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Abstract: Cell-penetrating peptides (CPPs) have great potential to efficiently deliver drug cargos
across cell membranes without cytotoxicity. Cationic arginine and hydrophobic tryptophan have been
reported to be key component amino acids for cellular internalization of CPPs. We recently found
that L-arginine could increase the oral delivery of insulin in its single amino acid form. Therefore,
in the present study, we evaluated the ability of another key amino acid, tryptophan, to enhance
the intestinal absorption of biopharmaceuticals. We demonstrated that co-administration with
L-tryptophan significantly facilitated the oral and intestinal absorption of the peptide drug insulin
administered to rats. Furthermore, L-tryptophan exhibited the ability to greatly enhance the intestinal
absorption of other peptide drugs such as glucagon-like peptide-1 (GLP-1), its analog Exendin-4 and
macromolecular hydrophilic dextrans with molecular weights ranging from 4000 to 70,000 g/mol.
However, no intermolecular interaction between insulin and L-tryptophan was observed and no
toxic alterations to epithelial cellular integrity—such as changes to cell membranes, cell viability,
or paracellular tight junctions—were found. This suggests that yet to be discovered inherent
biological mechanisms are involved in the stimulation of insulin absorption by co-administration
with L-tryptophan. These results are the first to demonstrate the significant potential of using the
single amino acid L-tryptophan as an effective and versatile bioavailability enhancer for the oral
delivery of biopharmaceuticals.

Keywords: tryptophan; oral delivery; insulin; GLP-1; intestinal absorption; amino acid;
cell-penetrating peptide

1. Introduction

During the past few decades, cell-penetrating peptides (CPPs) have been established as potential
tools for delivering bioactive macromolecules and lipidic or polymeric particulate carriers into
cells via mainly covalent conjugation [1,2]. Conversely, our recent studies demonstrate that
CPPs can dramatically accelerate the intestinal and nasal absorption of therapeutic peptides and
proteins including insulin and the GLP-1 receptor agonist, Exendin-4, by the means of noncovalent
co-administration [3–5]. In particular, we found that artificial cationic peptides such as octaarginine (R8)
and the amphipathic sequence derived from antennapedia homeoprotein—penetratin—are CPPs that
have shown the greatest potential to act as bioavailability enhancers for facilitating mucosal absorption
of poorly absorbable peptides and proteins [3,6]. Several reports suggested that CPPs may enter into
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cells by multiple internalization mechanisms including endocytosis, mainly macropinocytosis and
energy-independent direct translocation into the cytoplasm compartment [7–10].

Alternatively, in an earlier study examining the effects of arginine peptides with different chain
lengths (4–16 residues), Futaki and coworkers found that the cationic amino acid arginine is a key
common amino acid in arginine-rich CPPs, including the human immunodeficiency virus (HIV)-1
Tat peptide and identified an optimal arginine chain length that maximized cellular internalization
efficiency [11]. We also examined the relationship between chain length of arginine peptides and
their ability to enhance the intestinal absorption of insulin and confirmed that the effect of R8 was
stronger than that of shorter or longer peptides [12]. Apart from the discussion regarding the effects
of peptides with different numbers of amino acids, we recently found that the L-form of the amino
acid arginine (L-arginine) could strongly enhance the intestinal absorption of insulin in its single
amino acid form, although its effectiveness was relatively less than peptide forms of arginine [13].
Other studies suggest that when hydrophobic moieties such as stearyl groups or hydrophobic amino
acids such as tryptophan are found within the peptide structure they synergistically enhance the
potential of the original arginine-rich peptides [14–17]. R8 modified with a stearyl group and penetratin
containing tryptophan residues are typical examples of CPPs with both cationic and amphipathic
properties [18–20]. In fact, we demonstrated the stronger effect of penetratin over R8 on the intestinal
and nasal absorption of various peptide and protein drugs [3,6,21,22]. These findings have shown
the importance of the hydrophobic amino acid tryptophan for boosting the action of arginine-rich
peptides in the facilitation of the intestinal absorption of insulin. It was expected that single amino
acid tryptophan would affect the modulation of intestinal absorption of insulin similar to L-arginine.
However, little is known about the ability of tryptophan to enhance the absorption of insulin.

Therefore, in the present study, we examined the effects of single amino acid tryptophan on
the intestinal absorption of insulin and compared its effectiveness to other useful and conventional
absorption enhancers including CPP (penetratin), tight junction-modulator (sodium caprate, C10) [23–25]
and lipid membrane-disrupting bile acid (sodium taurodeoxycholate) [26,27]. Among the diversity
of biopharmaceuticals currently available, the majority include peptides and proteins that must be
administered as injectable forms [28]. Therefore, we further evaluated the applicability of tryptophan
to enhance intestinal absorption of other biopharmaceuticals including peptide drugs (GLP-1 and
Exendin-4) and different sizes of model hydrophilic macromolecules (dextrans, FD-4, FD-20 and
FD-70; with molecular weights of 4000, 20,000 and 70,000 g/mol, respectively). Regarding the safe
use of tryptophan as a potential absorption enhancer, we evaluated the irreversibility of action and
possible cytotoxic effects on the intestinal mucosa. Furthermore, to better understand the mechanism
of action, the structural isomeric difference and its specificity among hydrophobic amino acids on the
ability of tryptophan and the possibility of intermolecular interaction between insulin and tryptophan
in absorption enhancement were examined. As the possible transepithelial pathway utilized by
tryptophan, the involvement of paracellular transport via tight junction opening effect of tryptophan
itself or its major metabolite serotonin was examined. In addition, the ability of tryptophan to protect
the peptide drugs from intestinal enzymatic degradation was tested.

2. Materials and Methods

2.1. Materials

Recombinant human insulin (27.5 IU/mg) and amino acids (L-tryptophan, D-tryptophan,
L-phenylalanine, L-isoleucine and L-proline) were purchased from Wako Pure Chemical Industries, Ltd.
(Osaka, Japan). Exendin-4 was synthesized by Sigma Genosys, Life Science Division of Sigma-Aldrich
Japan Co. (Hokkaido, Japan). L-Penetratin (RQIKIWFQNRRMKWKK; capital letters indicate the
L-form of amino acids) and GLP-1 were synthesized by Toray Research Center, Inc. (Tokyo, Japan).
D-R8 (rrrrrrrr; lowercase letters indicate the D-form of amino acids) was synthesized by Scrum Inc.
(Tokyo, Japan). Fluorescein isothiocyanate-labeled dextran with average molecular weights 4400,
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20,000 and 70,000 g/mol (FD-4, FD-20 and FD-70, respectively), sodium taurodeoxycholate and Triton
X-100 were purchased from Sigma-Aldrich Co. (Darmstadt, Germany). C10 was purchased from
Tokyo Chemical Industry, Co. Ltd. (Tokyo, Japan). Methylcellurose (MC, METOLOSE) was purchased
from Shin-Etsu Chemical Co., Ltd. (Tokyo, Japan). Human colon adenocarcinoma-derived Caco-2 cell
line was purchased form the American Type Culture Collection (Rockville, MD, USA) at passage 18.
Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose, nonessential amino acids (NEAA),
antibiotic mixture (10,000 U/mL penicillin, 10,000 µg/mL streptomycin and 29.2 mg/mL L-glutamine
in 10 mM citric acid-buffered saline), 0.05% trypsin-ethylenediaminetetraacetic acid (EDTA) and Hanks’
balanced salt solution (HBSS) were purchased from Gibco Laboratories (Lenexa, KS, USA). Fetal bovine
serum (FBS) was purchased from Biowest (Nuaillé, France). Carboxymethyl dextran (CM5)-coated
sensor chips were purchased from GE Healthcare (Little Chalfont, Buckinghamshire, UK). All other
chemicals were of analytical grade and are commercially available.

2.2. Preparation of Mixed Solutions of Peptide Drugs and Amino Acids or CPPs

To prepare the insulin solution, specific amounts of recombinant human insulin were dissolved
in 100 µL of 0.1 M HCl. The insulin solution was diluted with 0.8 mL of phosphate buffered saline
(PBS, pH 7.4) (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4 and 1.47 KH2PO4 without calcium and
magnesium) containing 0.001% MC, which prevents the adsorption of insulin and penetratin to the
tube surface and was then normalized with 100 µL of 0.1 M NaOH. The final insulin concentration
of the stock solution was 40 IU/mL. Stock solutions of other peptide drugs (GLP-1 and Exendin-4)
and macromolecular compounds (FD-4, FD-20 and FD-70) were created by dissolving in PBS (pH 7.4)
containing 0.001% MC (1.0 mg/mL and 8.0 mg/mL, respectively). Two times concentrations of amino
acids (L-arginine, L- or D-tryptophan, L-phenylalanine, L-isoleucine and L-proline) were prepared using
PBS (pH 7.4) containing 0.001% MC. To aid in the dissolution of high concentrations of hydrophobic
amino acids such as L- or D-tryptophan and L-phenylalanine, the solutions were immersed in a water
bath at 60 ◦C resulting in a clear solution. To create the solution used for the intestinal absorption
study, two times concentrations of peptide drugs or macromolecular compounds and amino acid stock
solutions were mixed together in equal volumes.

In the comparison study, specific amounts of L-penetratin, D-R8, C10, or sodium
taurodeoxycholate were dissolved in PBS (pH 6.0 or 7.4) containing 0.001% MC at appropriate
concentrations. For the in vitro study with Caco-2 cells, HBSS (LDH assay and transepithelial electrical
resistance [TEER] measurement) or completed DMEM (WST-8 assay) were used instead of PBS to
produce the test solution.

2.3. Animal Study

Animal experiments were performed at Kobe Gakuin University and complied with the
regulations of the Committee on Ethics in the Care and Use of Laboratory Animals (approved as
A16-15 and A17-4). Male Sprague Dawley rats weighing 180–220 g and male ddY mice weighing
30–40 g were purchased from Japan SLC, Inc. (Shizuoka, Japan), housed in temperature controlled
rooms (23 ± 1 ◦C) with a relative humidity of 55 ± 5% and had free access to water and food during
acclimatization. Animals were fasted for 18 h (rats) and 24 h (mice) before the experiments; however,
they were allowed to drink water ad libitum.

2.4. In Situ Closed Ileum Loop Administration Study

Following anesthetization by intraperitoneal (i.p.) injection of sodium pentobarbital (50 mg/kg,
Somnopentyl®, Kyoritsu Seiyaku Corp., Tokyo, Japan), which has been conventionally used in our
insulin delivery study as confirmed to have a minimal effect on the blood glucose levels, rats were
restrained in a supine position on a thermostatically controlled board at 37 ◦C. Additional i.p. injections
of sodium pentobarbital (12.5 mg/kg) were administered every 1 h to maintain anesthesia. The ileum
was exposed following a small midline incision made carefully in the abdomen. Its proximal to
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ileocecal junction segments (length = 10 cm) were cannulated at both ends using polypropylene
tubing and ligated securely to prevent fluid loss. To wash out the intestinal contents, PBS warmed
to 37 ◦C was circulated through the cannula at 5.0 mL/min for 4 min using an infusion pump.
The cannulation tubing was removed, the segments were closed tightly and returned carefully to their
original location inside the peritoneal cavity. Rats were kept on the board at 37 ◦C for an additional
30 min to calm biological reactions such as elevated blood glucose levels resulting from the stress
imposed by surgery. After 30 min rest period, 0.5 mL of test insulin or other drug solution with or
without amino acids and/or L-penetratin was administered directly into a 6 cm ileal loop created from
the 10 cm pretreated segment. The insulin dose was administered at 50 IU/kg body weight (20 IU/mL)
for all animal experiments. To examine dose dependency, the final concentrations of tryptophan were
adjusted to 4, 8, 16 and 32 mM. In the comparison study with three hydrophobic amino acids or
metabolite of L-tryptophan, the final concentrations of L-isoleucine, L-proline, L-phenylalanine and
serotonin were 32 mM. In the study examining the synergistic effect of L-arginine and L-tryptophan,
the final concentration of L-arginine was fixed at 40 mM. The doses of GLP-1 and Exendin-4 were both
1.25 mg/kg (0.5 mg/mL) and the doses of FDs were all 10 mg/kg (4 mg/mL). In the study examining
the effect of pretreatment with L-tryptophan, D-R8, L-penetratin and other positive controls, ileal loop
was exposed to these solutions during 30 min rest period after surgery and before the administration
of insulin solution. For a part of above experiments involving pretreatment with L-tryptophan, C10
and sodium taurodeoxycholate for 30 min, an additional rest period of 30 min was added before the
administration of insulin.

During the experiment, 0.25 mL blood aliquots were taken from the jugular vein at 0, 5, 10, 15, 30,
60, 120 and 180 min after dosing. The tuberculin syringes (1 mL, Terumo Corp., Tokyo, Japan) were
heparinized by the standard procedure of coating the syringe wall with aspirated heparin and then
expelling all the heparin. Plasma was separated by centrifugation at 13,400× g for 1 min and stored at
−80 ◦C until analysis. The plasma concentrations of insulin, GLP-1 and Exendin-4 were determined
using a human insulin ELISA kit (Mercodia AB, Uppsala, Sweden), GLP-1 ELISA kit (Wako Pure
Chemical Industries, Ltd.) and Exendin-4 EIA kit (Phoenix Pharmaceuticals, Inc., Burlingame, CA,
USA), respectively. The plasma concentrations of FDs were measured with a microplate fluorimeter
(Synergy HT, BioTek Instruments Inc., Winooski, VT, USA) at excitation and emission wavelengths
of 485 and 528 nm, respectively. The total area under the drug concentration time curve (AUC) from
0–3 h was estimated using the sum of successive trapezoids fitted between each set of data points in
the time profiles of the plasma drug concentration.

2.5. Pharmacokinetic Analysis

The bioavailability of intestinal administered insulin was calculated relative to the subcutaneous
(s.c.) route. Briefly, an insulin solution was prepared by dissolving an appropriate amount of insulin in
PBS for s.c. injection (1 IU/kg). The peak plasma concentration (Cmax) and time to reach Cmax (Tmax)
were determined directly from the plasma insulin concentration–time curves. The total area under the
insulin concentration–time curve (AUC) for 0–3 h was estimated from the sum of successive trapezoids
between each data point. The relative bioavailability (BA) of insulin was calculated relative to the s.c.
injection as follows:

BA (%) = ([AUC]/dose)/([AUC]s.c./doses.c.) × 100

2.6. In Vivo Oral Administration Study

After 24 h fasting, mice were dosed with insulin (50 IU/kg) with or without L-tryptophan (32 mM)
(100 µL) by using oral gavage tube (i.d. 0.9 × length 50 mm) (Natsume Seisakusho Co., Ltd., Tokyo,
Japan). Blood glucose levels were measured (One Touch Ultra View, Johnson & Johnson K.K., Tokyo,
Japan) by collection of blood (one drop) from a small cut in the tail vein at t = 0 (prior to dosing), 15, 30,
60, 120, 180, 240, 300 and 360 min after administration. Blood glucose levels are depicted as percentage
of the initial value in same mouse. Mice were trained with oral dosing and tail cutting at 24 h and
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60 min prior to actual drug administration to avoid the unexpected elevation of blood glucose levels
during experiments.

2.7. Insulin Degradation in Intestinal Enzymatic Fluid

Intestinal fluid was collected from male Sprague-Dawley rats by inserting a Sonde needle into
the upper portion of the small intestine and the intestine was then cannulated on the lower side
(length = 20 cm) to remove the intestinal fluid. The contents of the small intestine were washed
out with 30 mL of PBS. Because intestinal fluid contains a high lipid content, the efflux solution
was treated with equal volume of methylene chloride to remove any lipids that might interfere
with the analysis of insulin by HPLC. This removal of lipid contents was repeated five times. L- or
D-tryptophan (8–32 mM as final concentration) was mixed with insulin (10 IU/mL final concentration)
and incubated in the intestinal fluid at 37 ◦C. At 5, 15, 30, 45 and 60 min, 50 µL was collected and
added to 50 µL of ice-cold mobile phase solution to terminate the reaction. L- or D-penetratin (0.25 mM
as final concentration) and STI (1.25 mg/mL final concentration) were used as a CPP and positive
conventional inhibitor, respectively. Insulin concentration was measured by HPLC (LaChrom Elite
System, Hitachi High-Technologies Corporation, Tokyo, Japan) using the following conditions: mobile
phase, acetonitrile, trifluoroacetic acid (0.1%) and sodium chloride (31:69:0.58, v/v/w); 20 µL injection
volume; 1.0 mL/min flow rate; 220 nm wave length; analytical column (4.6 × 150 mm; 5 µm) with
guard column (4.6 × 150 mm; 5 µm) (ChemcoPak Nucleosil 5C18, Chemco Plus Scientific Co., Ltd.,
Osaka, Japan).

2.8. Cell Culture

Caco-2 cells were cultured in 75 cm2 culture dishes (Nippon Becton Dickinson, Tokyo, Japan)
with 10 mL of culture medium. The culture medium consisted of DMEM containing 10% FBS, 0.1 mM
NEAA, 2 mM glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin (completed DMEM).
The seeding density for cultivation was 8.0 × 105 cells/dish. The cells were maintained in an incubator
at 37 ◦C, 95% relative humidity and 5% CO2. The culture medium was replaced with fresh medium
every second day for approximately 7 days until the cells reached 80% confluence, at which time
they were subcultured. For the subculture procedure, the cells were detached from the culture dishes
by trypsinization with 0.05% trypsin–EDTA, counted with a hemocytometer and transferred at the
desired seeding density to new culture dishes or experimental wells. We used cells between passages
25 and 35.

2.9. In Vitro and In Situ the Lactate Dehydrogenase (LDH) Leakage

To assess the cytotoxic effects of L-tryptophan, the integrity of the cell membrane after treatment
with the CPPs was examined by measuring the lactate dehydrogenase (LDH) released from the
cytoplasm under both in vitro and in situ conditions.

In the in vitro assay, the Caco-2 cells were grown in 24-well plates with a 1.88 cm2 culture area
(Nippon Becton Dickinson) at the density of 1.0 × 105 cells/cm2 and then grown in completed DMEM
for 3 or 4 days. Before the addition of L-tryptophan, cell membranes were allowed to equilibrate
in 0.5 mL of assay buffer for 30 min. HBSS containing 0.001% MC (pH 7.4) was added to the
wells as the transport buffer. After a 30 min pre-incubation with transport buffer, the assay was
initiated by replacing 50 µL of transport buffer with 50 µL of L-tryptophan stock solution (ten times
concentration) or transport buffer. Various concentrations (300–2400 µM) of L-tryptophan were
incubated in Caco-2-seeded wells for 120 min at 37 ◦C. The incubation buffer was collected and
LDH released from the cytoplasm into the incubation buffer was determined using a CytoTox 96
Non-Radioactive Cytotoxicity Assay kit (Promega Corp., Madison, WI, USA). Cytotoxicity was
expressed as the percentage calculated by dividing the absorbance of the vehicle (HBSS) or the
L-tryptophan-treated sample by that of a sample treated with 0.8% Triton X-100, according to the
instructions of assay kit.
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In the in situ assay, various concentrations of L-tryptophan solution (16, 32 or 50 mM) with
50 IU/kg insulin were administered into rat ileal segments in the same manner as the closed loop
administration study described above. For the trial with the highest concentration of L-tryptophan
(50 mM), L-arginine (40 mM) was added as a solubilizing agent. For this test, 5% sodium
taurodeoxycholate was used as a positive control. At 60 min after administration, the ileal loop
was washed with 5.0 mL of PBS and then intestinal fluid was collected. After adjusting the collected
intestinal fluid to a total volume of 6.0 mL with PBS, the activity of LDH (Unit) leaked into the intestinal
fluid was determined using an LDH kit (Promega Corp.).

2.10. Cell Viability Assay

To examine the cellular viability of Caco-2 cells exposed to L-tryptophan, a WST-8 assay was
performed with Cell Counting Kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan). The Caco-2
cells were grown in 96-well plates with a 0.33 cm2 culture area (Nippon Becton Dickinson) to a density
of 3.0 × 104 cells/cm2 and then grown in 100 µL of completed DMEM for 3 or 4 days. In this assay,
the completed DMEM was used in place of the incubation buffer to prevent the possible loss of cell
viability during total 5 h incubation in HBSS. First, 10 µL of L-tryptophan stock solution (eleven
times concentration) or transport buffer was added to 100 µL of completed DMEM and the cells were
incubated with various concentrations of L-tryptophan (600–2400 µM) for 2 h. Then, 10 µL of CCK-8
reagent was added to the wells and the cells were incubated for an additional 3 h to allow for the
reductive reaction of WST-8. The resulting absorbances of the incubated solution in the wells were
read with a microplate reader (Synergy HT, BioTek Instruments Inc.) at a wavelength of 450 nm. In this
assay, 0.8% of Triton X-100 was used as a positive control, same as the LDH assay.

2.11. Transcellular Transport Assay

For TEER measurement, Caco-2 cells were grown in 12-well transwell plates with a 1.13 cm2

culture area (collagen-coated polytetrafluoroethylene (PTFE) membrane with 0.4 µm pore size, Corning
Inc., Corning, NY, USA). The cells were cultured to a density of 1.0 × 105 cells/cm2. The cells were
grown in completed DMEM for 21 days until they achieved a constant TEER reading of >500 Ω cm2,
which indicated that tight junctions had formed in the monolayer. The culture medium was changed
every second day and the electrical resistance was monitored by the method described below. Each well
consisted of apical (top) and basal (bottom) chambers, which were separated by a collagen-coated
polytetrafluoroethylene membrane with a pore size of 0.4 µm and a filter area of 1.12 cm2.

In preparation for the assays, the cell membranes were allowed to equilibrate for 30 min in
transport buffer; HBSS (pH 7.4) with 0.001% MC was added to the apical (0.5 mL) and basal (1.5 mL)
chambers of the transwell. After a 30 min pre-incubation for equilibration, an initial TEER measurement
was taken of the monolayer in each well and then 100 µL of transport buffer was removed from the
apical chamber and replaced with 50 µL of insulin and 50 µL of L-tryptophan or serotonin stock
solutions (ten times concentration) or transport buffer. L-tryptophan (600, 1200 or 16,000 µM) or
serotonin (2.4 or 16 mM) was incubated with insulin (15 µM) in the apical chamber of the Caco-2-seeded
transwell for 2 h. During the incubation, the Caco-2 monolayer was kept at physiological temperature
(37 ◦C).

2.12. TEER Measurement

The TEER of the Caco-2 monolayer was measured to confirm cell growth and differentiation on the
insert filter of the transwell using a Millicell ERS-2 (Millipore Corp., Bedford, MA, USA). Before seeding
the Caco-2 cells, the electrical resistance of the insert filter in the medium was measured and subtracted
from the total electrical resistance determined for the monolayer to calculate the intrinsic TEER of the
monolayer. The TEER of the monolayer was measured at the end of the 2 h incubation to detect any
negative effects of the applied L-tryptophan on the intercellular tight junctions. The TEER is expressed
as a percentage calculated by dividing the TEER value (Ω cm2) at 2 h by the initial value.
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2.13. Surface Plasmon Resonance (SPR)-Based Binding Assay

The intermolecular interactions between insulin and L-tryptophan or L-penetratin were analyzed
by SPR (Biacore X-100, GE Healthcare). To measure the binding of L-tryptophan or L-penetratin to
insulin, insulin was immobilized at the carboxymethyl dextran surface of a CM5 sensor chip by using
an amine coupling method. For the immobilization procedure, insulin was diluted to a concentration
of 50 µg/mL using acetate buffer at pH 4.5 and immobilized on the chip surface in separate flow
cells at 5 µL/min for 7 min. Reference surfaces were prepared by amine coupling activation followed
by immediate deactivation. For binding measurements, different concentrations of L-tryptophan or
L-penetratin (2–200 µM) were injected for 90 s followed by an additional 90 s dissociation phase. At the
end of each cycle, the surface was regenerated by a 30 s injection of 1 M NaCl. Measurements were
carried out in HBSS (pH 7.4) supplied with 0.001% MC at 20 µL/min at 25 ◦C. Each sensorgram was
determined by subtracting nonspecific binding on the surface of the reference flow cell from total
binding on the immobilized-insulin surface.

2.14. Statistical Analysis

Each value is expressed as the mean and standard error of the mean (SEM) of multiple
determinations. The significance of the differences in the mean values of multiple groups was evaluated
using analysis of variance with Dunnett’s test. IBM SPSS Statistics (version 24; IBM Corp., Armonk,
NY, USA) was used for statistical analysis. Differences were considered significant when the p value
was less than 0.05.

3. Results

3.1. Stimulatory Effect of L-Tryptophan on the Intestinal Absorption of Insulin

It was reported that tryptophan residues at position 6 and 14 in the penetratin amino acid
sequence aid in lipid interaction in cell membranes and are therefore an important moiety involved in
the cellular internalization of penetratin [18]. To test the ability of hydrophobic amino acid tryptophan
as an absorption enhancer for insulin, we first conducted an in situ absorption study in which
insulin was administered with various concentrations of the L-form of tryptophan (8–32 mM) into
rat ileal closed loops. As shown in Figure 1A, the plasma insulin concentration increased after
administration of insulin with L-tryptophan in a concentration dependent manner and with a late
onset of action 30–60 min after administration. This result suggests that L-tryptophan has the potential
to strongly enhance the intestinal absorption of insulin as single amino acid form. On the other hand,
we confirmed the effect of the amphipathic CPP penetratin on the intestinal absorption of insulin.
The effect of L-penetraitn shown in Figure 1A was consistent with our previous publication using
L-penetratin [3,6], in which insulin co-administered with L-penetratin was absorbed immediately at
15 min post administration. The difference of action onset between L-tryptophan and L-penetratin
suggested that L-tryptophan as single amino acid played a role in increasing absorption of insulin
in a different way from tryptophan residues as a component of the peptide structure of L-penetratin.
We further compared the effect of other hydrophobic amino acids such as phenylalanine, proline and
isoleucine on the absorption of insulin. The results in Figure 1B show that there was no stimulatory
effect on insulin absorption by these three hydrophobic amino acids suggesting that the bioenhancing
effect is unique to tryptophan among the hydrophobic amino acids. The pharmacokinetic parameters
are summarized in Table 1.
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 +C10 (100 mM)  3 1574.8 ± 772.9 20.0 ± 5.0 1235.9 ± 686.2 12.9 ± 7.2 
 +Sodium taurodeoxycholate (5%) 3 4038.0 ± 1685.4 8.3 ± 3.3 2386.2 ± 1114.6 * 25.0 ± 11.7 * 
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Figure 1. Time profiles of plasma insulin concentration after in situ administration of insulin (50 IU/kg)
with or without L-tryptophan, L-penetratin or other hydrophobic amino acid additives into rat ileal
loop. Panel (A), L-tryptophan (8–32 mM) or L-penetratin (0.5 mM); panel (B), hydrophobic amino acids
(L-isoleucine, L-proline and L-phenylalanine, 32 mM). Each data point represents the mean ± SEM of
N = 3–8, except for the group with L-tryptophan (8 mM, N = 2).

Table 1. Pharmacokinetic parameters following in situ administration of insulin with various amino
acid additives, L-penetratin, or after pretreatment of amino acids or control reagents.

Experiment Cmax (µU/mL) Tmax (min) AUC (µU·h/mL) BA (%)

Insulin (50 IU/kg) 8 10.6 ± 2.4 9.4 ± 1.1 8.5 ± 2.5 0.1 ± 0.0
+L-penetratin (8 mM) 2 52.9 30 35.8 0.4

(16 mM) 4 563.0 ± 162.4 45.0 ± 8.7 558.4 ± 195.2 ** 5.8 ± 2.0 **
(32 mM) 4 2008.2 ± 196.9 52.5 ± 7.5 1785.7 ± 153.5 ** 18.7 ± 1.6 **

+D-Tryptophan (16 mM) 3 84.7 ± 35.8 60.0 ± 0.0 75.4 ± 30.2 0.8 ± 0.3
(32 mM) 3 723.5 ± 153.0 60.0 ± 0.0 606.3 ± 132.8 ** 6.3 ± 1.4 **

+L-penetratin (0.5 mM) 4 1079.0 ± 54.4 15.0 ± 0.0 481.8 ± 85.0 ** 5.0 ± 0.9 **
+Serotonin (32 mM) 3 258.3 ± 124.7 60.0 ± 0.0 304.8 ± 174.1 3.2 ± 1.8

Pretreatment study
+PBS 4 1.7 ± 0.3 7.5 ± 2.5 2.0 ± 0.2 0.0 ± 0.0
+L-Tryptophan (32 mM) 4 1040.5 ± 455.9 18.8 ± 3.8 582.1 ± 229.2 6.1 ± 2.4
+D-R8 (0.5 mM) 3 22.7 ± 5.2 8.3 ± 3.3 22.5 ± 6.7 0.2 ± 0.1
+L-penetratin (0.5 mM) 3 356.3 ± 241.3 5.0 ± 0.0 141.0 ± 73.8 1.5 ± 0.8
+C10 (100 mM) 3 1574.8 ± 772.9 20.0 ± 5.0 1235.9 ± 686.2 12.9 ± 7.2
+Sodium taurodeoxycholate (5%) 3 4038.0 ± 1685.4 8.3 ± 3.3 2386.2 ± 1114.6 * 25.0 ± 11.7 *

Pretreatment with 30 min rest
+L-Tryptophan (32 mM) 3 41.2 ± 11.2 11.7 ± 3.3 25.8 ± 5.4 0.3 ± 0.1
+C10 (100 mM) 3 165.1 ± 22.7 11.7 ± 3.3 128.3 ± 35.6 1.3 ± 0.4
+ Sodium taurodeoxycholate (5%) 3 393.7 ± 225.2 8.3 ± 3.3 203.3 ± 121.3 2.1 ± 1.3

Insulin s.c. (1 IU/kg) 3 133.8 ± 3.4 25.0 ± 5.0 191.2 ± 5.2 100

Cmax, the maximum concentration; Tmax, the time to reach the Cmax; AUC, the area under the curve; BA, relative
bioavailability compared to subcutaneous injection. Each data point represents the mean ± SEM of N =3–8, except
for the group with L-tryptophan (8 mM, N = 2). * p < 0.05, ** p < 0.01, significantly different with corresponding
control insulin (50 IU/kg).

3.2. Identification of the Ability of L-Tryptophan as the Oral Absorption Enhancer for Insulin

The above-mentioned results suggested that L-tryptophan has the ability to effectively increase
the intestinal absorption of insulin. Therefore, the potential of L-tryptophan as oral absorption
enhancer was further tested after in vivo oral administration of insulin to mice. As shown in Figure 2,
the hypoglycemic reaction elevated after oral administration of insulin (50 IU/kg) with L-tryptophan
(32 mM) suggested that L-tryptophan could enhance the oral absorption of insulin. The elevation in
the blood glucose levels just after oral administration in all groups might be because of the stress by
oral gavage, even though mice were trained before administration.
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Figure 2. Blood glucose levels in mice following oral administration of insulin (50 IU/kg) with or
without L-tryptophan (32 mM). Each data point represents the mean ± SEM of N = 6–8. * p < 0.05,
## p < 0.01, significantly different with PBS and insulin (50 IU/kg), respectively.

3.3. Applicability of L-Tryptophan to Enhance the Intestinal Absorption of Various Biopharmaceuticals

Although the mechanism involved in the absorption-stimulatory effect of L-tryptophan is still
unclear, our results strongly suggest that L-tryptophan has potential as an effective absorption enhancer
for the oral delivery of insulin. We additionally researched the ability of L-tryptophan to aid in the
delivery of other biopharmaceuticals.

To examine the ability of L-tryptophan to assist in the transport of a range of differently sized
potential drug cargo, we evaluated the effect of L-tryptophan co-administered with fluorescently
labeled hydrophilic dextrans of various molecular weights (4400, 20,000 and 70,000 g/mol). As shown
in Figure 3A–C, the intestinal absorption of all dextrans (FD-4, FD-20 and FD-70) was effectively
enhanced by co-administration with L-tryptophan (32 mM), although the effectiveness of enhancement
tended to decrease with increase in the molecular weight of the cargo compounds. Furthermore, the
effect of L-tryptophan on the intestinal absorption of other peptide drugs, GLP-1 and Exendin-4, was
examined. As shown in Figure 4A,B, these peptide drugs were efficiently absorbed in the presence of
L-tryptophan (32 mM). Thus, L-tryptophan has the potential to enhance the intestinal absorption of a
wide variety of biopharmaceuticals in a safe manner. The AUC values of dextrans and peptide drugs
are summarized in Table 2.
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Figure 3. Time profiles of plasma concentrations of model hydrophilic macromolecules (FD-4, FD-20
and FD-70) after their in situ administration with or without L-tryptophan (32 mM) into rat ileal loop.
Panels (A–C) show the absorption of FD-4, FD-20 and FD-70, respectively. Each data point represents
the mean ± SEM of N = 3–8.
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Figure 4. Time profiles of plasma concentrations of peptide drugs (GLP-1 and Exendin-4) after their
in situ administration with or without L-tryptophan (32 mM) into rat ileal loop. Panels (A) and (B)
show the absorption of GLP-1 and Exendin-4, respectively. Each data point represents the mean ± SEM of
N = 4.

Table 2. AUCs following in situ administration of dextrans (FD-4, FD-20 and FD-70) with L-tryptophan
into rat ileal loop.

AUC (ng·h/mL)

−L-Tryptophan +L-Tryptophan (32 mM)

FD-4 (10 mg/kg) 1194.2 ± 463.2 5512.7 ± 1034.9**
FD-20 (10 mg/kg) 146.0 ± 44.8 1973.2 ± 801.8*
FD-70 (10 mg/kg) 25.4 ± 24.6 205.6 ± 115.0

GLP-1 (0.5 mg/mL) 1.35 ± 0.27 6.35 ± 2.06*
Exendin-4 (0.5 mg/mL) 1.54 ± 0.62 6.17 ± 0.67**

AUC, the area under the curve. Each data point represents the mean ± SEM of N = 3–8. * p < 0.05, ** p < 0.01,
significantly different with corresponding control without L-tryptophan.

3.4. Mucosal Cytotoxic Examinations for Intestinal Administration of L-Tryptophan

3.4.1. Effect of L-Tryptophan on the Membrane Integrity and Cell Viability in the Intestinal Epithelium

The intestinal absorption of insulin accelerated by co-administration with L-tryptophan might be
attributed to the modulation of biological structures and functions in the intestinal mucosa. To establish
the safety of L-tryptophan as a potential absorption enhancer for biopharmaceuticals, changes in the
integrity of epithelial cell membranes, cellular viability and the tightness of the paracellular junctions
after administration of L-tryptophan were examined.

Figure 5A,B shows the leakage of an intracellular protein, LDH, from intestinal epithelial cells
after in situ administration into rat ileal loop (A) and in vitro exposure onto the epithelial model
Caco-2 cells (B). In Figure 5A, the leakage of LDH was negligible after in situ administration of
insulin with L-tryptophan at all tested concentrations (16 and 32 mM) and these measurements
were significantly low when compared to the positive control (the administration of 5% sodium
taurodeoxycholate). Similarly, in the in vitro assay (Figure 5B), no release of LDH into the media
was observed after the exposure of Caco-2 cells to L-tryptophan at all concentrations (300–2400 µM).
Figure 5C shows the viability of Caco-2 cells after applying L-tryptophan to culture media. The results
indicate no decrease in cell viability after addition of L-tryptophan at all concentrations (600–2400 µM).
The toxicity examinations suggest that L-tryptophan has no adverse effect on the intestinal mucosa
and may therefore become a potentially safe absorption enhancer.
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Figure 5. Cytotoxicity examinations after the exposure of intestinal epithelium to L-tryptophan.
Panel (A), the LDH release in the intestinal fluid collected at 60 min after ileal administration of PBS,
insulin (50 IU/kg) with or without L-tryptophan (16–50 mM) and sodium taurodeoxycholate (5%).
Panel (B), LDH released from the cytoplasm into the incubation medium (HBSS) after incubation
with various concentrations of L-tryptophan (200–2400 µM). The value is expressed as a percentage
calculated by dividing the absorbance of the L-tryptophan treated medium sample by that of the sample
treated with Triton X-100 (0.8%). Panel C, cell viability after incubation with various concentrations
of L-tryptophan (600–2400 µM). Each data point represents the mean ± SEM of N = 3, 3 and 6–11 for
panels (A–C), respectively. * p < 0.05, ** p < 0.01, significantly different with corresponding control PBS-
(panel (A)), or DMEM- (panel (C)) treatment group.

3.4.2. Effect of Intestinal Pretreatment with L-Tryptophan on the Intestinal Absorption of Insulin

The results from the previous section suggest that L-tryptophan can enhance the intestinal
absorption of insulin via functional and structural modification of the intestinal mucosa, while not
exhibiting cytotoxicity (Figure 5). When further considering the safe use of absorption enhancers, it is
important that these agents exhibit either no effect or only a temporal effect on the functions of the
mucosal membrane since this membrane is an integral component of the defense system protecting
against exogenous pathogens. To assess the reversibility of L-tryptophan activity, an insulin solution
was administered to rat ileal loop after pretreatment with L-tryptophan (32 mM), CPPs (D-R8 and
L-penetratin), or conventional enhancers (C10 and sodium taurodeoxycholate) for 30 min and then
washing the pretreated ileal segment with fresh PBS.

As shown in Figure 6A, an increase in plasma insulin concentration was observed after the
administration of insulin to the ileal loop pretreated with L-tryptophan and L-penetratin, however,
the extent of insulin absorption was lower than the effect of co-administration with these enhancers
(Figure 1A). In addition, the onset of insulin absorption could be shifted to an early time point, (5 min
after administration of insulin), by pretreating withL-tryptophan. In contrast, pretreatment with C10
and sodium taurodeoxycholate had a stronger stimulatory response on intestinal absorption of insulin
than L-tryptophan and L-penetratin (Figure 6B). When insulin was administered into the ileal loop
after 30 min of pretreatment with L-tryptophan followed by washing and further rest for 30 min, the
increase in the plasma insulin concentration was almost completely eliminated (Figure 6C), suggesting
that the action of L-tryptophan was temporal and reversible. The pharmacokinetic parameters are
summarized in Table 1.
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Figure 6. Time profiles of plasma insulin concentration after in situ administration of insulin (50 IU/kg)
into rat ileal loop pretreated with L-tryptophan (32 mM), D-R8 (0.5 mM), L-penetratin (0.5 mM), C10
(100 mM), or sodium taurodeoxycholate (5%). In the results shown in Panels (A,B), insulin solution was
administered immediately after washing the pretreatment solution from the ileal loop. For the results
shown in Panel (C), insulin solution was administered at 30 min after washing out the pretreatment
solution. Each data point represents the mean ± SEM of N = 3–4.

3.5. Mechanistic Analysis for the Intestinal Absorption of Insulin Facilitated by L-Tryptophan

3.5.1. Possibility of the Intermolecular Interaction between Insulin and L-Tryptophan

The above-mentioned results suggest that single amino acid L-tryptophan is unique in its ability
to enhance the intestinal absorption of insulin. The binding affinity of L-tryptophan with insulin
and/or possible activity of L-tryptophan in the modulation of biological functions and structures may
explain its specificity for absorption enhancement. In this section, we analyzed the intermolecular
interaction between insulin and L-tryptophan using a SPR-based assay.

Figure 7 shows the binding sensorgrams obtained from the assay. Various concentrations of
L-tryptophan (2–200 µM) or L-penetratin (2–200 µM) were injected into the flow cells containing
immobilized insulin. The resulting sensorgrams do not show an increase after the injection of
L-tryptophan at any concentration (Figure 7A). For comparison, L-penetratin was bound to the
insulin-immobilized flow cells depending on the applied insulin concentration (Figure 7B) in a manner
consistent with our previous publications [29]. These results suggest that L-tryptophan can enhance
the absorption of insulin without intermolecular interaction and that the modulation of mucosal
epithelial structure might be important for the enhancement of intestinal insulin absorption mediated
by L-tryptophan.
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3.5.2. Possible Ability of Tryptophan to Protect Insulin from Enzymatic Degradation

The formation of the complex via intermolecular interaction between insulin and L-tryptophan or
L-penetratin might be related to the protection of insulin from the intestinal enzymatic degradation.
Therefore, we further evaluated the protective effect of L-tryptophan and L-penetratin on the
degradation of insulin in the intestinal enzymatic fluid. As shown in Figure 8B, the positive control STI
(1.25 mg/mL) completely abolished the activity of proteases in the intestinal fluid and the co-incubation
with L-penetratin partially protected insulin from the enzymatic degradation. This was consistent
with the result in our previous work [6]. This suggested that the stabilization of insulin in the
presence of L-penetratin could be probably explained by steric hindrance via their intermolecular
interaction (Figure 7B). In contrast, L-tryptophan did not have the ability to protect insulin from
intestinal enzymatic degradation (Figure 8A). This may be attributed to the lack of intermolecular
interaction between insulin and L-tryptophan (Figure 7A).
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Figure 8. Degradation profiles of insulin in the presence of tryptophan or positive controls (penetratin
and STI) in rat intestinal enzymatic fluid. Panel (A), various concentrations of L-tryptophan (8–32 mM);
panel (B), L-penetratin (0.25 mM) or STI (positive control, 1.25 mg/mL). Each data point represents the
mean ± SEM of N = 3.

3.5.3. Possibility of Paracellular Transport via Tight Junction Opening Effect Induced by L-Tryptophan
and Its Metabolite

The temporal effect of pretreatment with L-tryptophan on the intestinal absorption of insulin
(Figure 6A,C) suggested that L-tryptophan could possibly modify the structure of the lipid membrane
or tight junctions in the intestinal epithelium, resulting in enhanced transcellular or paracellular
transport of insulin. Therefore, the epithelial transport of insulin in the in vitro Caco-2 cell monolayer
model was then examined in the absence or presence of L-tryptophan. Figure 9A shows the TEER
values which reflect the integrity of paracellular tight junctions after the application of L-tryptophan
into Caco-2 cells grown in transwells. No change in the TEER values was observed after addition
of L-tryptophan at all concentrations examined (600–16,000 µM), although a significant reduction in
TEER was observed after addition of typical enhancer C10. The maintained TEER confirmed that
the cellular lipid membrane was retained after addition of L-tryptophan, consistent with the LDH
release assays (Figure 5A,B). Consistent with the result in TEER measurement, Figure 9B showed no
change in the in vitro epithelial permeation of insulin after co-incubation with various concentrations
of L-tryptophan.
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Figure 9. Cytotoxicity examinations after the exposure of intestinal epithelium to L-tryptophan. Panel
(A), changes in the TEER of Caco-2 cell monolayers after the incubation with insulin (15 µM) and
various concentrations of L-tryptophan (600–16,000 µM). The values are expressed as a percentage
calculated by dividing the TEER measurement (Ω cm2) at 120 min by the initial value. Panel (B), time
courses of permeation of insulin through Caco-2 monolayer in the presence or absence of L-Tryptophan
(600–2400 µM). Each data point represents the mean ± SEM of N = 3. * p < 0.05, ** p < 0.01, significantly
different with corresponding insulin control group.

3.5.4. Isomeric Dependent Effect of Tryptophan Co-Administration on the Intestinal Absorption of Insulin

The lack of L-tryptophan effect in the in vitro transport assay (Figure 9B) contradicted the in situ
and in vivo effect of L-tryptophan on the absorption of insulin (Figures 1A and 2), suggesting that
inherent active transport systems might potentially be associated with the action of L-tryptophan but
that these transport systems might be diminished or deficient in Caco-2 cells. In our recent work, we
found that only the L-form of arginine in its amino acid form can facilitate the intestinal absorption of
insulin [13]. As it is possible that the effect of tryptophan may also vary between L- and D-forms, we
conducted an in situ absorption study of insulin with D-tryptophan (16 and 32 mM) and compared
its effectiveness to that of L-tryptophan (Figure 1A). The results in Figure 10 show that the effect of
D-tryptophan appears much weaker than that of L-tryptophan but the onset of action by D-tryptophan
(60 min after administration) was similar to that of L-tryptophan.
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3.5.5. Possible Involvement of Serotonin as Active Metabolite of L-Tryptophan to Enhance the
Intestinal Absorption of Insulin

On the other hand, it is possible that the metabolite of L-tryptophan, serotonin, has the potential
to enhance the epithelial permeability of insulin and other macromolecular drugs [30] and the delayed
action of L-tryptophan might be attributed to the time required for conversion from tryptophan to
serotonin after administration to the intestine. Therefore, we then tested the effect of serotonin on
the permeation and absorption of insulin under the in vitro and in situ conditions. The result of the
permeation study with Caco-2 cell monolayer (Figure 11A,B) showed that serotonin had no stimulatory
effect on the permeation of insulin, in fact, serotonin increased the TEER as shown in Figure 11C,
suggesting that paracellular space was tightened by addition of serotonin. Consistent with the increase
in TEER, the permeability of insulin through the Caco-2 cell monolayer decreased by co-incubation
with serotonin (Figure 11B). On the other hand, serotonin (32 mM) could enhance the intestinal
absorption of insulin after administration to a rat ileal loop but it was less effective than L-tryptophan
(Figure 11D). The pharmacokinetic parameters are summarized in Table 1. The relationship between
results in the in vitro and in vivo conditions is unknown.
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Figure 11. Permeation of insulin through the Caco-2 cell monolayer panels (A,B) and TEER values panel
(C) during coincubation with L-tryptophan (16 mM) or serotonin (2.4 or 16 mM) and the absorption of
insulin after its in situ administration of insulin (50 IU/kg) with or without serotonin (32 mM) into rat
ileal loop panel (D). Each data point represents the mean ± SEM of N = 3.

3.5.6. Combined Effect of Co-Administration of L-Tryptophan with L-Penetratin on the Intestinal
Absorption of Macromolecules

The difference in the action onset between L-tryptophan (slow) and L-penetratin (rapid) shown in
Figure 1A suggested that these two enhancers used different pathways to enhance the intestinal
absorption of insulin and other macromolecular drugs. No intermolecular interaction between
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insulin and L-tryptophan (Figure 7A,B) confirmed that L-tryptophan uses a different mechanism than
L-penetratin. Therefore, we then examined the additive or synergistic potential of the combination of
L-tryptophan and L-penetratin to increase the intestinal absorption of macromolecular dextran (FD-4)
in the in situ ileal loop administration study.

As shown in Figure 12, the individual effect of L-tryptophan (16 mM) and L-penetratin (0.5 mM)
on the absorption of FD-4 was confirmed as being delayed and rapid onset, respectively, consistent
with the above-mentioned results with insulin (Figure 1). Contrary to our expectation, the effect of the
combined co-administration with L-tryptophan (16 mM) and L-penetratin (0.5 mM) on the absorption
of FD-4 was almost equal to that co-administered with only L-penetratin (0.5 mM). As L-penetratin
had the capacity to interact with FD-4 similar to insulin, L-tryptophan might be deprived of a chance
to facilitate the absorption of FD-4. Possibly, a large part of FD-4 administered to the intestine could
be systemically and quickly absorbed by complexing with L-penetratin, while FD-4 which could be
delivered by L-tryptophan was scarce due to the slow mechanism of action. The results suggested that
the action mechanism of L-tryptophan to facilitate the intestinal absorption of macromolecular drugs
was different from that of L-penetratin.

Pharmaceutics 2018, 10, x FOR PEER REVIEW  16 of 20 

 

The difference in the action onset between L-tryptophan (slow) and L-penetratin (rapid) shown 

in Figure 1A suggested that these two enhancers used different pathways to enhance the intestinal 

absorption of insulin and other macromolecular drugs. No intermolecular interaction between 

insulin and L-tryptophan (Figure 7A,B) confirmed that L-tryptophan uses a different mechanism than 

L-penetratin. Therefore, we then examined the additive or synergistic potential of the combination of 

L-tryptophan and L-penetratin to increase the intestinal absorption of macromolecular dextran (FD-

4) in the in situ ileal loop administration study. 

As shown in Figure 12, the individual effect of L-tryptophan (16 mM) and L-penetratin (0.5 mM) 

on the absorption of FD-4 was confirmed as being delayed and rapid onset, respectively, consistent 

with the above-mentioned results with insulin (Figure 1). Contrary to our expectation, the effect of 

the combined co-administration with L-tryptophan (16 mM) and L-penetratin (0.5 mM) on the 

absorption of FD-4 was almost equal to that co-administered with only L-penetratin (0.5 mM). As L-

penetratin had the capacity to interact with FD-4 similar to insulin, L-tryptophan might be deprived 

of a chance to facilitate the absorption of FD-4. Possibly, a large part of FD-4 administered to the 

intestine could be systemically and quickly absorbed by complexing with L-penetratin, while FD-4 

which could be delivered by L-tryptophan was scarce due to the slow mechanism of action. The 

results suggested that the action mechanism of L-tryptophan to facilitate the intestinal absorption of 

macromolecular drugs was different from that of L-penetratin. 

 

Figure 12. Time profiles of plasma concentrations of FD-4 after its in situ administration with or 

without L-tryptophan (16 mM) and/or L-penetratin (0.5 mM) into rat ileal loop. Each data point 

represents the mean ± SEM of N = 3–4. 

4. Discussion 

We recently discovered that single amino acid arginine, particularly the L-form of arginine, an 

important component in cationic CPPs, has the potential to facilitate the intestinal absorption of 

insulin without being part of a peptide structure such as arginine-rich CPPs [13]. Another amino acid, 

the hydrophobic amino acid tryptophan, is known to play an important role in the cellular association 

and internalization of the amphipathic CPP, penetratin [16,18]. In fact, our previous study 

demonstrated that the amphipathic CPP enhanced the intestinal absorption of insulin to a greater 

degree than cationic CPPs such as R8 and Tat peptide [3]. Therefore, we hypothesized that addition 

of tryptophan to insulin might potentially improve the intestinal absorption of insulin.  

The data showed that the intestinal absorption of insulin was significantly enhanced by co-

administration with L-tryptophan (16 or 32 mM, Figure 1A and Table 1), comparable to the effect of 

L-penetratin (0.5 mM). Interestingly, the onset patterns of insulin absorption after co-administration 

were quite different between L-arginine (Tmax 12.8 ± 0.9 min at 40 mM) and L-tryptophan (Tmax 52.5 ± 

7.5 min at 32 mM), as shown in Figures 1A, Table 1 and our previous publication [13], suggesting that 
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L-tryptophan (16 mM) and/or L-penetratin (0.5 mM) into rat ileal loop. Each data point represents the
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4. Discussion

We recently discovered that single amino acid arginine, particularly the L-form of arginine, an
important component in cationic CPPs, has the potential to facilitate the intestinal absorption of insulin
without being part of a peptide structure such as arginine-rich CPPs [13]. Another amino acid, the
hydrophobic amino acid tryptophan, is known to play an important role in the cellular association and
internalization of the amphipathic CPP, penetratin [16,18]. In fact, our previous study demonstrated
that the amphipathic CPP enhanced the intestinal absorption of insulin to a greater degree than cationic
CPPs such as R8 and Tat peptide [3]. Therefore, we hypothesized that addition of tryptophan to insulin
might potentially improve the intestinal absorption of insulin.

The data showed that the intestinal absorption of insulin was significantly enhanced by
co-administration with L-tryptophan (16 or 32 mM, Figure 1A and Table 1), comparable to the effect of
L-penetratin (0.5 mM). Interestingly, the onset patterns of insulin absorption after co-administration
were quite different between L-arginine (Tmax 12.8 ± 0.9 min at 40 mM) and L-tryptophan (Tmax

52.5 ± 7.5 min at 32 mM), as shown in Figure 1A, Table 1 and our previous publication [13], suggesting
that different mechanisms might be associated with the absorption enhancement by cationic arginine
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versus hydrophobic tryptophan. On the other hand, we showed in our previous publications that the
simple cationic CPP (R8) generated a relatively slow enhancing effect, whereas the typical amphipathic
CPP (penetratin), containing two tryptophan residues, rapidly enhanced the absorption of insulin [3,21],
contradicting the effect of amino acids, L-arginine and L-tryptophan, observed in the present and
current studies [13]. This suggests that L-tryptophan and L-arginine could enhance intestinal absorption
via mechanisms distinctly different from that involving CPPs.

The binding analysis showed no intermolecular interaction between insulin and L-tryptophan
(Figure 7), implying that L-tryptophan has no capacity to bring the noncovalently mixed drugs as a
delivery carrier. L-arginine also showed no binding with insulin (data not shown). This observation
is quite different from the mechanism of penetratin and R8 in which intermolecular interaction is
essential to their ability as absorption enhancers. There was no protective effect of L-tryptophan on the
enzymatic degradation of insulin (Figure 8A), confirming no possible interaction between insulin and
L-tryptophan. With respect to the opening of tight junctions as a possible mechanism, the examination
in our recent report suggested that no opening of tight junctions was observed after adding the effective
concentrations of L-arginine (9.6 mM equivalent to 4.2 mg/kg in the animal study) to the transwell
with Caco-2 cell monolayers [13]. In regard to tryptophan, while there is an earlier report suggesting
that mucosal exposure of L-tryptophan (1 mM or more) increases the paracellular permeability of
macromolecules in an energy- and sodium-dependent manner [31], more recent study suggests that
indole-containing molecules like tryptophan strengthen the epithelial barrier function via the increased
expression of tight junction-related proteins such as claudins and occludins [32,33]. No change in
the TEER values of Caco-2 cell monolayers was observed after addition of various concentrations
of L-tryptophan (600–16,000 µM) (Figure 9A). Therefore, it is expected that the mechanism resulting
in the enhancement of the mucosal absorption by both amino acids does not occur via opening of
tight junctions.

Interestingly, it was suggested that the enteric nervous system was associated with the intestinal
transport of low molecular weight compounds and hydrophilic macromolecules [34,35]. While the
adrenergic stimulation has been known to decrease the intestinal absorption of dextran with molecular
weights of 20,000 and 40,000 g/mol [35], vascular perfusion with the cholinergic agonist bethanechol
can contribute to the increase in intestinal drug transport [34]. Furthermore, serotonin, a major
metabolite of tryptophan, is known to promote the secretion of acetylcholine via the stimulation
of the serotonin 5-HT4 receptor, possibly contributing to the increased intestinal absorption of
macromolecules [30]. No enhancement of the epithelial permeation of insulin in the presence of
L-tryptophan (Figure 9B) may strengthen the hypothesis that L-tryptophan needs to be metabolized for
enhancing the epithelial permeation of drugs. However, our in vivo data (Figure 11D) in the present
study was inconsistent with such a hypothesis, as the effect of serotonin (32 mM) on the intestinal
absorption of insulin was weaker than that of L-tryptophan (32 mM) and the action onset of serotonin
was delayed compared to L-tryptophan. Furthermore, our in vitro data partially negated the possible
cholinergic contribution, as serotonin appeared to tighten the paracellular space and decrease the
epithelial transport of insulin through a Caco-2 cell monolayer (Figure 11A–C). In the present study
regarding the ability of tryptophan to enhance intestinal absorption, the L-form is more effective
than the D-form (Figure 10), similar to arginine. Considering the differences between how L- and
D-amino acids affect insulin absorption, endogenous systems such as the enteric nervous system,
the transporter-mediated influx, or receptor-mediated influx mechanisms might be involved either
directly or indirectly. Although some effects of D-tryptophan remained at the higher dose (32 mM),
it was considerably small compared to that of L-tryptophan (Figure 10 and Table 1), suggesting that
stereospecificity might be partially involved in their absorption enhancing mechanisms.

The in situ administration study conducted after pretreatment with L-tryptophan indicated its
reversibility in the enhancement of the intestinal absorption of insulin. As shown in Figure 6C, the
absorption stimulatory effect of L-tryptophan greatly diminishes at 30 min after pretreatment with
L-tryptophan followed by washing, like the effect of conventional positive controls such as C10
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and sodium taurodeoxycholate. These results along with the cytotoxic analysis (Figure 5A–C and
Figure 9A) suggest L-tryptophan has no irreversible effect on the mucosal structure, which means that
L-tryptophan does not induce permanent functional change to the intestinal membrane. Future studies
are needed to clarify the mechanism.

Based on the results of the in situ intestinal insulin absorption study, we examined the
potential of L-tryptophan as an oral absorption enhancer for insulin in vivo. Figure 2 clearly
showed the hypoglycemic effects after oral administration of insulin (50 IU/kg) with L-tryptophan
(32 mM). In this study, insulin and L-tryptophan were administered just as a solution, therefore, the
development of an appropriate formulation could be expected to increase the biological effect of insulin.
Figures 3 and 4 clearly demonstrates the wide applicability of L-tryptophan as an absorption enhancer
for macromolecules having peptide- to protein-sized molecular weights. In contrast, L-arginine had
no effect on the intestinal absorption of such peptide drugs (data not shown). The effectiveness
of absorption enhancement by L-tryptophan was comparable to that by L-penetratin, although
L-tryptophan required relatively higher concentrations (16 mM or more) than L-penetratin (0.5 mM).
Since L-tryptophan is currently used as an oral supplement and it appears to facilitate the intestinal
absorption of a wide variety of biopharmaceuticals, its potential as an intestinal absorption enhancer is
meritorious and quite unique.

As mentioned above, tryptophan is first metabolized into serotonin which stimulates the
cholinergic nervous system, balancing neural activity. Therefore, although L-tryptophan is one of
the essential amino acids, its excess use has to be carefully considered for safe pharmacotherapy.
In addition, another metabolite from tryptophan, melatonin, is used as a sleep-inducing agent and
therefore may affect circadian rhythm. The required dose of L-tryptophan for inducing sleepiness
is roughly to 1500–3000 mg·day−1·human−1, which is comparable to the maximum dose used to
enhance the intestinal absorption of biopharmaceuticals (32 mM equivalent to 16.3 mg/kg) in this
study. However, the dose of L-tryptophan used as an absorption enhancer could be further optimized
by precisely evaluating the relation between its co-administered concentration and the efficiency of
the resultant absorption enhancement. Considering the effective plasma concentration of insulin
(<100 µU/mL), it is expected that the dose of L-tryptophan can be reduced to 10 mM, the equivalent
to 5.1 mg/kg (300 mg/human). Further examination will be essential to establish the potential of
L-tryptophan as a safe and effective absorption enhancer for the oral delivery of biopharmaceuticals.

5. Conclusions

In the process of studying the role of the hydrophobic amino acid tryptophan, which was widely
known as a key amino acid in the function of CPPs, we discovered that tryptophan singly improves
the intestinal absorption of various biopharmaceuticals having peptide to protein molecular sizes.
When examining the absorption of insulin in particular, the bioavailability enhancement effect of
L-tryptophan was far stronger than that of L-arginine [13], another key cationic amino acid component
of CPPs and comparable to the potent CPP, L-penetratin. However, the mechanism of action remains
unclear. In the present study, the cell integrity of the intestinal epithelium (demonstrated by assessing
cell viability, cell membrane integrity and the tightness of paracellular junctions) was not changed
in the presence of L-tryptophan. Furthermore, no intermolecular interaction between insulin and
L-tryptophan was observed and insulin was not protected from enzymatic degradation when in the
presence of L-tryptophan. Tryptophan is the precursor of a wide array of bioactive compounds, such
as serotonin, melatonin and so forth. [36]. Considering the stronger action of L-tryptophan as an
absorption enhancer relative to the D-form, inherent biological functions might be involved in its
action mechanisms. To utilize L-tryptophan as a safe absorption enhancer, further studies are required
to identify the complete mechanism of action.
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