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Abstract: Colloidal gold nanoparticles are targeting probes to improve varlitinib delivery into cancer
cells. The nanoconjugates were designed by the bioconjugation of pegylated gold nanoparticles with
varlitinib via carbodiimide-mediated cross-linking and characterized by infrared and X-ray photoelectron
spectroscopy. The drug release response shows an initial delay and a complete drug release after 72 h
is detected. In vitro experiments with MIA PaCa-2 cells corroborate that PEGAuNPsVarl conjugates
increase the varlitinib toxic effect at very low concentrations (IC50 = 80 nM) if compared with varlitinib
alone (IC50 = 259 nM). Our results acknowledge a decrease of drug side effects in normal cells and an
enhancement of drug efficacy against to the pancreatic cancer cells reported.
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1. Introduction

Varlitinib is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) family,
controlling cell growth, differentiation, and survival. It selectively and reversibly binds to both EGFR
(ErbB-1) and Her-2/neu (ErbB-2) and prevents their phosphorylation and activation [1]. Several reports
suggested varlitinib as a selective anticancer-drug and inhibitor of EGFR/ErbB-2 [1–3]. The tyrosine
kinase inhibitor can reverse, significantly, the multidrug resistance (MDR) in cancer cells resulting
from the inhibition of the ATP-binding cassette (ABC) transporters that act in extruding a variety
of chemotherapeutic agents out of the tumour cells [2]. Some studies reported an efficient in vitro
activity of varlitinib in combination with other anticancer drugs in several tumour models, suggesting
varlitinib not only as a potent single tyrosine kinase inhibitor but also with high tolerability with other
drugs [2,4].

The primary problem in the cancer treatments with chemotherapeutic agents has been the high
toxicity and low bioavailability of the anticancer therapy. The tumour heterogeneity and the MDR are the
key challenge in anticancer therapy [5]. Trying to avoid such problems, nanoparticles (NPs) have been
a challenge for delivering of the anticancer drugs to the tumour cells [6]. They have been promising
tools to attain better retention and release of therapeutic and diagnosis agents, and furthermore,
to overcome the conventional therapeutic limitations [7–9]. A good effort of this application are inorganic
nanosized vehicles such as gold nanoparticles (AuNPs) [10]. Due to their distinct optical and chemical
properties—easy preparation, characteristic surface plasmon resonance (SPR) band, simple chemistry,
and high functionalizable surface—they have been studied as drug delivery vehicles and imaging
agents [11–13]. They present a significant biocompatibility and their production costs are very low,
which facilitated their use [14,15]. AuNPs can be synthesized via different methods, with different
shape (spheres, rods, tubes, wires, ribbons, cubic, hexagonal, triangular) and size [16–18]. AuNPs
present small sizes that can allow the enhanced permeation and retention (EPR) effect and minimize
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reticuloendothelial system (RES) clearance [19,20]. There are successful in vitro studies reporting a
better inhibition of tumour cell proliferation using conjugated gold nanoparticles with anticancer
drugs compared with the same free drugs [21–25]. Aryal et al. reported the conjugation of AuNPs with
doxorubicin using thiolated methoxy polyethylene glycol as a linker [13]. Coelho et al. studied pegylated
AuNPs with afatinib, which present a potential drug delivery nanosystem to enhance the toxicity of
the drug against pancreatic as well as non-small lung cancer cell lines [25]. To improve the stability
of the colloidal suspension and to inhibit protein adsorption to their surface, the nanoparticles can be
modified covalently [15]. α-thiol-carboxyl (polyethylene glycol) can be bound to the surface of gold
nanoparticles [15]. This uncharged polymer is non-toxic and minimizes the electrostatic interactions
with plasma proteins [26,27]. The coupling reaction of the activator N-ethyl-N′-(3-dimetylaminopropyl)
carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (NHSS) is used to mediate the formation of
linkage between carboxylic and amino-terminated groups [28].

In the present study, the aim was to obtain conjugated gold nanoparticles to evaluate its effect into
human pancreatic cells: MIA PaCa-2, a pancreatic cancer cell line that express high levels of HER2/neu
and EGFR [21,29,30], and hTERT-HPNE, an immortalized human pancreatic duct epithelial cells [31].
Conjugates of gold nanoparticles to varlitinib have not yet been reported.

Pegylated gold nanoparticles were synthesized and conjugated with varlitinib via carbodiimide-
mediated cross-linking. The nanoconjugate was characterized by using ultraviolet visible (UV-Vis),
dynamic light scattering (DLS) and laser Doppler velocimetry, Attenuated Total Reflectance-Fourier
Transform Infrared Spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), transmission
electron microscopy (TEM) techniques, in vitro drug release, and in vitro drug stability analysis.
Our results showed that pegylated gold nanoparticles represent a promising drug delivery nanosystem,
enhancing the varlitinib cell toxicity in pancreatic cancer cell lines.

2. Materials and Methods

2.1. Materials

Varlitinib was acquired from Selleck Chemicals LLC (Houston, TX, USA). Phosphate buffered
saline (PBS) and fetal bovine serum (FBS) was purchased from Invitrogen Co. (Scotland, UK). Dimethyl
sulfoxide (DMSO), trisodium citrate dihydrate and tetrachloroauric (III) acid—HAuCl4; 99.99% trace
metals basis, 30 wt % in dilute HCl—were acquired from Sigma-Aldrich Química (Sintra, Portugal).
a-thiol-w-carboxyl (polyethylene glycol) (HS-C11-(EG)3-OCH2-COOH; molecular weight 394.57 Da)
was obtained from Prochimia (Gdynia, Poland).

2.2. Cell Culture

Immortalized human pancreatic duct epithelial cells (hTERT-HPNE) were provided by Professor
M. A. Hollingsworth (UNNC—Omaha, NE, USA). Human pancreatic carcinoma cells (MIA PaCa-2)
were obtained from the LGC Standards (Barcelona, Spain). The cells were maintained in DMEM
medium, supplemented with 10% FBS under 5% CO2 humidified atmosphere at 37 ◦C.

2.3. Synthesis of Pegylated Gold Nanoparticles

Gold nanoparticles (AuNPs) were prepared by the reduction process of HAuCl4 through a solution of
trisodium citrate [17,32]. Then, AuNPs were functionalized with a-thiol-w-carboxyl (polyethylene glycol)
layer (molar ratio 1:1000, respectively)—PEG. PEGAuNPs were collected by centrifugation (13,400 g,
10 min) and resuspended in ultrapure water. The concentration of the PEGAuNPs, determined by the
Lambert-Beer Law was 15.08 nM.
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2.4. Conjugation of Varlitinib to PEGAuNP, PEGAUNPsVarl

Varlitinib was conjugated to PEGAuNPs using the EDC/NHSS coupling (molar ratio 1000:1,
respectively) for 2.5 h. The PEGAuNPVarl was centrifuged (13,000× g) to remove the unbound
varlitinib drug.

2.5. Dynamic Light Scattering and Electrophoretic Mobility Measurements

Size distribution and zeta potential of nanoconjugates were determined by dynamic light scattering
and laser doppler velocimetry, respectively, using a Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern,
UK), at 25 ◦C.

2.6. Ultraviolet Visible Spectroscopy

PEGAuNPs and PEGAuNPsVarl were analysed by UV-Vis spectroscopy (Shimadzu UV-1700
PharmaSpec spectrophotometer, Kyoto, Japan), using a 1 cm quartz cuvette, at room temperature.

2.7. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The suspensions of PEGAuNPsVarl and PEGAuNPs, and varlitinib solutions were analysed by
ATR-FTIR spectroscopy (ALPHA FTIR Spectrometer, Bruker, Billerica, MA, USA). Spectral scanning
was acquired in the 4000–400 cm−1, resolution of 4 cm−1, and 64 scans, at 25 ◦C.

2.8. Transmission Electron Microscopy (TEM) Analysis

TEM images were acquired using a Jeol JEM-1400 (Peabody, MA, USA), JEOL operated at 60 kV.
An amount of 5 µL of each sample was placed on carbon formvar-coated grid and let to adsorb for
5 min. After, the grid was washed twice with deionized (DI) water to remove the excess.

2.9. X-Ray Photoelectron Spectroscopy (XPS) Analysis

XPS was performed on a Kratods Axis Ultra HAS instrument (Manchester, UK) using a monochromator
Al X-ray anode source operated at 90 W. Samples—AuNPs, PEGAuNPs, and PEGAuNPsVarl—were
prepared by drop on a clean microscope slide and the drops were allowed to air dry before the analysis.

2.10. Varlitinib/PEGAuNPs Conjugation Efficiency

The PEGAuNPsVarl formulations were centrifuged (13,000× g, 15 min) and the supernatant was
collected to measure varlitinib concentration by fluorescence measures (excitation at 360 nm, emission
at 485 nm). The conjugation efficiency was evaluated by:

(Varlitinib initial concentration − Varlitinib supernatant concentration)/Varlitinib initial concentration

The results are presented as mean and SD of at least three independent experiments.

2.11. In Vitro Drug Release Studies

The in vitro release profile of PEGAuNPsVarl was performed by dialysis. Nanoconjugates with
4.2 µM of varlitinib concentration were incubated in PBS 0.01 M, pH 7.4, at 37 ◦C with constant magnetic
stirring in regenerated cellulose. Varlitinib concentration of the dialysate buffer was determined
with time through fluorescence measures using a microplate reader (PowerWave HT Microplate
Spectrophotometer, BioTek Instruments Inc., Winooski, VT, USA) (excitation at 360 nm, emission
at 485 nm). Varlitinib concentration of the dialysate buffer was determined with time through
fluorescence measures using a microplate reader (PowerWave HT Microplate Spectrophotometer,
BioTek, Instruments Inc., Winooski, VT, USA) (excitation at 360 nm, emission at 485 nm).
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2.12. In Vitro Stability Studies

PEGAuNPs 8 nM and PEGAuNPsVarl 5 nM were incubated in PBS 0.01 M, at 4 ◦C and in FBS
10% (v/v) in PBS solution, at 37 ◦C. Samples were evaluated at several time points post incubation
during 72 h by using DLS, UV-Vis spectroscopy and laser Doppler velocimetry.

2.13. In Vitro Cytotoxicity Study

In vitro cytotoxicity of varlitinib and PEGAuNPsVarl against pancreatic cell lines was evaluated by
SRB (colorimetric) [33]. Briefly, the MIA PaCa-2 and hTERT- HPNE cells were seeded on 96-well plates
with a cell density at 1000 cells per well, under normal conditions (5% CO2 humidified atmosphere
at 37 ◦C) and allowed to adhere for 24 h. Then, the cells were treated for 48 h with varlitinib and
PEGAuNPsVarl at the concentrations ranging between 10 and 1000 nM varlitinib. Cells were fixed
with 10% (w/v) TCA for 60 min on ice. Next, the cells were washed with water and stained with 50 µL
of SRB solution. The unbound dye was removed by washing with 1% (v/v) acetic acid. The dried
cells and the protein-bound stain were solubilized with 10 mM Tris solution. The SRB absorbance
was measured at 560 nm in a microplate reader (Synergy HT Multi-Mode Microplate Reader, BioTek
Instruments Inc., Winooski, VT, USA). The IC50 (concentration for 50% of cell survival) and GI50 (50%
of growth inhibition) values were determined. The absorbance of the wells containing the NPs or drug
and the absorbance of the wells containing untreated cells following a 48-h incubation period were
subsequently compared with that of the wells containing the cells that have been fixed at time zero
(corresponding to incubation of the nanoparticles and drug).

2.14. Statistical Analysis

Values are reported as mean of three independent experiments. Student’s t-test statistical analysis
was used to determine statistical significance ((p < 0.05).

3. Results and Discussion

Spherical AuNPs were firstly synthesized by the classical Turkevitch method and presented in
TEM image (Figure 1a) [32,33]. The nanoparticles were prepared by reduction of the HAuCl4 solution
with sodium citrate. They present a hydrodynamic diameter of 20.0± 0.2 nm (Table 1), results obtained
by DLS analysis.
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Figure 1. TEM images of (a) AuNPs, (b) PEGAuNPs, (c) PEGAuNPsVarl. Scale bar is 50 nm; (d) FTIR
spectra of PEGAuNPsVarl (black line) and PEGAuNPs (grey line), (e) FTIR spectra of varlitinib (black
dots). The spectra were shifted for a better visualization.
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The final concentration of stock AuNPs was 14 ± 1 nM, determined by Lambert–Beer law and
absorbance peak at 520 nm characteristic by the reduction of HAuCl4 to AuNPs [34].

The morphology of different AuNPs samples was characterized by TEM. After functionalization
of the AuNPs surface with PEG layer via Au-S bonds, PEGAuNPs did not change in shape and the
size is increased slightly (Figure 1b). This result agrees with the size distribution (PdI 0.3) indicating
a good monodisperse distribution of the colloidal suspension which nanoparticles have an average
hydrodynamic diameter of 27 ± 2 nm and a zeta potential −34 ± 1 mV confirming their stability
(Table 1). The nanoparticles were stable for several months when stored at 4 ◦C in aqueous dispersion.
The concentration of PEGAuNPs 8.9 ± 0.8 nM was estimated from UV-Vis spectra. As shown in
Figure S1 UV-Vis spectra showed the presence of a surface plasmon resonance band centered at 522 nm,
determined by UV-Vis absorption spectroscopy.

Table 1. Physical characteristics of AuNPs, PEGAuNPs, and PEGAuNPsVarl.

Physical Characteristics AuNPs PEGAuNPs PEGAuNPsVarl

size, nm 20.0 ± 0.2 27 ± 2 28 ± 2
polydispersity index 0.2 0.3 0.7

zeta potential, mV −37 ± 3 −34 ± 1 −33 ± 1

AuNPs: gold nanoparticles; PEGAuNPs: Pegylated gold nanoparticles; PEGAuNPsVarl: Pegylated gold nanoparticles
conjugated with varlitinib.

The resultant nanoparticles—PEGAuNPs—were conjugated with varlitinib (PEGAuNPsVarl) by
using the EDC/NHSS crosslinking of carboxylic acids from PEGAuNPs with secondary amine group
of varlitinib (Figure 2a), illustrated in Figure 2b.
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Figure 2. (a) Chemical structure of varlitinib; (b) Scheme of nanoconjugate PEGAuNPsVarl preparation.

Table 1 shows the average hydrodynamic diameter measurements of PEGAuNPsVarl. They have
28 ± 2 nm and the zeta potential is −33 ± 1 mV. Also, TEM image (Figure 1c) illustrated well-defined
nanoconjugates with small diameters as DLS measurements and the formation of some aggregated
nanoparticles. The surface plasmon resonance peak of the designed nanoconjugates showed a red
shift of 2 nm compared to that of original PEGAuNPs (wavelength of 522 nm) and their estimated
concentration was 3.5 ± 0.8 nM.

The varlitinib conjugation efficiency was determined through fluorescence analysis. Per the data,
84 ± 1% (w/w) of varlitinib was conjugated with PEGAuNPs (by subtracting the unbound varlitinib in
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the supernatant solution). Therefore, the final varlitinib concentration in stock PEGAuNPs solution
was determined to be 4.4 ± 0.5 µM.

Figure 1d indicated the FTIR analysis of nanoparticles to understand and confirm the covalent
bonds. In Figure 1d, the ATR-FTIR spectrum of unmodified PEGAuNPs showed characteristic peaks
at 1741 cm−1 from carbonyl C=O stretching and at 1317 cm−1 from C–OH stretching group of the
ethylene glycol monomers. At 1151 and 1165 cm−1, the peaks to the C–O–C groups were observed,
and at 2917 cm−1 it appeared the vibrational stretches of –CH2 groups of long alkane chains from
PEG. In the FTIR spectrum of PEGAuNPsVarl, the peak at 1671 cm−1 indicates the C=N that can be
assigned to the imine vibration from reaction of secondary amine of varlitinib with carboxylic acid
of PEGAuNPs (Figure 1d) [28]. The peaks at 1407, 1418, and 1437 cm−1 represent the C=C stretch
from aromatic groups of varlitinib (Figure 1e). At 807 cm−1, the peaks are visible of C–H aromatic
out-of-plane bending. At 950 and 1011 cm−1, varlitinib peaks appeared –C–H aromatics out-of-plane
bend and C–N amine group, respectively.

Moreover, AuNPs, PEGAuNPs, and PEGAuNPsVarl were further analysed by XPS as shown in
Figure S2. The contributions of elements, Au, C, N, O atoms are displayed in Figure 3. The binding
energy of Au 4f of samples exhibits at 83.6 and 87.25 eV, which is higher than that of PEGAuNPs at
83.54 and 87.18 eV. Also, these data show the presence of three carbon peaks at 284.9, 286.7, and 288.9
indicating sp3—(in saturated hydrocarbons) and sp2—hybridized carbons (such as C=C and C=O).
It corroborates with a covalent interaction between AuNPs and PEG-COOH. The signal of N at
399.76 eV is observed for PEGAuNPsVarl (Figure S2c) and the signal of O decreased, suggesting a
covalent bonding of the varlitinib nitrogen to PEGAuNPs, in accordance with FTIR data.
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Table 2 showed the XPS elemental composition on the regions of interest. According to the XPS
composition data, the signal of C increased from 60.4% (AuNPs) of the sample to 65.1% (PEGAuNPs
and PEGAuNPsVarl), representing the good functionalization with PEG layer. Also, the signal of N on
PEGAuNPsVarl is distinct (1.60%), indicating the presence of varlitinib.
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Table 2. XPS elemental composition of AuNPs, PEGAuNPS, and PEGAuNPsVarl (at % normalized to 100%).

Element AuNPs PEGAuNPs PEGAuNPsVarl

C 1s 60.44 65.05 65.06
N 1s 0.06 - 1.60
Au 4f 16.77 4.82 13.80
O 1s 22.73 30.14 19.55

The time-dependent absorbance spectra, hydrodynamic diameter, and zeta potential were performed
to investigate the stability of PEGAuNPsVarl and PEGAuNPs in PBS at 4 ◦C for 72 h, and were presented
in Figures S3a–S5a. PEGAuNPs were stable over 72 h of incubation in PBS at 4 ◦C. They had 29.8 nm and
a zeta potential of −24.0 ± 0.7 mV (Figures S3a and S4a). The behaviour of PEGAuNPsVarl in PBS at
37 ◦C did not change significantly. In fact, the particles changed its hydrodynamic diameter to 31.3 nm
(Figure S3a), data in accordance with the increase of the wavelength value of the plasmon peak (Figure S5a).
Also, on Figure S4a, it was observed that NPs had −24.1± 0.5 mV of zeta potential which remained
unchanged for 48 h; after this period, it tends to be less negative (−22.4± 0.4 mV).

The PEGAuNPsVarl stability in the presence of fetal bovine serum (FBS) was evaluated by
hydrodynamic diameter, zeta potential measurements and time-dependent absorbance spectra, at 37 ◦C
for 72 h (Figures S3b–S5b). In the presence of FBS, two populations are present: a core population with
33 ± 2 nm (86%) and a minor population with 134 ± 4 nm (14%), due to the FBS protein absorption
into the nanoconjugates (Figure S3b). A slight increase was observed at 72 h. The PEGAuNPs zeta
potential values decreased to −9 ± 1 mV, which are justified by the adsorption of proteins and ions to
the nanoconjugates reducing the electrostatic repulsion between them favouring some aggregation.

The in vitro drug controlled release experimental of PEGAuNPsVarl was performed in PBS
(0.01 M, pH 7.4 at 37 ◦C) through a regenerated cellulose dialysis membrane with an initial varlitinib
concentration in NPs of 4.2 µM. Figure 4 presented the drug release data. It is possible to visualize an
initial delay of 4 h. After 8 h, around 20% of the varlitinib amount was released. Figure 4 indicates a
slow and controlled release of the drug conjugated with the nanoparticles that might be explained
from conjugated NPs. The conjugated PEGAuNPs release about 93 ± 6% of the varlitinib for 72 h,
suggesting the disruption of the covalent bond of thiol-PEG with gold nanoparticles due to the
temperature increase [35].
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Cmax corresponds to the total amount of the drug added. Results are shown as mean ± SEM of
three independent experiments.

The in vitro cytotoxic effects after treatment with varlitinib alone and PEGAuNPsVarl were
assessed on MIA PaCa-2 and hTERT-HPNE cell. Treatment with PEGAuNPs at concentrations up
to 2 nM, during 48 h of incubation, did not presented effect on the cell growth (data not shown)
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corroborating non-toxicity of the PEGAuNPs [33]. The effect of varlitinib at different concentrations
(10 to 1000 nM) was tested and cell growth analysed. Figure 5 shows the cell survival results of the cell
lines after incubation with PEGAuNPsVarl and varlitinib alone for 48 h, and PEGAuNPsVarl toxicity
was compared with varlitinib alone. The cell survival of MIA PaCa-2 cells decreases after exposure
with both free and conjugated varlitinib (Figure 5a,c). On MIA PaCa-2, for varlitinib concentration
of 100 nm, toxicity of varlitinib conjugated PEGAuNPs was higher than varlitinib alone (44% of the
cell survival for VarlPEGAuNPs and 80% for varlitinib alone). These results can be explained by
cancer cell environment specifically acidic pH gradient and hypoxia promoting nanoparticle uptake
via endocytosis and, as a result, drug concentration increases in the cytoplasm [33,36–38]. Also, MIA
PaCa-2 cells overexpress high levels of HER2/neu and EGFR [21,29,30] that can be inhibited and
reversibly bounded to varlitinib [1].

The same trend is observed when analyzing inhibition of cell growth in response to varlitinib
alone and conjugated to PEGAuNPs. For MIA PaCa-2s, the nanoconjugate improves the varlitinib
activity resulting lower GI50 values (Table 3 and Figure 5e). In 48 h of incubation, varlitinib alone
inhibits the MIA PaCa-2 cell growth by 50% with 259.1± 0.4 nM of concentration which is higher when
compared with 80 ± 4 nM of varlitinib concentration conjugated with PEGAuNPs. The efficacy of the
PEGAuNPsVarl to induce cell death is more pronounced than that of varlitinib alone for varlitinib
concentrations above 250 nM (Figure 5).

Pharmaceutics 2018, 10, x FOR PEER REVIEW  8 of 12 

 

2 nM, during 48 h of incubation, did not presented effect on the cell growth (data not shown) 
corroborating non-toxicity of the PEGAuNPs [33]. The effect of varlitinib at different concentrations 
(10 to 1000 nM) was tested and cell growth analysed. Figure 5 shows the cell survival results of the 
cell lines after incubation with PEGAuNPsVarl and varlitinib alone for 48 h, and PEGAuNPsVarl 
toxicity was compared with varlitinib alone. The cell survival of MIA PaCa-2 cells decreases after 
exposure with both free and conjugated varlitinib (Figure 5a,c). On MIA PaCa-2, for varlitinib 
concentration of 100 nm, toxicity of varlitinib conjugated PEGAuNPs was higher than varlitinib alone 
(44% of the cell survival for VarlPEGAuNPs and 80% for varlitinib alone). These results can be 
explained by cancer cell environment specifically acidic pH gradient and hypoxia promoting 
nanoparticle uptake via endocytosis and, as a result, drug concentration increases in the cytoplasm 
[33,36–38]. Also, MIA PaCa-2 cells overexpress high levels of HER2/neu and EGFR [21,29,30] that can 
be inhibited and reversibly bounded to varlitinib [1]. 

The same trend is observed when analyzing inhibition of cell growth in response to varlitinib 
alone and conjugated to PEGAuNPs. For MIA PaCa-2s, the nanoconjugate improves the varlitinib 
activity resulting lower GI50 values (Table 3 and Figure 5e). In 48 h of incubation, varlitinib alone 
inhibits the MIA PaCa-2 cell growth by 50% with 259.1 ± 0.4 nM of concentration which is higher 
when compared with 80 ± 4 nM of varlitinib concentration conjugated with PEGAuNPs. The efficacy 
of the PEGAuNPsVarl to induce cell death is more pronounced than that of varlitinib alone for 
varlitinib concentrations above 250 nM (Figure 5). 

 
Figure 5. Cytotoxic effects of PEGAuNPsVarl (О) and varlitinib alone (●) after 48 h a treatment on the 
cell survival (varlitinib concentration range from 10 to 300 nM) (a,b); cell survival (varlitinib 
concentration range from 10 to 1000 nM) (c,d) and on cell growth (e,f) of MIA PaCa-2 (a,c,e) and 
hTERT-HPNE (b,d,f), determined by a SRB assay. 

Figure 5. Cytotoxic effects of PEGAuNPsVarl (#) and varlitinib alone ( ) after 48 h a treatment on
the cell survival (varlitinib concentration range from 10 to 300 nM) (a,b); cell survival (varlitinib
concentration range from 10 to 1000 nM) (c,d) and on cell growth (e,f) of MIA PaCa-2 (a,c,e) and
hTERT-HPNE (b,d,f), determined by a SRB assay.
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For the hTERT-HPNE cells, the same effect is not observed (Figure 5b,d). Our data show that
PEGAuNPsVarl inhibited about 23% of cell survival for varlitinib concentration of 500 nM. For the same
concentration, varlitinib alone inhibited more than two times (cell survival is around 55%). hTERT-HPNE
displayed higher sensitivity and they presented a significant higher inhibition to varlitinib alone than in
presence of the nanoconjugate. In addition, the varlitinib concentrations of PEGAuNPsVarl and varlitinib
alone inhibiting cell survival in 50% (IC50 values) are 1186± 4 µM and 478± 5 µM, respectively (Table 3).
This effect might be due to the protection of varlitinib by PEGAuNPs. The nanoparticle behaviour in
hTERT-HPNE cells could be related with pH gradient. Ding et al. reported that in normal cells, the neutral
pH gradient does not promote the nanoparticle internalization when compared with the cancer cell acidic
conditions [39]. It was observed a small number of nanoparticles in hTERT-HPNE cytoplasm (Figure 6)
in contrast with the nanoparticle concentration detected in pancreatic cancer cells (S2-013) with a clear
PEGAuNP accumulation near the nucleus [7,33]. In cancer cells, we have realized a stochastic dynamic
formation of endosomes with several gold nanoparticles with a high electron density. This particularity
was not observed in hTERT-HPNE cells. The hTERT-HPNE cell morphology does not change significantly
with the incubation of the PEGAuNPs alone and conjugated with drug due to the low nanoparticle
internalization by the cells, as observed in both tests (Figure 6b,c). The new findings of PEGAuNPsVarl
effect on MIA PaCa-2 and hTERT-HPNE cells corroborate the mechanisms proposed and reported by
Coelho et al. [33]
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Table 3. Half maximal inhibitory concentration (IC50) and effect of varlitinib alone and PEGAuNPsVarl
on the growth inhibition (GI50) on the pancreatic cell lines—MIA PaCa-2 and hTERT-HPNE.

Parametric Analysis
MIA PaCa-2 hTERT-HPNE

PEGAuNPsVarl varlitinib PEGAuNPsVarl varlitinib

IC50 (nM) 80 ± 4 259.1 ± 0.4 1186 ± 4 478 ± 5
GI50 (nM) 40 ± 1 268 ± 7 916 ± 3 354 ± 5

An evan of inhibition hTERT-HPNE cell growth in response to PEGAuNPsVarl and varlitinib
alone is observed on Figure 5f). For hTERT-HPNE, the GI50 concentration required to inhibit is
2.5 times lower to varlitinib conjugated with PEGAuNPs than varlit alone (916± 3 nM and 354 ± 5 nM,
respectively). By other hand, the analysis of the balance between cell proliferation and cell death of
hTERT-HPNE only showed a decrease of the inhibitory growth with time revealing cell inhibition for
both treatments.

4. Conclusions

In summary, a well-defined varlitinib delivery system PEGAuNPsVarl was successfully designed
and prepared through the EDC/NHSS coupling reaction with a conjugation efficiency of 84%. The in vitro
release profiles show a delay on varlitinib release due to the coupling process. The PEGAuNPsVarl shows
a significant cancer cell survival inhibition for MIA PaCa-2 cells. In fact, cell survival appeared to decrease
by 22–80% after PEGAuNPsVarl treatment with varlitinib concentration in range from 10 to 1000 nM,
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if compared to varlitinib alone. In contrast, cell inhibition in hTERT-HPNE cells by PEGAuNPsVarl is
lower, denoting a drop of the nanoconjugate toxic effects in non tumour cells. The varlitinib therapeutic
effect is enhanced by the controlled release of the anticancer drug after conjugation with functionalized
gold nanoparticles. Our findings indicate that PEGAuNPs can be used as an effective vehicle for
varlitinib inhibitor.

The drug delivery system shows potential antineoplastic activity for the treatment of EGFR
overexpressed family, decreasing drug doses and the multi-drug resistance effects.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/10/3/91/s1,
Figure S1. UV-Vis spectra of AuNPs, PEGAuNPs and PEGAuNPsVarl. Figure S2. XPS survey spectra of AuNPs
(a), PEGAuNPs (b) and PEGAuNPsVarl (c). Figure S3. Size distribution analysis of PEGAuNPs (black column)
and PEGAuNPsVarl (striped column) in (a) PBS 0.01 M at 4 ◦C; (b) FBS at 37 ◦C, after incubation for different
periods of time. Figure S4. Stability analysis of zeta potential property of PEGAuNPs (N) and PEGAuNPsVarl ( )
in (a) PBS 0.01 M at 4 ◦C; (b) FBS at 37 ◦C, after incubation for different periods of time. Figure S5. UV-Vis spectra
of PEGAuNPs (N) and PEGAuNPsVarl ( ) in (a) PBS 0.01 M at 4 ◦C; (b) FBS at 37 ◦C, after incubation for different
periods of time.
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