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Abstract: Nanotechnology is being increasingly utilised in medicine as diagnostics and for drug
delivery and targeting. The small size and high surface area of nanoparticles (NPs), desirable properties
that allow them to cross biological barriers, also offer potential for interaction with other cells and
blood constituents, presenting possible safety risks. While NPs investigated are predominantly based
on the biodegradable, biocompatible, and FDA approved poly-lactide-co-glycolide (PLGA) polymers,
pro-aggregatory and antiplatelet effects have been reported for certain NPs. The potential for toxicity
of PLGA based NPs remains to be examined. The aims of this study were to determine the impact of
size-selected PLGA-PEG (PLGA-polyethylene glycol) NPs on platelet activation and aggregation.
PLGA-PEG NPs of three average sizes of 112, 348, and 576 nm were formulated and their effect
at concentrations of 0.0–2.2 mg/mL on the activation and aggregation of washed human platelets
(WP) was examined. The results of this study show, for the first time, NPs of all sizes associated
with the surface of platelets, with >50% binding, leading to possible internalisation. The NP-platelet
interaction, however, did not lead to platelet aggregation nor inhibited aggregation of platelets
induced by thrombin. The outcome of this study is promising, suggesting that these NPs could be
potential carriers for targeted drug delivery to platelets.
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1. Introduction

Biocompatible and biodegradable nanoparticles (NPs) continue to be extensively investigated for
the diagnosis, prevention, and therapy of various diseases, for cellular and molecular imaging, and for
tissue engineering applications [1–5]. NPs have been reported to target various therapeutic agents to
the central nervous system (CNS), tumour sites, and the vascular compartment [6–10]. The small size
and high surface area of NPs are desirable properties that allow them to cross biological barriers, but
also offer potential for interaction and interference with other cells and blood constituents, presenting
possible safety risks. While the NPs investigated are predominantly based on the biodegradable,
biocompatible and FDA approved poly-lactide-co-glycolide (PLGA) polymers, irrespective of their
intended destination, NPs introduced into the bloodstream will interact with endothelial cells as well as
blood constituents. It is therefore important to understand the bio-distribution of such NPs in human
blood and their interaction with various blood components such as platelets [6,11,12]. Previous studies
report that grafting a polyethylene glycol (PEG) chain to a PLGA polymer backbone significantly
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increases the circulation half-life of the modified copolymer, as it remains camouflaged from the
macrophage [13,14]. The longer duration of exposure to blood components can result in enhanced
interaction potential with blood cells, and in particular with platelets, maximising the possibility of
modulating platelet, activation, secretion, and aggregation [15,16].

NP physicochemical characteristics, such as size and net charge (zeta potential (ZP)) that are
reported to be key factors enhancing their efficacy, can substantially affect their bio-distribution [17,18].
Variations in NP characteristics may result in a diverse range of platelet reactivity but unfortunately, only
a few studies regarding the interaction of NPs with washed platelets (WPs) have been published [18–20].
We previously reported that biodegradable micro and NPs of PLGA, PLGA-PEG, and chitosan,
of median diameter (D50%) of 2–9 µm and 100–500 nm, and with various surface morphology did not
induce or inhibit platelet aggregation at particle concentrations of 0.1–500 µg/mL [20]. In contrast, silica
NPs of 10 nm, 50 nm, and 150 nm, were shown to cause platelet hyper-aggregability, promoting the
risk of thrombus deposition, while particles of 500 nm did not pose such a risk [21]. Mixed carbon NPs,
carbon nanotubes, single-walled nanotubes, and multi-walled nanotubes were reported to stimulate
platelet aggregation by the upregulation of GPIIb/IIIa receptors on platelets, inducing subsequent
vascular thrombosis [19]. In a separate study, the contribution of silver NPs to the effective inhibition
of integrin-mediated WPs responses, such as aggregation, secretion, and adhesion to immobilized
fibrinogen or collagen, was established [22].

The pro-aggregatory effects of some NPs and the antiplatelet effects of others raise questions
regarding the safety of biodegradable nanomaterials in terms of interference with the haemostatic
equilibrium [20,23]. To date, the potential interactions of PLGA-PEG NPs with blood elements remains
scant. In particular, the effect of their size on blood constituents, as well as any potential hazard
they may pose, have not been studied. Platelet activation is a precisely regulated event, critical for
maintaining normal blood flow. When designing drug-loaded NPs intended to be delivered to the
systemic circulation, a major consideration is to maintain platelets in an inactive state [22].

The aims of this study were to determine the impact of size-selected PLGA-PEG NPs on platelet
activation and aggregation. Coumarin-6-labelled PLGA-PEG NPs of three average sizes of 112, 348,
and 576 nm were formulated using the solvent dispersion technique [20]. The effect of NP size and NP
concentration of 0.01–2.2 mg/mL on the activation and aggregation profiles of washed platelets (WP)
were examined using platelet aggregation assays and flow cytometry. Confocal imaging was carried
out on NPs incubated with WP to characterise the interaction of NPs with platelets in the resting and
activated states.

2. Materials and Methods

2.1. Materials

Albumin, from human serum, Coumarin-6 (98%), Polysorbate 80 (Tween® 80), Dextrose, Sodium
Chloride (NaCl), Sodium bicarbonate (NaHCO3), Potassium Chloride (KCl), Sodium Citrate (Tribasic,
10 dehydrate (HOC(COONa)(CH2COONa)2, KH2PO4 (monobasic potassium phosphate anhydrate
or potassium dihydrogen phosphate), Calcium Chloride (CaCl2), Magnesium Chloride hexahydrate
MgCl2·6H2O, and HEPES (N-2-Hydroxyethylpiperazine-N’-2-Ethanesulfonic Acid) were purchased
from Sigma-Aldrich Dublin, Ireland. PLGA-PEG containing PEG at 10% w/w (poly-d, l-lactic-co-glycolic
acid-polyethylene glycol diblock copolymer 50:50 mPEG; 33 kDa with inherent viscosity: 0.05–0.15 dL/g,
Lakeshore Biomaterials™, was purchased from Evonik Industries AG, Essen, Germany. Deionised
water was used throughout the experiments.
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2.2. Methods

2.2.1. Preparation and Characterisation of PLGA-PEG NPs

PLGA-PEG NPs containing a fluorescent marker, coumarin-6, were prepared using the solvent
dispersion method [24]. Briefly, PLGA-PEG polymer was dissolved in acetone to form 10, 55,
and 100 mg/mL solutions, and coumarin-6 at 0.05% w/w of the polymer was dissolved in the PLGA-PEG
solutions. The polymer solutions were added dropwise to an external aqueous phase containing
Tween 80® at 2% w/v, under constant stirring. The NPs formed were recovered by centrifugation at
11,000 rpm for 20 min (Rotina 35 R centrifuge, Hettich Zentrifugen, Tuttilingen, Germany). NPs were
washed with deionised water, centrifuged, and the pellet resuspended in deionised water and stored at
4 ◦C. The average particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the NPs were
determined by dynamic light scattering technique, using a Malvern Zetasizer Nano ZS 90 (Malvern
Instruments, Worcestershire, UK). After centrifugation, NPs were suspended in deionised water, placed
in disposable voltable zeta cells (DTS 1060) for analysis using DLS. Viscosity and refractive index of
the dispersants were taken into account. For each sample, the average of five measurements was
calculated. Results were expressed as an average of five measurements ± standard deviation.

The morphologies of NPs were examined under a MIRA3 variable pressure field emission scanning
electron microscope (Tescan, Brno-Kohoutovice, Czech Republic) at an accelerating voltage of 5.0 kV
and magnification of 30,000 to 50,000×. Samples of lyophilised NPs were applied onto aluminium
stubs using a double-sided conductive tape and were sputter-coated with gold.

2.2.2. Preparation of Washed Platelets

Venous whole blood was obtained from healthy human volunteers, free from aspirin and other
non-steroidal anti-inflammatory agents for the previous 7–10 days. Ethical approval was obtained
from the Research Ethics Committee, Royal College of Surgeons in Ireland. The blood obtained
was centrifuged at 180 g for 12 min, to separate the platelet-rich plasma (PRP) that was acidified to
pH 6.5 and the plasma pelleted by centrifugation at 720 g for 12 min. Washed platelets were then
adjusted to approximately 250 × 109 platelets per millilitre by resuspending the pellets in HEPES
(N-2-Hydroxyethylpiperazine-N’-2-Ethanesulfonic Acid) platelet buffer and leaving to stand for 30 min
before adding calcium chloride (CaCl2) at a final concentration of 1.8 mM.

2.2.3. Effect of Size and Concentration of NPs on Platelet Aggregation

Platelet aggregation was determined by measuring the change in the optical density of stirred
WPs in the absence or presence of 0–2.2 mg/mL PLGA-PEG NPs of different sizes, following the
addition of the platelet agonist, thrombin. Platelets were incubated with NPs for 4 min prior to the
addition of 0.1 U/mL thrombin. Platelet aggregation data was analysed using an eight channel platelet
aggregometer,-PAP-8 (Bio/Data Corporation, Horsham, PA, USA). Aggregation results were expressed
as final percent aggregation (% PA) at the end of the reaction time of 12 min. Data are presented as
mean of n = 4–6 ± SEM.

2.2.4. Effect of Size and Concentration of NPs on Platelet Activation

WPs (250 × 103/µL) were incubated with 20 µL phycoerythrin (PE)-labelled CD62P antibody and
mixed with PLGA-PEG NPs of different sizes, in the absence and presence of 0.1 U/mL thrombin
and incubated for 4 min at 37 ◦C. At predetermined time points, samples were fixed using 1% v/v
formaldehyde (FA) and platelet activation was measured by flow cytometry. Platelet activation was
determined by measuring the level and extent of CD62P antibody binding to the platelet surface,
expressed as percent positive cells (% PP) and mean fluorescence intensity (MFI). Platelets with and
without CD62P were used as negative controls and platelets activated with thrombin at 0.1 U/mL for
4 min was the positive control. Data are average of n > 3 ± SEM.
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2.2.5. Confocal Microscopy of the Effect of Incubation Time on The Interaction of PLGA-PEG NPs with
Washed Platelets

Coumarin-labelled NPs of 112, 348, and 576 nm, at 0.1 and 2.2 mg/mL, were incubated with
resting WPs in suspension for 1, 5, 15, and 30 min. At each time point, samples were fixed with 1%
formaldehyde, stained red with phalloidin-tetramethylrhodamine isothiocyanate (phalloidin-TRIT-C)
and examined using confocal laser scanning microscopy (CLSM), (Carl Zeiss, Jena, Germany). WPs
were also incubated with coumarin-labelled NPs of the three different sizes at 2.2 mg/mL for 1, 5,
and 30 min, and allowed to attach to fibrinogen-coated glass slides (20 µg/mL). At each time point,
samples were fixed with 1% formaldehyde, platelets stained red with phalloidin-TRITC, and examined
by CLSM.

2.2.6. Statistical Analysis

Statistical analysis was carried out using GraphPad Prism (version 7.00 for Windows; GraphPad
Software, San Diego, CA, USA). One-way ANOVA and unpaired student T tests and One-way ANOVA
followed by post hoc analysis using Dunnett’s Tests were used to determine differences between
samples and groups. A p value <0.05 was considered to be statistically significant.

3. Results

3.1. Characterisation of NPs Formulated

The size, PDI, and zeta potential of the NPs increased with increasing PLGA-PEG concentration
(Table 1, Figure 1A–C). A PDI value of 0.10 indicating a nearly monosized distribution was observed
for the smallest NPs of 112 nm, while larger PDI values of 0.54 and 0.70 were observed for the 348 and
576 nm NPs, respectively. A larger size distribution is expected for larger size NPs formulated using
high polymer concentration. In Figure 1A, the SEM shows the ~100 nm NPs with a distinct spherical
shapes and smooth surfaces, exhibiting a narrow range of sizes at different fields of view. In Figure 1B,
the NPs of ~350 nm display an interparticular bridging/fusion. In Figure 1C, the NPs of ~600 nm
average size maintain a spherical appearance similar to that for the NPs in Figure 1A. The SEMs did
not show any internal or external porosity at different magnifications. Calculations by Image J software
from SEM analysis showed an average size, which were lower than the sizes measured by DLS. SEM is
a tool primarily utilised to analyse particle morphology. The obtained PS determined by microscopy
techniques is usually considered the lower limits of PS [25].

Table 1. Physicochemical characteristics of nanoparticles (NPs) used in platelet aggregation studies.
n = 5 batches ± SD. PLGA = poly-lactide-co-glycolide; PEG = poly ethylene glycol.

PLGA-PEG
(mg/mL) PS (nm) PDI ZP (mV)

10 111.55 ± 5.81 0.10 ± 0.02 −22.20 ± 5.71
55 348.00 ± 23.61 0.54 ± 0.04 −12.40 ± 6.30
100 576.19 ± 6.82 0.70 ± 0.06 −9.50 ± 14.56

PLGA: poly-lactide-co-glycolide; PEG: polyethylene glycol; PS: Particle size; PDI: Polydispersity Index, ZP:
Zeta Potential.
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Figure 1. Scanning Electron Microscope Images of PLGA-PEG NPs of average size of (A) 112nm, (B) 
348 nm, and (C) 576nm. Each SEM image is representative of all images taken. 

The 112 nm NPs had a net negative charge of −22.20 ± 5.71 mV indicating good colloidal 
stability, whereas the two larger NPs displayed moderately stable colloidal suspensions, with 
surface charges from −12.40 ± 5.47 to −9.50 ± 14.56 mV. The ZP values of the larger NPs decreased to 
within the range of −16 to −23 mV on dilution to the concentrations used in the study. The stability of 
the NPs generated was examined over a 28-day time period to ensure stability over the time period 
of use. It was noted that storage-induced instability was minimal, particularly in the batches formed 
of NPs of small and mid-level particle diameters (~100 nm and ~350 nm), with no significant changes 
in particle properties. Particle PS and PDI properties were retained over this period of 28 days and 
for the largest size NPs over at least 14 days, revealing a reasonable stability profile for the NPs. This 
approach in examining the stability of NPs over time is supported by recent studies by Fornaguera 
and Solans [26]. 

3.2. Effect of Size and Concentration of NPs on Platelet Aggregation 

Figure 1. Scanning Electron Microscope Images of PLGA-PEG NPs of average size of (A) 112nm,
(B) 348 nm, and (C) 576 nm. Each SEM image is representative of all images taken.
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The 112 nm NPs had a net negative charge of −22.20 ± 5.71 mV indicating good colloidal stability,
whereas the two larger NPs displayed moderately stable colloidal suspensions, with surface charges
from −12.40 ± 5.47 to −9.50 ± 14.56 mV. The ZP values of the larger NPs decreased to within the range
of −16 to −23 mV on dilution to the concentrations used in the study. The stability of the NPs generated
was examined over a 28-day time period to ensure stability over the time period of use. It was noted
that storage-induced instability was minimal, particularly in the batches formed of NPs of small and
mid-level particle diameters (~100 nm and ~350 nm), with no significant changes in particle properties.
Particle PS and PDI properties were retained over this period of 28 days and for the largest size NPs
over at least 14 days, revealing a reasonable stability profile for the NPs. This approach in examining
the stability of NPs over time is supported by recent studies by Fornaguera and Solans [26].

3.2. Effect of Size and Concentration of NPs on Platelet Aggregation

Incubation of NPs with platelets for 4 min in absence of the agonist, thrombin, showed that,
irrespective of the size and concentration of NPs (0.05–2.2 mg/mL), spontaneous platelet aggregation
was not detected (0 ± 0 % PA, p > 0.05, n = 3–6). The addition of 0.1 U/mL thrombin, at 4 min in
absence of NPs, resulted in a % PA of 72.25–74.75 (Table 2). In presence of 112 nm NPs, no significant
difference in % PA was observed after 12 min incubation at all NP concentrations tested (Table 2).
Similarly, larger NPs of 348 and 576 nm showed no significant effect on the % PA over the 12 min
incubation at the lower NP concentrations of 0.01–1.0 mg/mL and 0.01–1.5 mg/mL for the 348 and
576 nm NPs, respectively (Table 2). At the higher NP concentrations of 1.5 and 2.2 mg/mL, the % PA
was significantly lower at 28.40 ± 3.47 and 27 ± 3.10, respectively, when incubated with 348 nm NPs
(p value < 0.001). Similarly, at the highest concentration of 2.2 mg/mL, NPs of 576 nm resulted in a
significantly reduced % PA of 49.00 ± 5.18 (p < 0.05) (Table 2).

Table 2. Effect of size and concentration of PLGA-PEG NPs on percent platelet aggregation (% PA).
Data are the average of n = 4–6 experiments ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with
0.1 U/mL thrombin (control), one-way ANOVA, and unpaired student t-test, at each time point.

PLGA-PEG NPs
(mg/mL) % PA (112 nm) % PA (348 nm) % PA (576 nm)

0 (Control) 72.75 ± 1.89 74.75 ± 1.93 72.25 ± 0.62

0.05 72.00 ± 0.91 73.50 ± 1.88 75.00 ± 4.63

0.1 73.00 ± 1.23 76.20 ± 2.99 69.75 ± 8.22

0.25 69.00 ± 1.68 66.00 ± 5.11 74.00 ± 4.89

0.5 73.50 ± 0.96 70.25 ± 4.13 68.00 ± 4.97

1 72.75 ± 0.85 62.50 ± 3.59 71.25 ± 5.27

1.5 72.25 ± 1.55 28.40 ± 3.47*** 68.75 ± 2.10

2.2 71.00 ± 1.80 27.00 ± 3.10*** 49.00 ± 5.18*

Examination of the platelet aggregation time profile showed no delay in platelet aggregation for
the smallest NPs of 112 nm at any of the concentrations tested (Figure 2A). However, the reduced % PA
observed at the higher NP concentrations of 348 and 576 nm NPs was associated with a significant
delay in platelet aggregation at the earlier time points following addition of thrombin to the sample.
Platelet aggregation proceeded significantly more slowly for the 348 and 576 nm NPs at the higher NP
concentrations of 1.5 and 2.2 mg/mL (Figure 2B,C), respectively.



Pharmaceutics 2019, 11, 514 7 of 14

Figure 2. Effect of PLGA-PEG NPs of (A) 112 nm, (B) 348 nm, and (C) 576 nm at 0.05, 1.5, and 2.2 mg/mL
on platelet aggregation profile for 4 min following the addition of thrombin. Data are the average of
n = 4–6 experiments ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with 0.1 U/mL thrombin
(control), one-way ANOVA, and unpaired student t-test, at each time point.

3.3. Effect of Size of NPs on Platelet Activation Profile

The percent positive platelets (% PP) and mean fluorescence intensity (MFI) associated with
resting WPs in the absence of NPs were not significantly different when incubated with or without
CD62P antibody (Figure 3A,B). On addition of the agonist, thrombin, the % PP and MFI significantly
increased as expected, indicating activation of platelets with secretion of CD62P, which binds to the
CD62P antibody (p < 0.0001 for % PP; p < 0.05 for MFI) (Figure 3A,B).
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Figure 3. Effect of size of PLGA-PEG NPs at 2.2 mg/mL on platelet activation measured by flow
cytometry (A) % positive platelets (% PP) (B) Mean fluorescence Intensity (MFI). Data are the average
of n = 3–5 experiments ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with washed platelets
(WPs) + Ab (control), one-way ANOVA followed by post hoc Dunnett’s test.

In the presence of PLGA-PEG NPs, a significant increase in % PP for the smallest sized NPs of
112 nm was observed over the 30 min incubation period. However, for the larger NPs of 348 and
576 nm, a significant increase in % PP was only observed at the incubation time of 30 min, (p < 0.05,
n = 3), (Figure 3A). No significant difference in MFI values for platelets incubated with the NPs was
observed over the 30 min except for the 348 nm NPs at 30 min incubation (Figure 3B).

3.4. Effect of size of NPs on Thrombin Activation of Washed Platelets

In absence of NPs, an increase in the percentage of CD6P-positive platelets (% PP) and in CD62P
binding level (MFI) were observed following the exposure of WPs to thrombin, as expected, confirming
activation of WPs in response to the agonist. The presence of NPs at any of the sizes tested did not result
in a significant change in the % PP or MFI following exposure of the WPs with thrombin. (Figure 4A,B).
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Figure 4. Effect of size of PLGA-PEG NPs at 2.2 mg/mL on thrombin activation of washed platelets
measured by flow cytometry (A) % positive platelets (% PP) (B) Mean fluorescence Intensity (MFI).
Data are the average of n = 3–5 experiments ± SEM. * p < 0.05, compared with WPs + Ab (control),
one-way ANOVA followed by post hoc Dunnett’s test.

3.5. Confocal Microscopy of the Effect of Incubation Time on the Interaction of NPs and Washed Platelets

A rapid interaction of NPs and WPs, within the first minute, was observed at all NP sizes tested
and at both the low (0.01 mg/L) and high (2.2 mg/mL) concentrations of NPs (Figure 5). The percent
of platelets bound to NPs of 112 nm was in the order of 44 ± 5.7% and 53.7 ± 7.1% at t = 1 min for
low and high concentrations, respectively. Increasing the incubation time or concentration of NPs
at any of the sizes tested, did not result in significant change in the percent of NPs-bound platelets.
The observed interaction between resting platelets and PLGA-PEG NPs of the three sizes tested did
not lead to any apparent morphological alteration of the shape of the platelets or development of



Pharmaceutics 2019, 11, 514 10 of 14

pseudopods, indicating no effect on platelet activation. This observation was relevant to both low and
high concentrations of NPs tested.

Figure 5. Confocal microscopy images of WPs (red) in suspension incubated with coumarin-PLGA-PEG
NPs at 2.2 mg/mL) (A) 1 min, (B) 5 min, (C) 15 min, and (D) 30 min, at RT; Magnification 100×. Scale
bar represents 10 µm.

Confocal microscopy of platelets layered onto fibrinogen at 20 µg/mL showed the typically formed
filopodial projections and heterogeneity expected for adhered platelets. In the presence of NPs, of all
of the three sizes and over the incubation times tested, similar attachment of platelets to fibrinogen
with alteration in the shape of the platelets and development of extended filopodia projections were
observed. The majority of NPs, at all sizes tested, were observed to be bound to platelets (Figure 6).
This association of NPs to platelets was of the order of 53.7 ± 1.5% to 59 ± 14.1%, respectively, for 1
and 30 min incubation for 112 nm NPs, at 51 ± 6.1%, and 43 ± 11.3% for 1 and 30 min incubation
times, respectively, for the 348 nm NPs. For the 576 nm NP, NP binding was 35.3 ± 5.7% at 1 min and
increased to 52.7 ± 2.1% after 30 min incubation. The NP interaction with platelets was maintained
upon activation through to adhesion (Figure 6).

Figure 6. Confocal microscopy images of WPs (red) incubated with coumarin-PLGA-PEG NPs at
2.2 mg/mL and adhered to fibrinogen coated slides: (A) 1 min, (B) 5 min, and (C) 30 min. Magnification
100×. Scale bar represents 10 µm.



Pharmaceutics 2019, 11, 514 11 of 14

4. Discussion

The average NP sizes formulated were 112, 348, and 576 nm and were significantly different
(p < 0.05). This ensured a reasonable comparison of the effects of size of NPs on how platelets may
respond when in the presence of NPs with varying sizes. Addition of thrombin at 0.1 U/mL to washed
human platelets produced a platelet aggregation of 72–74, which is similar to the percent platelet
aggregation of 74 ± 7.8 reported [27]. Incubation of PLGA-PEG NPs, of any size or concentration
tested, with WPs for 4 min did not cause any platelet aggregation. This is similar to the results reported
for 50 µM silver NPs incubated with WPs for 2 min at 37 ◦C [22]. In the current study, the 112 nm
NPs did not influence the thrombin-induced platelet aggregation profile. Similarly, the larger NPs
showed no significant effect on the thrombin-induced platelet aggregation profiles at the lower NP
concentrations of 0.01–1.0 mg/mL and 0.01–1.5 mg/mL for the 348 and 576 nm NPs, respectively.
Interestingly, a tendency of inhibiting or slowing platelet aggregation was observed for the 348 nm
and 576 nm PLGA-PEG NPs at their highest concentrations. This may be related to the presence of
NPs in the medium, acting as a physical barrier preventing platelet-platelet contact, hence delaying
and reducing platelet activation and aggregation. As the NPs have a negatively charged surface,
they may interact with the positively charged thrombin, lowering the free thrombin concentration in
the suspension medium, hence reducing the exposure of platelets to thrombin. The surface charge,
rather than size, was reported to be the key factor governing this subcategory of NPs’ interaction with
platelets [28]. Physiological or non-physiological agents can initiate various signalling pathways in
platelets. Platelet activation can also be induced by biomaterials interacting with the specific intrinsic
coagulation pathway, which leads to thrombin generation and ultimately platelet activation. However,
such mechanisms still remain unexplored [29].

The influence of size-selected NPs on the expression of CD62P on the surface of platelets was
analysed by flow cytometry. CD62P is a 140 kD glycoprotein stored in the secretory α-granules of the
platelets, mediating leukocyte rolling and platelet–leukocyte aggregation.

The percentage of positive platelets (% PP) for the antibody marker reflects the proportion of
activated cells in the total platelet population; this was used to quantify platelet activation in the
presence of the NPs. The incubation of the smallest NPs (~113 nm) with WPs resulted in a significant
increase in platelet activation, almost similar to the activation observed for thrombin-induced platelet
activation. Interestingly, no significant effect on platelet activation was observed in the presence of the
larger NPs of 348 nm and the 576 nm. Smaller sized NPs have a higher surface area per unit mass,
which result in enhanced interaction potential with platelets. Silica NPs at the smallest PS of 10 nm,
at a concentration of 200 µg/mL, were reported to increase CD62P abundance on the platelet surface,
while 50 nm-sized NPs did not show any influence [21]. Similarly, of the 10, 50, 113, and 150 nm-sized
NPs of silica exposed to platelets, the smallest NPs (10 nm) induced the upregulation of CD62P when
used at a low concentration of 10 µg/mL [15,21]. The tendency of 26 nm carboxylated-polystyrene
NPs to activate platelets was reported, while particles of larger sizes showed no influence on platelet
activation [30].

The presence of NPs of any of the three sizes tested did not influence the % PP or the CD62P
abundance on the surface of thrombin-activated platelets. This suggests the investigated NPs did not
limit the access of the PE-labelled marker to the WPs surface, irrespective of their sizes.

CLSM performed in this study showed a rapid physical interaction of NPs, of all three sizes
examined, with platelets in resting state. This interaction appeared to progress to possible NP uptake
by platelets over time. This NP-platelet interaction, however, did not lead to platelet aggregation
nor inhibit aggregation of platelets induced by the agonist, thrombin. In contrast, a previous study
regarding latex microspheres interaction with platelets suggested platelet activation to be a prerequisite
in order to interact with and internalise those inert microparticles (MPs) [31].

The interaction and binding of the investigated NPs to the surface of platelets as well as possible
internalisation of NPs into platelets is interesting. In view of their unique small sizes and their curvature,
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NPs have been shown to enter various human cells and organs, a desirable characteristic for drug
targeting [9,24,32].

In the present study, in the presence of PLGA-PEG NPs, variable morphologies of platelets from
dendritic spread to the fully spread shape were displayed when platelets were layered onto fibrinogen.
This indicates that the NPs did not affect platelet adhesion to fibrinogen. Similarly, silver NPs at
different concentrations were reported to have no impact on platelet spreading on fibrinogen [22].

5. Conclusions

The results of this study show that while the smallest NPs demonstrated a tendency to result
in platelet activation and the larger NPs, at the highest concentrations, to delay platelet aggregation,
the three sizes of PLGA-PEG NPs examined had little or no effect on platelet aggregation. The NPs
did not interfere with the activation status of platelets and did not inhibit platelet aggregation by
the agonist thrombin. Importantly, the rapid binding of the studied PLGA-PEG NPs to platelets
is promising, suggesting that these NPs could be potential carriers for targeted drug delivery to
platelets in certain disease states. The data presented here supports the use of such NPs as targeting
carriers of anti-platelet agents or thrombolytics. It is clear from this study that the question of whether
these NPs would be consumed by resting and/or activated platelets remains unanswered. Future
strategies may include a more sensitive analysis of the potential for these NPs, pre-loaded with
therapeutic drug-candidates, to be internalised by platelets. A number of imaging modalities may
be considered such as z stacking, the use of transmission electron microscopy (TEM), or using a
combination of high resolution confocal microscopy with flow cytometric analysis that has the potential
to provide a precise evaluation of whether NPs are internalised or adsorbed onto the platelets surface,
as described by Vranic et al. [33]. With respect to the effects of the interactions of PLGA-PEG NPs at
the studied sizes on normal platelet functions, the use of a more sensitive platelet aggregation assay,
such as flow-induced platelet aggregation in the presence of PLGA-PEG NPs, should be considered
in future studies. An example would include a flow-mimicking technique such as quartz crystal
microbalance with dissipation (QCM-D), which operates under similar flow conditions encountered in
microvasculature [34]. Further understanding of the interaction between platelets and NPs is required
to aid in the development of a safe platelet-targeted drug delivery system in the future.
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