

  
  

Figure 9. Differential scanning calorimetry (DSC) curves of placebo and optimal printlet. 

A dissolution test was performed under the same conditions as the test formulations and results 
are represented in Table 6 and graphically in Figure 10. For the optimal ibuprofen DLP printlet, 
comparison of release profiles predicted by neural network 1 and neural network 2 and experimental 
results was done by calculation of f1 and f2. Obtained values for neural network 1 are f1 = 14.30 and f2 
= 52.15, and for neural network 2 are f1 = 22.34 and f2 = 44.91. 

Table 6. Predicted and experimental in vitro release values at time points of 2, 4, 6, and 8 h for optimal 
formulation of 3D DLP printlets. 

Time (h) Predicted Values (%) Neural Network 1 Predicted Values (%) 
Neural Network 2 

Experimental Values (%) 

2 41.96 45.37 29.85 
4 63.34 62.77 51.18 
6 70.00 76.66 65.73 
8 79.99 88.46 76.60 
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Figure 10. Experimental and predicted dissolution test profiles.  

Two different neural networks were developed to test possibilities of understanding the effect 
of excipients on ibuprofen release. After comparison of predicted and experimental values of in vitro 
dissolution at the corresponding time points for optimized formulation, the R2 experimental vs. 
predicted value was 0.9811 (neural network 1) and 0.9960 (neural network 2). These values are very 
close to 1.0, with neural network 2 having a slightly higher R2 value compared to neural network 1. 
In machine learning, the correlation coefficient and coefficient of determination are usually adopted 
as evaluation metrics for regression problems. However, the correlation coefficient and the coefficient 
of determination cannot properly evaluate the performance of the pharmaceutical formulation 
prediction models. Thus, specific criteria suitable for pharmaceutics should be introduced to evaluate 
the model performance [34]. In vitro dissolution profiles can be compared by a model-independent 
method which includes the difference factor (f1) and the similarity factor (f2) [35]. Obtained values of 
f1 and f2 for neural network 1 and 2 showed that neural network 1 gave a similar dissolution profile 
to obtained experimental results. In developing an optimal formulation, the importance of the first 
two goals was set with two pluses, and the importance of the next two goals (drug release at 6 and 8 
hours) was set with three pluses. From the profiles, it is visible that predicted values at 6 and 8 hours 
were closer to the real values. Neural network 2 was created with combination of formulation and 
process parameters. Generally, the main limitation regarding the neural networks is the small 
number of experiments available, as a higher number of experiments would increase the accuracy of 
the neural network and this will be done in future studies. ANN with possibilities to provide an 
understanding of the relationship of input–output variables and give better insights into the effects 
of excipients and process parameters on dissolution rate could help in optimization of formulating 
processes and printing printlets according to patient’s needs.  

There are a lot of printing process and formulation parameters and their effects on printlet 
characteristics are still unknown. Further research will be conducted with the aim to investigate the 
applicability of combination of ANN and DLP technologies for other drugs and to investigate the 
effect of formulation and process parameters on characteristics of printlets matrix created with 3D 
printing technology. 

5. Conclusions 

DLP technology, as a type of 3D printing technology, can be used for the production of extended-
release ibuprofen printlets with PEGDA, PEG 400, and water as the main ingredients, and riboflavin 
as a photo-initiator. It is necessary to adjust printing parameters for every formulation because of the 
effect of excipients on the success of printing. The relationship between excipients and drug release 
in tested formulations is complex and non-linear. Artificial neural networks with their ability to 
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generalize can be a useful tool for understanding the effects of excipients on printlets characteristics 
with the aim to print printlets with the desired drug release. No single software or modeling 
algorithm can solve “all” problems, but for better prediction and optimization, application of 
different softwares can be a helpful method. In this study it was demonstrated that adequate ANN is 
able to understand the input–output relationship in DLP printing of pharmaceutics.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: Table S1: Dataset for 
neural network 1 and Table S2: Dataset for neural network 2 
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