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Abstract: After decades of research, oncolytic virotherapy has recently advanced to clinical
application, and currently a multitude of novel agents and combination treatments are being
evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing
tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses
and the destruction of tumor vasculature. With the availability of different vector platforms and
the potential of both genetic engineering and combination regimens to enhance particular aspects
of safety and efficacy, the identification of optimal treatments for patient subpopulations or even
individual patients becomes a top priority. Mathematical modeling can provide support in this
arena by making use of experimental and clinical data to generate hypotheses about the mechanisms
underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly
complex models can be applied to account for therapeutically relevant parameters such as components
of the immune system. In this review, we describe current developments in oncolytic virotherapy
and mathematical modeling to discuss the benefit of integrating different modeling approaches into
biological and clinical experimentation. Conclusively, we propose a mutual combination of these
research fields to increase the value of the preclinical development and the therapeutic efficacy of the
resulting treatments.

Keywords: oncolytic virotherapy; combination therapy; mathematical model; immune system;
cancer; immunotherapy

1. Introduction

In vitro and in vivo experiments are model systems of the real world, and given the understanding
of the limitations of such approaches, study results are to be interpreted as simplifications that may

Viruses 2017, 9, 239; doi:10.3390/v9090239 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0001-6032-8786
http://dx.doi.org/10.3390/v9090239
http://www.mdpi.com/journal/viruses


Viruses 2017, 9, 239 2 of 26

not hold truth in the real world, which for cancer biology is ultimately the patient. Whilst there is
no substitute for wet lab experiments, for many biological problems it is not only unfeasible but
actually impossible to test all possible experimental conditions, population heterogeneities or drug
combinations for an infinite amount of time. Mathematical models may synergize with experiments
in helping analyze experimental data to iteratively inform subsequent experiments with the highest
likelihood of advancing our knowledge [1]. Mathematics is a formal language that can be used to
describe a complex, non-linear system to, amongst others, evaluate the mechanistic underpinnings of
dynamic behaviors and predict long-term behavior in silico. If fitted to experimental data, mathematical
models could identify appropriate parameters to estimate contributions of different mechanisms to
simulated emergent dynamics. From that, sensitivity analysis may be deployed to investigate which
mechanisms truly drive experimental outcome to identify promising treatment targets for example.
For cancer biology, it may be cell migration rather than cell proliferation that drives an aggressive
phenotype [2]. The construction of a mathematical model with given assumptions may reveal useful
information such as unknown rates that may be found during a parameter search. For example, if the
proliferation rate is known for a cancer cell line, the death rate may be approximated by a tumor
growth model by modeling a net growth rate parameter. The fitting of experimental data to a math
model may either confirm negligible impact or the necessity for a death/exhaustion rate to be part of
the model. Once the fitting is done, a model may then help interpret observations. Here, conditions of
the math model may help validate the model where confounding or confirming characteristics coupled
with the experimental data help to refine or affirm the model, respectively. Finally, a mathematical
model may predict outcomes, albeit a complicated task. At this stage, predicted outcomes might be
rejected due to impossible or improbable biological conditions necessary for the outcomes (much like
an imaginary solution is not considered for an algebraic equation when used to solve a word problem
that necessitates a real solution). Elaborate discussions on parameter fitting and biological implications
on their virotherapy models can be found elsewhere [3,4]. It is of importance to understand that
a mathematical model, often informed by limited experimental data, can never prove a biological
hypothesis to be right—but it may prove a hypothesis false or support its plausibility.

A myriad of work has been done on mathematical modeling in immunology and virology.
Alan Perelson and colleagues published a series of articles on optimal strategies in immunology [5–7].
Such models helped identify the dynamics and time course of HIV infection [8–10] and response
to treatment [11]. Mathematical principles of immunology and virology are summarized in an
excellent textbook [12]. In this review, we aim to describe and discuss the contribution that integrated
mathematical modeling could make to the advancement of oncolytic virotherapy (OVT)—with
emphasis on the immunological aspects of OVT.

More than 100 years passed between the first reported oncolytic effect of a virus [13] and the
approval of virotherapy for cancer, first in China (H101 by Shanghai Sunway Biotech, 2005) then later
by the U.S. Food and Drug Administration and European Medicines Agency (T-VEC by Amgen,
2015 and 2016, respectively). The first reported cancer remission in the context of viral infection was
described in 1904 for a woman with myelogenous leukemia after being infected with influenza [13]
(almost three decades before influenza was found to be a viral infection). Organized efforts to unlock
the potential anticancer effects of viruses have been under way since the 1940–1950s [14–17]. In a 1949
clinical trial of Hepatitis B virus applied to Hodgkin’s lymphoma, Hoster, Zanes, and Von Hamm
noticed that 7 of 22 patients improved in the clinical aspect of the disease; a reduction of tumor volume
was observed in 4 of 22 patients [14]. Therapeutic effects were found to rely on natural selective
replication of viruses in tumor cells. Moreover, mechanisms of action are being investigated to further
develop OVT. Modes of effective OVT may include any individual or combination of cellular lysis,
apoptosis, and innate or adaptive immune responses [18]. Various genetically engineered oncolytic
viruses (OVs) are available, and the diversity of OVT combination regimens has grown rapidly in
recent years, especially with emphasis on personalized cancer therapy. In the hope of guiding and
optimizing these more complex therapies, mathematical models are deployed to understand the key



Viruses 2017, 9, 239 3 of 26

mechanisms underlying the complex biological interactions. Having quantitative models in place that
can simulate effective OVT could greatly reduce time and effort in the search for optimal OVT for
subpopulations of cancer patients.

2. Mathematical Modeling of Tumor Growth

Oncolytic efficacy depends on tumor growth dynamics, of which mathematical modeling has a
long history [19,20]. Differential equations are commonly used to describe the mechanisms that govern
change in tumor cell number, or tumor volume:

dc
dt

= r × c (1)

where the variable c represents the number of cells, dc denotes the change (difference, d) in cell number
during a specific time interval, dt. The rate of change r describes the net change of the cell population.
In the simplest case, r could be a constant number (such as r = 0.1), which describes the rate at which
the number of existing cells increases. This will lead to exponential growth as in each time interval dt
the number of cells increases by r × c. Intuitively, if r is a negative number, the population will decay.
Experimental measurements such as cell numbers in vitro or volumes in vivo may help identify the
value of such parameter r. Of note, r itself could be a function that describes in more detail how the
number of cells could change, for example r = f − g, where f could describe the rate at which cells
divide per unit time, and g the corresponding rate of cell death. The results of net growth is identical
to only using the population net growth rate r, but the separation of cell division and cell death
events may become very important in virology where viral dynamics are strongly influenced by those
processes. Different growth laws have been developed and successfully fit to experimental and clinical
tumor volume data. These growth laws can be as simple as above-discussed exponential growth.
More complicated models may include increasingly complex biology. Initial exponential growth at
low densities, when most cells have access to ample resources, decelerates when cells at the core of
the tumor become growth-arrested. This is largely due to limited space and exhausted intratumoral
nutrient supply as resources are consumed by cells closer to the tumor surface [21–23]. This established
the notion of a tumor carrying capacity (K) as the maximum cell number that can be supported by a
given environment [24]. The rate at which tumor growth saturates as the cell number approaches its
carrying capacity can be shaped differently including linear (logistic growth; f = a × (1 − c/K)) and
logarithmical (Gompertzian; f = a × ln(K/c)) functions, etc. A tumor carrying capacity may evolve
with changing oxygen and nutrient supply through tissue vascularization, removal of metabolic waste
products, and evasion of immune surveillance [25,26]. Then, carrying capacity itself will become a
variable, i.e., dK/dt, whose rate of change can be described with a differential equation [25].

The most likely growth law for a specific tumor can be obtained by fitting the different models
to experimental/clinical data and comparing the regression results [27]. The carrying capacity of
the tumor may be more important as cancer cells multiply and the tumor grows; consequently,
time constraints of the experiment or mathematical modeling may influence the decision to incorporate
a tumor carrying capacity. Ordinary differential equation (ODE) systems are typically used for
relatively simple models of growth dynamics. In a recent study, Murphy and colleagues showed that
different tumor growth models fit retrospective experimental and clinical data equally well, but forward
predictions in time may significantly vary [28]. There is a need to identify the most applicable
growth dynamics [29], with explicit consideration of available data and the number of undetermined
mathematical model parameters and their identifiability [30–32]. The Akaike information criterion
(AIC) is often utilized to correlate model complexity with fit to data. This penalizes models with too
many degrees of freedom and only marginal improvements in data fit [33].

While most examples in this review will be ODE systems, mathematical modeling of tumor
growth and oncolytic virotherapy may also be described by partial differential equations (PDE)
or agent-based model (ABM) systems. While ODE systems describe quantities over time, PDE systems
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describe quantities over time and relative dimension in space. A spatially explicit PDE system
would become necessary when the biological effects are predominantly space-dependent (such as
diffusion of cancer drugs or viral penetration into a tumor) and cannot be averaged in an ODE model
(see de Pillis et al. [34]). Agent-based models (or single cell models; each cell is an individual “agent”)
may be used to simulate individual cell behaviors and cell–cell or cell–environment interactions that
propagate to produce emerging population-level dynamics. From such an approach, one can exclude
or identify likely cellular mechanisms that underlie observed complex system-level behavior. See
Wang et al. [35] for a recent review on ABM models of tumor cells and Wodarz [36] for a review on
overall approaches to OV dynamics.

3. Viral Life Cycle

Viral entry into a host cell, replication within the cell and finally release of progeny particles
is often referred to as the “life cycle” of a virus. Cellular requirements for the completion of the
viral life cycle compare to the hallmarks of cancer [37]. Both processes benefit from pro-mitogenic,
antiapoptotic and metabolic alterations promoting cell survival, proliferation and protein biosynthesis.
Inflammation provides further stimuli. Induction of angiogenesis improves supply of nutrients and
oxygen and furthermore allows spread of both viruses and tumor cells. The disruption of innate
antiviral pathways, namely of the interferon (IFN) response, by mutations or virulence factors, is
another important common mechanism of both viral infection and tumorigenesis. Viral infection and
malignant transformation therefore share important signaling pathways and core elements required
for successful progression (reviewed in detail in [38]).

Consequently, the first known oncogenes, amongst them the protein kinase-encoding genes in
Rous sarcoma virus (v-Src [39,40]) and Abelson murine leukemia virus (v-Abl [41]), were found to
be acquired from viruses. There are several ways in which viral infection can support malignant
transformation. Both expression of oncogenic viral proteins, e.g., E6 and E7 in human papillomavirus
(HPV)-associated cancers [42,43], and insertional mutagenesis—as observed in a gene therapy trial
with retroviral vectors [44]—can provide a survival advantage to infected cells by promoting genetic
instability, activating mitogenic signaling pathways and inhibiting apoptosis. Persistent inflammation
as a result of viral infection also contributes to tumorigenesis in several cancer types such as
hepatocellular carcinoma induced by chronic infection with hepatitis B or C viruses (reviewed in [45]).

On the other hand, anecdotic observations of cancer remissions associated with viral infections
have been reported historically [13,46], indicating a potential for using these “culprits” as a strategy to
cure cancer. This approach is also linked to the close resemblance of mechanisms required for viral
replication and malignant transformation. Facilitation of productive viral infection by changes in
cellular signaling, metabolism and innate immune responses in the course of malignant transformation
has been referred to as “phenotypic complementation” [38]. Providing cellular requirements for
productive infection can thereby enable viruses that are not able to replicate within healthy tissue to
selectively infect and kill tumor cells.

Such viruses, which can either have a natural tropism towards cancer cells or be genetically
engineered to enhance tumor-specific replication, are termed OVs and can be found throughout
different virus classes [47]. In contrast to oncogenic viruses that cause latent infections allowing host
cells to survive and accumulate mutations, OVs usually have a lytic replication cycle leading to the
death of infected cells. Oncolytic virotherapy is a promising approach to treat cancer by making use
of these agents, relying on a variety of mechanisms of action differing from those of conventional
treatment options such as surgery, chemotherapy and radiotherapy.

A unique feature of OVT is the amplification of the agent within the tumor, increasing the
therapeutic potential of the initially applied dose [38]. Killing of infected cells typically occurs by either
extensive budding of viral progeny or expression of viral proteins on the cell surface and subsequent
fusion with neighboring cells, both finally resulting in bursting of the host cell, i.e., oncolysis [48].
The unique mechanisms of OV cytotoxicity generally do not completely rely on intrinsic cell death



Viruses 2017, 9, 239 5 of 26

programs, thus providing potential to overcome typical forms of treatment resistance observed in
chemotherapy and radiotherapy [38]. Both viral amplification and the individual modes of oncolysis
are important factors that require consideration in the mathematical modeling of OV infection.

The sequential steps in the reproductive cycle of a virus (Figure 1) can differ substantially between
individual viruses and influence their rate of cell killing and spread, accordingly affecting their
oncolytic potential. For a productive infection, one or more virus particles must enter the host
cell. This process differs between classes of viruses, especially regarding the presence or absence
of a viral membrane envelope. Attachment to cells is mediated via viral surface proteins targeting
molecules accessible on cell membranes. Adaptation to cell entry receptors contributes to viral tropism.
The host cell range can be broad, as in the case of vesicular stomatitis virus (VSV), which binds to
low-density lipoprotein receptor (LDL-R) via the vesicular stomatitis virus G glycoprotein (VSV-G) [49],
or more limited: wild type measles virus requires interaction of the hemagglutinin (H) protein with
signaling lymphocyte activation molecule (signaling lymphocytic activation molecule (SLAM), cluster
of differentiation (CD) 150) [50] or the adherens junction protein Nectin-4 [51] for entry and is restricted
to immune and epithelial cells, which express these molecules, respectively. For some viruses, the host
cell specificity can be modified by genetic engineering. Serial passaging of wild type measles virus
has resulted in the generation of live attenuated vaccine strains [52]. These have adapted to usage
of the complement-regulatory protein CD46 [53–55], which is frequently overexpressed on tumors,
in addition to its natural tropism. Point mutations in the H gene can abrogate binding to these receptors,
and introduction of transgenes encoding single chain antibodies or receptor ligands can be applied
to retarget measles virus [56–58]. Pseudotyping with attachment proteins of different virus families
is another tool for retargeting of viruses which can be applied e.g., to broaden the host cell range of
lentiviral vectors via VSV-G (reviewed in [59]) or measles virus glycoproteins [60].

Upon attachment, the viral particle passes the host cell membrane in a process termed penetration,
involving different mechanisms depending on the virus type. Measles virus and most other members
of the family Paramyxoviridae require interaction of two distinct surface proteins for entry. Binding of
the H protein to a cell entry receptor induces a change in the structural conformation of the F (fusion)
protein, leading to an approximation of viral particle and host cell. This finally results in membrane
fusion, allowing entry of the viral particle into the cell (Plattet et al. [61], and Lamb and Parks [62]).
Endocytosis provides an alternative route of cell entry. Acidification of maturing endosomes can
induce conformation changes in viral attachment proteins to promote membrane approximation and
fusion [63]. An example for this mechanism is the H protein of influenza viruses, which are also
studied as potential oncolytic vectors [64–66]. Non-enveloped viruses omit the need for membrane
fusion and rely on endocytic pathways for entry (reviewed in [67]).

In line with the heterogeneity of genome sizes among OV, ranging from approximately
5 kb of oncolytic parvovirus [68] to 300 kb of oncolytic vaccinia viruses [69], the number of
genes and complexity of their regulation also differs greatly. For more detailed information on
genome organization and replication of particular viruses, please refer to comprehensive reviews,
e.g., for herpes simplex virus [70], poxvirus [71] and adenovirus [72]. Before amplification and
expression of the viral genome can take place, it must be made accessible by uncoating. For many
viruses, transfer of viral nucleic acid into the nucleus is furthermore required to make use of the genome
amplification and transcription machinery of the host cell. Some viruses, including paramyxoviruses,
which have their negative strand RNA genome packaged into so-called ribonucleoprotein complexes,
harbor the enzymatic machinery necessary for transcription into mRNA [73].

Viral gene expression and genome amplification can be tightly regulated, e.g., by promoter
elements and pre-messenger RNA (mRNA) processing. This enables restriction to certain cell types
and adaption to changes in the phenotype of the host cell, such as the differentiation of HPV-infected
epithelia that is necessary for the virus to complete its life cycle (see reviews [74–76]). The presence of
immediate early, early and late genes in herpes viruses [77] relates to different phases of infection and
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ensures efficient replication before cell lysis. The time lapse between viral entry and progeny release,
called “eclipse phase”, plays an important role in viral replication kinetics [78].

With regards to the safety aspects of oncolytic virotherapy, such post-entry mechanisms can be
exploited to enhance tumor specificity or interfere with viral replication. Introduction of target sites
for microRNAs (miRNAs) downregulated explicitly in malignant cells can prevent viral replication
in normal tissue [79–81]. Exchanging furin cleavage sites necessary for cleavage and activation of
viral proteins with target sequences for tumor-specific matrix metalloproteinases represents another
strategy to prevent off-tumor toxicity [80,82]. Riboswitches, which undergo self-cleavage upon ligand
administration, can be applied as off-switches for viral replication [83]. Tumor specificity can also
be conferred at the level of protein translation, by inclusion of polyadenylation signals in the mRNA
of key viral proteins [84,85]. Depending on the virus, DNA of viral origin might be integrated into
the host cell genome, potentially inducing (epi-)genetic deregulation [86] and mutagenesis (reviewed
in [87]). In contrast, RNA viruses are obligatory cytoplasmic and cannot integrate into the host cell
genome, contributing to a favorable safety profile regarding their use as oncolytic agents.

Once the viral genome is replicated and structural proteins are expressed, assembly of viral
progeny is initiated and finally mature particles leave the host cell via budding, pore formation and/or
bursting of the cell. Some viruses, including measles virus, can infect neighboring cells without the
necessity of forming extracellular particles by exploiting cell–cell contacts [88] and by display of viral
attachment and fusion proteins on the host cell surface [89].

Oncolytic virus replication might be regarded in a very basic sense as releasing infectious particles
via killing of infected cells, which makes it an appealing target for mathematical modeling. However,
as viral infection is a highly complex, virus-specific, multistep process, an understanding of the
underlying biology of virus–host interactions is required for careful consideration of appropriate
modeling approaches. As a basis for a mathematical model of oncolytic virotherapy, a model of viral
infection, uninfected cells becoming infected cells, is first considered.
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Figure 1. Schematic representation of the reproductive cycle of viruses. After successful attachment to
a cell entry receptor (A), entry via membrane fusion or endocytosis (B), and uncoating of nucleic acids
(C), viral gene expression (D1) and genome amplification (D2) are initiated. These processes can be
complex and may include reverse transcription of the genome, shuttling to the nucleus, and further
processing and modification of generated nucleic acids and proteins. Assembly (E) and subsequent
release (F) of viral progeny complete the viral “life cycle”. Each of these steps contributes to (tumor)
cell specificity of a particular virus as well as its replicative and cytolytic potential and, depending on
the scientific question, may need to be considered in mathematical modeling.
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4. Mathematical Modeling of Infection: Susceptible and Infected Model

Viruses are infectious agents that rely on a living host cell to replicate. Infectious disease modeling
has an extensive history in mathematics to simulate viral spread and cytotoxic effects [90]. Host cells
are divided into susceptible (uninfected, S) and infected (I) cells, where C (number of total tumor
cells) = S + I. (Note that “C = S + I” does not include resistant cells without receptors for viral entry
or stromal cells not targeted by OV.) Such SI models evolved from ecological population dynamics,
e.g., food chain [91] (predator, prey, and top-predator) first used for infectious diseases (reviewed
in [92]) then eventually for viruses as early as 1996 by Nowak and Bangham [93]. In 1995, Gatenby
modeled cancer as a population competing with normal cells [94]. These early models have contributed
to the evolution of the mathematical modeling of oncolytic virus therapy [36,95]. Nowak, Perelson,
and others [12,93,96–98] used models that assume constant target cell production. Wodarz first
described OV dynamics by adapting basic virus dynamics models, assuming a density-dependent
proliferation of target (tumor) cells [99], as well as tumor-specific immune responses (virus-specific
cytotoxic T lymphocytes) [99,100]. Others have expanded on this basis such as Dingli [101] and
Biesecker [102].
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Figure 2. Simple susceptible (S) and infected (I) models with implicit (a) and explicit (b) model 
representations of a virus population. The βII term (a) represents the population of dying infected 
cells. These infected cells release virus particles—not represented—upon death (also called burst 
[103]), hence, directly affecting the number of susceptible cells, which may become infected, γ(βII)S. 
In explicit virus systems (b), the βII term is commonly described as explicitly affecting the number of 
virus particles (δ) as opposed to the virus being modeled implicitly from its effects on the S and I 
populations. Consequently, the viral infection term is γVS. The term UV(t) simulates the effect of 
oncolytic virotherapy, a number of virus particles administered at time t. Novozhilov et al. warns that 
mass-action, the assumption that the rate is proportional to the product of the variables, may only be 
acceptable when the S and I populations are close in value, S ≈ I [95]. 

Experimental and clinical observations often present data for the tumor volume, which can be 
converted into a total number of tumor cells, but typically are not of sufficient resolution to classify 
subpopulations of infected and non-infected tumor cells. It may be possible to capture viral infection 
dynamics with an implicit representation of virus particles [104] (Figure 2a), though more 
complicated models may require an explicit population of virus to be modeled [105] (Figure 2b). It 
should be noted that a model with an implicit virus representation may introduce an OV treatment 
by changing a quantity or proportion of uninfected cells to infected cells at the time of treatment (see 
f0 in supplemental information of [104]). Using an implicit representation limits the number of 
variables (and parameters) to the model system. However, this formulation is only applicable if the 
turnover rate of free virus particles is much faster compared to infected cells. Alternatively, the free 

Figure 2. Simple susceptible (S) and infected (I) models with implicit (a) and explicit (b) model
representations of a virus population. The βII term (a) represents the population of dying infected cells.
These infected cells release virus particles—not represented—upon death (also called burst [103]), hence,
directly affecting the number of susceptible cells, which may become infected, γ(βII)S. In explicit virus
systems (b), the βII term is commonly described as explicitly affecting the number of virus particles
(δ) as opposed to the virus being modeled implicitly from its effects on the S and I populations.
Consequently, the viral infection term is γVS. The term UV(t) simulates the effect of oncolytic
virotherapy, a number of virus particles administered at time t. Novozhilov et al. warns that
mass-action, the assumption that the rate is proportional to the product of the variables, may only be
acceptable when the S and I populations are close in value, S ≈ I [95].

Experimental and clinical observations often present data for the tumor volume, which can
be converted into a total number of tumor cells, but typically are not of sufficient resolution to
classify subpopulations of infected and non-infected tumor cells. It may be possible to capture viral
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infection dynamics with an implicit representation of virus particles [104] (Figure 2a), though more
complicated models may require an explicit population of virus to be modeled [105] (Figure 2b).
It should be noted that a model with an implicit virus representation may introduce an OV treatment
by changing a quantity or proportion of uninfected cells to infected cells at the time of treatment (see f 0

in supplemental information of [104]). Using an implicit representation limits the number of variables
(and parameters) to the model system. However, this formulation is only applicable if the turnover
rate of free virus particles is much faster compared to infected cells. Alternatively, the free virus
population must be modeled explicitly as a time-dependent variable, which requires the inclusion of
more parameters, some of which may be challenging to identify.

A basic model for simulating viral infection has been previously discussed as a system of
ODE [104]. In this simple SI model with implicit virus particles, the uninfected, susceptible tumor cells
(variable S) may grow with rate αS (exponential tumor growth). With viral infection rate γ, uninfected
cells become infected (variable I), and infected cells die with a fixed rate, βi. A schematic of this simple
model and the corresponding equations are shown in Figure 2a. Modeling the actual virus population
introduces a new variable, V, with an arrival rate (first exposure, therapy, etc.) and intrinsic death.
Infection is then explicitly modeled by the interaction of susceptible cells with virus particles, S × V,
which occurs with rate γ.

5. Modes of Action in Oncolytic Virotherapy

In recent years, it has become apparent that direct tumor cell destruction via lytic replication is
not the only mode of action contributing to the efficacy of oncolytic treatment (Figure 3), and might
even be only a minor determinant of treatment success [106]. More importantly, oncolysis represents
a form of immunogenic cell death, resulting in the release of potent immune-stimulatory molecules,
including cytokines, pathogen-associated and damage-associated molecular patterns (PAMPs and
DAMPs, respectively) and tumor-associated antigens (reviewed by Workenhe et al. [107]). This can
induce recruitment of cells of both the innate and the adaptive immune system, potentially leading to
systemic antitumor immunity. Tumor debulking by lytic replication can be seen as the initial step to
reversing immune evasion mechanisms in the tumor microenvironment and evoking tumor-targeting
processes [106]. Modes of action of tumor cell killing during the immune response have been
summarized by Cassady and colleagues as cytokine-induced apoptosis, cytotoxicity of innate immune
cells, and antigen-specific tumor cell lysis by T cells [18].

Viral infection is detected intracellularly via pattern recognition receptors (PRRs) such as retinoic
acid-inducible gene 1 (RIG-1), which induces expression and secretion of pro-inflammatory cytokines
and type I IFNs upon binding of viral RNA (reviewed by Barik et al. [108]). This typically leads to an
antiviral state in surrounding cells, but can also result in killing of uninfected tumor cells by cytokines
such as tumor necrosis factor α (TNFα) [109]. Innate immune effectors encompass natural killer
(NK) cells, which are able to induce lysis of tumor cells or virally infected cells (reviewed in [110]),
and phagocytic cells such as neutrophils and macrophages.

In the course of phagocytosis or tumor cell lysis, uptake of tumor-associated antigens (TAAs) by
antigen-presenting cells (APCs) such as dendritic cells (DCs) is essential for the induction of an adaptive
immune response [111,112]. Cross-presentation of such antigens on major histocompatibility complex
I (MHC-I) molecules to CD8+ T cells in lymph nodes, followed by cytokine-mediated stimulation,
is necessary for activation and expansion of tumor-specific cytotoxic T lymphocytes (CTLs). This is
supported by differentiation of CD4+ T cells towards a type 1 T helper (Th1) phenotype, indicated by
release of interleukin (IL)-2 and IFN-γ [113] (reviewed by Farrar et al. [114]). Another crucial aspect in
terms of timing, efficacy and durability of antitumor immune responses is the development of memory
and effector cell subsets [115,116].

Polarization of macrophages in the tumor microenvironment towards a pro-inflammatory (M1)
rather than immunosuppressive phenotype (M2) further contributes to tumor destruction [117].
Inflammatory and other adjuvant stimuli provided by viral infection play a major role in promoting
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such antitumor effector functions. In their absence, innate sensing of tumor cells and TAA presentation
will instead induce tolerance mechanisms, e.g., by regulatory T cells (Tregs) [118]. It has been shown
that established TAA-tolerance of the immune system can be overcome by an intratumoral injection
of a non-replicating, immunogenic adenovirus [119]. An OV-based combination regimen aiming at
enhancing immunogenic cell death was also effective in breaking immune tolerance [120].Viruses 2017, 9, 239 9 of 25 
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supported by additional antitumor processes in the context of oncolysis, e.g., immunogenic cell death
and subsequent innate (B) and adaptive (C) antitumor immune responses, and endothelial targeting (D).
This complexity can be exploited and expanded by genetic modifications and combination therapies.
One approach is encoding prodrug convertases in the viral genome, which mediate local activation of
systemically applied prodrugs (E). CTLs: Cytotoxic T lymphocytes; NK: Natural killer.

Based on this understanding, current development of novel oncolytic vectors focuses not only
on enhancing lytic replication, but also on harnessing the immune response, for example by the
introduction of transgenes encoding cytokines [121,122], checkpoint inhibitors [123], ligands of
T cell co-stimulatory receptors [124], bispecific T cell engagers [125–127] or tumor antigens [128–130],
respectively, into the viral backbone. Combination therapies represent another approach to support



Viruses 2017, 9, 239 10 of 26

immune responses to OV treatment, including additional application of cytokines [131], immune
checkpoint inhibitors [132,133] or chemotherapeutics [134].

Immune responses to OV treatment are highly complex and can also prevent successful therapy
by limiting viral infection, depending on context and timing. For this reason, even immunosuppression
might be beneficial prior to OV treatment to enhance viral replication and spread [135,136].

In addition to making use of the immune system, bystander killing of non-infected tumor cells
can also be increased by using virus-encoded prodrug convertases [137]. Upon infection of tumor
cells, the transgene is expressed at the tumor site. Non-toxic prodrugs are applied systematically
and converted locally into a chemotherapeutically active compound, thereby minimizing toxicity to
healthy tissue [138].

Targeting of tumor vasculature by oncolytic viruses has been observed [139,140] and was recently
explained by suppression of cell-intrinsic antiviral mechanisms via vascular endothelial growth factor
(VEGF) in the tumor microenvironment [141]. This could add to the antitumor potency of oncolytic
virotherapy by inducing subsequent nutrient deprivation and hypoxia, but also impair viral delivery
to the tumor site, warranting careful assessment prior to manipulating the antiendothelial potential of
an oncolytic vector to enhance clinical benefit. Sunitinib-mediated inhibition of the VEGF receptor
represents a potential approach for combination therapy [136,142].

There is emerging evidence for modes of action of OVT that go beyond the killing of infected
cells by lytic replication. Models of viral spread and treatment outcome should appropriately account
for these modes to enable accurate predictions. In a mathematical model, these modes first translate
into the speed of growth functions, delays due to the viral life cycle, and mathematical descriptions of
physical viral tropisms (manner of infection) as discussed in Section 6.

6. Modeling Specific Mechanisms of Action

Wodarz and Komarova have examined fast and slow classes of viral growth with biological
interpretations of non-solid (“liquid”) tumors and solid tumors, respectively [104]. Fast viral growth
is indicative of a well-mixed system, where there is little to no restriction on the viral infection rate.
This represents some in vitro experiments as well as non-solid tumors. The slow class viral growth
is necessary when modeling solid tumors due to spatial penetration dynamics. These fast and slow
infection terms may be formulated in a variety of ways, which are discussed thoroughly in [104].
Examples of such viral spread terms include (ε+1)S

(S+I+ε)
(fast) and (ε1+1)(ε2+1)S

(S+ε1)(I+ε2)
(slow), where S and I are

the number of susceptible uninfected and infected cells, and ε, ε1 and ε2 are empirical coefficients to
describe saturation kinetics [143,144]. Wodarz and Komarova have stated that it can be difficult [145]
to fit these models to experimental data [3,104,146], such that arbitrary viral expression terms may
have no basis of any biological mechanism. That is, when fitting models to experimental data, in vitro
experiments of a few days or in vivo experiments of about 30 days, these functions may all fit similarly
well, and it is not until well after the time period of experimental data will models differ due to the
different infection terms. An intratumoral injection of viral therapy into a solid tumor, for example,
places a high concentration of virus particles in one specific location. Infection rate would be highest at
the interface of this high virus concentration and the adjacent tumor cells, while almost no infection
would take place in the tumor periphery. A spatially explicit partial differential equation (PDE) system
may be employed for a more realistic depiction of spatial propagation of the virus after initial infection.
An example of such a system is discussed in detail by Jacobsen et al. [147].

For modeling purposes, the time period from viral entry into tumor cell to tumor cell burst
(“eclipse phase”) may be important [148]. In cell adhesion assays, for example, time periods that
coincide with the viral replication cycle elapse between the time of oncolytic virus treatment of a cell
line and observable effect [149]. Such delayed responses can be simulated mathematically by a delay
differential equation (DDE) [150]. Further complexities may be added to a mathematical model to
explicitly account for the interplay between multiplicities of viral infection and the antiviral states
mediated by interferon [148,151,152] as a cellular response to viral infection. Of course, the model
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would require additional distinctions of antiviral and non-antiviral states [151] for uninfected cells
(for example, see [90]).

The potential immune response to an oncolytic virus adds further complexity. In 2011,
Eftimie et al. [4] reported a model based on an oncolytic immunotherapy study presented by
Bridle et al. [129]. In this study, an adenovirus (Ad) vaccine was first used for immunization [153,154]
before a VSV was used for oncolytic treatment against intracranial and systemic tumors (B16-F10 and
CT26 cells, established in C57BL/6 and BALB/c mice, respectively). The Ad and VSV were designed
to express the same TAA as the tumor cells. Bridle et al. [129] demonstrated that VSV increased
a pre-existing antitumor immune response by shifting the immune response from viral antigens
to tumor antigens. Further, a distinction between two compartments, lymphatic and peripheral
(tumor) tissues, enabled simulation of a systemic effect of the OV on the immune system. Specifically,
the recruitment and infiltration of effectors to the peripheral tissue was modeled due to an antiviral
response in the lymphatic tissue. Mathematical analysis of model dynamics can identify a possible
“tumor only” state (tumor without virus) when: (1) the inactivation rate of peripheral effectors is high;
or (2) when the tumor is aggressive (high net tumor growth rate). While these observations may be
biologically obvious, such analysis helps validate mathematical descriptions of the complex system
as such conclusions are not built in a priori. More complex analyses help identify conditions under
which the three equilibrium states of tumor-free, tumor only, and coexistence of tumor with virus are
obtained. In this particular example, VSV must persist for a long time to achieve a tumor-free state.
The model suggests, again quite intuitively and thus confirming model applicability, that oncolytic
viruses with a higher half-life or better replication rate yield increased efficacy.
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V: Virus. Each arrow can be described mathematically with a rate constant or more complex functions
to describe different mechanisms of action (adapted from [147]).

Bajzer and Dingli as well as Jacobsen and Pilyugin added a syncytia-forming fusion and budding
mechanisms to lysis in a PDE model (Figure 4) that may be tailored to a particular viral mode
of action [3,101,102,155]. Jacobsen and Pilyugin built upon previous PDE systems from Wu and
Friedman et al. [156,157]. These models only allowed budding as a mechanism for viral particle
production from syncytia, assuming that no apoptosis occurs from fused cells [158]. Recent reports
suggest that this may not be the case [159–165], depending on the virus; adjustments during model
development and fitting can resolve such issues. In their model, Jacobsen and Pilyugin found that
an increase in burst size would allow for tumor control. However, different fusion (formation of
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syncytia) rates, ρ, predict the outcomes of an inert virus (0.1 < ρ < 0.5) or control of tumor growth
(ρ < 0.1, ρ > 0.5). The authors hypothesized that at a low ρ yields a governing lysis rate leading
to control of the tumor, and at high ρ, syncytia reportedly leads to fusion of all tumor cells and an
exponential decay of tumor cells. Fusion rates between these two categories kill neighboring tumor
cells but render remaining virus particles ineffective.

7. Current Developments in Oncolytic Virotherapy

A total of 81 clinical trials for oncolytic viruses were listed on ClinicalTrials.gov [166] compared
to only six studies 10 years ago, demonstrating the rapid development of the field. Compared to the
first approaches to using viruses for cancer treatment, in some cases by application of infectious body
fluids, research has made huge progress due to a deeper understanding of underlying virological
processes and the possibility of genetic engineering (reviewed in [167]).

The most prominent example of the clinical translation of oncolytic viruses is talimogene
laherparepvec (T-VEC, trade name ImlygicTM), a genetically modified herpes simplex virus type
I. In addition to gene knockouts for enhanced tumor specificity and immunogenicity [168], T-VEC
encodes the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) for increased
infiltration and activation of myeloid cells to support antitumor immunity [169]. As the first—and so
far only—oncolytic therapeutic, T-VEC has been granted market approval in the United States in 2015,
and shortly afterwards also in Europe, for the treatment of advanced melanoma. Investigations of its
use in other malignancies and in combination therapies, especially with immune checkpoint inhibitors,
are underway (trial examples for breast cancer: NCT02658812; pancreatic cancer: NCT03086642;
combination with radiation: NCT02453191; combination with Nivolumab and Pembrolizumab,
respectively: NCT02978625 and NCT02965716). The phase III study that led to approval resulted in a
significantly enhanced durable response rate and a higher median overall survival in the patient arm
treated with T-VEC compared to patients receiving GM-CSF [170]. Importantly, intratumoral injections
of T-VEC have led to remissions of uninjected, distant lesions, indicative of the induction of systemic
antitumor immune responses. CD8+ CTLs were shown to play a major role in mediating these effects.
However, the exact mechanism of action of T-VEC has not yet been fully elucidated [171].

Another prominent example of OV is oncolytic vaccinia virus JX-594 (pexastimogene devacirepvec,
Pexa-Vec), which has advanced to a phase III trial for the treatment of hepatocellular carcinoma
(NCT02562755). JX-594 is thymidine kinase-deficient, increasing tumor cell specificity, and, like T-VEC,
encodes GM-CSF for enhanced antitumor immune activation. In addition, a transgene encoding
β-galactosidase allows for analysis of viral replication [172–174]. A phase II study in hepatocellular
carcinoma showed an acceptable safety profile and dose-dependent survival benefit after intratumoral
injection of JX-594 [175]. Viral replication and transgene expression were verified by measuring
genome concentrations in blood and by detecting GM-CSF and antibodies against β-galactosidase,
respectively [175]. Tumor responses were observed in both injected and uninjected lesions [175].

MV-NIS, an oncolytic measles virus derived from a live attenuated vaccine strain encoding human
thyroidal sodium iodine symporter (NIS), entered clinical trials for application in several malignancies
including multiple myeloma [176] and ovarian cancer [177]. The NIS transgene allows for imaging
of infected cells via intracellular accumulation of 123I and can also be used for enhanced tumor cell
killing by radioactive 131I [178,179]. An important aspect of oncolytic measles virotherapy remains the
prevalence of neutralizing antibodies against measles virus surface glycoproteins, which cannot be
sufficiently addressed by retargeting of the H gene [180]. Although a much-noticed case of durable
complete remission of disseminated multiple myeloma has been observed upon systemic treatment
with MV-NIS in a phase I study [181], this patient had unique characteristics favoring therapeutic
success: a specific gene signature indicating sensitivity to OVT was detected by sequencing [182]
while anti-measles virus antibody titers were absent in blood serum. However, there are means to
overcome antibody neutralization of oncolytic agents: polymer coating [183], pseudotyping [184,185],
complement inhibition [186] and usage of infected cells as virus carriers [187–190].
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In addition, viruses that are non-pathogenic for humans may be used to reduce the prevalence
of pre-existing immunity within the population. A genetically attenuated strain of the Maraba
rhabdovirus [191], which had originally been isolated from Brazilian sand flies [192], is currently
being tested in a prime-boost setting after immunization with an adenovirus (NCT02285816).
Both viruses were genetically modified to encode the TAA MAGE A3 in order to evoke a strong
tumor-specific immune response rather than boosting anti-viral responses [130,193]. Rodent parvovirus
H-1 (H-1PV/ParvOryx) is another example of a non-human host-specific virus currently under
clinical investigation as an oncolytic vector. Safety and improved antitumor effects were shown
in a glioblastoma trial [194,195], and H-1PV has now entered phase II against pancreatic cancer
(NCT02653313).

The amount and diversity of ongoing clinical trials for OVT is encouraging. Current developments
in the filed especially highlight the importance of enhancing immunotherapeutic modes of action
by means of vector engineering and combination treatment approaches. One such case follows in
Section 8.

8. Mathematical Modeling of Oncolytic Virus Treatment with Immunotherapy

Immunotherapy can have different courses of action, including increasing the efficacy of antitumor
immunity [196,197], reducing immune inhibitory mechanisms [198,199], or injection of dendritic
cells [200] or engineered chimeric antigen receptor (CAR) T cells [201]. A variety of mathematical
models have been developed to simulate different immunotherapies [202]. In 2015, Wares et al.
modeled B16-F10 melanoma cells with adenovirus and dendritic cell injection in vivo [105]. A general
scheme (Figure 5) is shown where dendritic cell injection as immune therapy (IT) is simulated as a
direct increase in effector cells.
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Figure 5. Explicit virus (V), and susceptible (S) and infected (I) cell model with addition of different
immune system compartments (E, effector; IS, other immune system compartments such as antigen
presenting cells) and immunotherapy (IT). Here, the effect of dendritic cell injection IT is modeled as
an increase in effector cells. UV(t) describes the time-dependent introduction of the virus population.
Second-order terms and interactions (death/exhaustion) left out for clarity. Note that the viral infection
term f (V, S) = β SV

S+I in [105]. See Figure 2b for comparison.

Appropriate terms and parameters were used including susceptible cell net growth rate,
death/exhaustion terms, infection, injections of therapy at specified time points, infected cells (4-1BBL
from Ad-∆B7/IL-12/4-1BBL) activating effector cells, infected cells (IL-12 from Ad-∆B7/IL-12/4-1BBL)
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stimulating recruitment of antigen presenting cells (IS). Some terms or portions of terms are functions;
for example, the T cell killing rate is expressed as a base T cell killing rate (k0) that can be enhanced
(linearly, ck) by the presence of cytokine-producing infected cells (I), k(I) = k0 + ckI. The recruitments of
T cells and APCs have a similar functional form of some constant, cN, multiplied by the number
of infected cells (I) responsible for recruitment, sN(I) = cNI. Of note is that there is no explicit
immune response modeled, just the interactions (recruitment) of certain immune components. Second,
a conversion from tumor volume (mm3, experimental data) to number of cells is calculated by a
conversion ratio of a volume of 1 mm3 to equal 1 million tumor cells. Lastly, all cell populations but
uninfected (susceptible) tumor cells are initialized as being 0. Some model parameters are available in
the literature including burst size [203], infected cell lysis rate [3,204–206], viral decay [207,208], T cell
decay [209], maximum fractional T cell killing rate on tumor cells [210], and average time of an APCs
to activate a T cell [211,212].

To calibrate unknown parameters with experimental data, a hierarchical approach was used.
The control case was first simulated and fit to an exponential growth curve. The derived parameters
were then kept constant while individually fitting for each of the individual therapies. Afterwards,
those values were used to find parameters for the combination therapy. A Pearson’s r coefficient
was calculated to give a rigorous fit, where values close to 1 indicates agreement. All models had a
Pearson’s r greater than 0.98 except for the combination therapy model, which had a Pearson’s r = 0.92.

The Ad-∆B7/IL-12/4-1BBL+DC model was used to predict alternative strategies: increasing
dendritic cell dose, alternating Ad and DC injections, varying dose size, varying time between injections
and number of doses. Within specifically posed biological and cytotoxic constraints, model simulations
suggested that sequencing three injections of Ad followed by three injections of DC would be most
effective to shrinking tumor volume. Further, the best order of Ad and DC injections and their
respective optimal doses were highly dependent on temporal spacing. However, as appreciated by
the authors, such predictions were likely to be model-dependent, emphasizing the need to simulate
a variety of mathematical models with increasing and decreasing complexity to evaluate model
predictive power and confidence in study conclusions. Model predictions that schedules that begin
with viral injections would generally yield better decrease in tumor volume have been partially
validated experimentally [213]. Interestingly, a recent robustness evaluation of the Wares model, using
experimental data and a fitted mathematical model as inputs for Virtual Expansion of Populations for
Analyzing Robustness of Therapies (VEPART) [214], also agrees with model predictions.

As the exact mechanisms and functional dependence of many of the different mechanisms in
tumor–immune as well as virus–immune and virus–cancer interactions are yet to be fully deciphered,
mathematical modeling in close dialog with experimental data may help identify likely and unlikely
mechanistic properties of complex biological systems, which could and should iteratively inform
subsequent experimental validation.

9. Discussion and Future Directions

Despite the many breakthroughs in oncolytic virus biology and mathematical modeling, further
improvement in several arenas is essential for successful implementation of OVT in clinical reality.
Such research fields include the generation of safer and more potent vectors by genetic engineering, the
development of high-capacity production pipelines and good manufacturing practice (GMP)-compliant
facilities [215], the selection of appropriate oncolytic agents for certain applications by “build[ing]
on the strengths of individual virus platforms” [216], and the design of more potent combination
therapies [217].

The ideal route of delivery is among the currently most discussed questions in the field and
can be exemplified by T-VEC and MV-NIS, which stand for intratumoral injection and systemic
administration, respectively [217]. The approval of T-VEC was a huge achievement for the field that
might either represent a stepping stone or a barrier for the approval of further oncolytics, which will
have to be compared to this benchmark [217].
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In a rapidly advancing field where various options for genetic modifications and treatment
combinations are becoming available, the necessity for making rational choices of regimen
combinations and scheduling becomes apparent. This can be supported by mathematical modeling
as an in silico prediction tool for preclinical, experimental treatments and analyses of patient data in
clinical trials. A “discovery workflow” has been discussed describing a working relationship between
experimental and computational methods [218]. Between genetic engineering and the resulting
effects on the immune system, a myriad of combination therapies involving oncolytic virus therapy
is inevitable (and ongoing in clinical trials [219]). Oncolytic virus modeling (OVM) is a tool with
proven predictive results when data-driven, which has been used to describe viral interactions with
immune cells in different tissues and immune cells combined with immunotherapy. This may be a key
fundamental feature for future modeling including personal immune profiles when accompanied with
immune surveillance data. An iterative process wherein data continuously refines all models and vice
versa could tackle the complexities of OVM (Figure 6). While ODE systems may be robust enough to
describe spatial interactions, a PDE system may be used to elaborate on several mechanisms of action,
developing a better understanding for an oncolytic virus and a specific cancer.
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Figure 6. A workflow between experimental and computational data describing an iterative process
among in vitro, in vivo, in silico, and clinical models, adapted from [218].

Collaborations between computational and experimental scientists will be instrumental for
accurate and predictive in silico modeling for enhancing pre-clinical and eventually clinical efficacies.
Examples of successful model development and data fitting have been highlighted herein; satisfactory
model predictions, however, remain very much elusive. With sparse experimental data with low
biological resolution of spatial and temporal scales of virus and cell dynamics as well as their
interactions, mathematical formulations of different action terms may fit the data equally well
but their prediction for system behavior in the future or under different experimental conditions
may vary widely [104,220]. The integration of mathematical modeling into experimental cancer
virology may help design experiments to collect longitudinal, high-resolution biological data to
further our understanding of this complex, non-linear biological system. The expertise of several
disciplines—immunology, virology, and cancer biology, to name a few—will guide appropriate
experiments and allow for rational but shorter steps towards successful oncolytic virus therapies.
Additionally, personalized medicine may be a natural extension of these models. The established
concept of distinguishing important immune cells to generate an accurate mathematical model is
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a hopeful glimpse toward a patient-based description of the immune compartment in predicting
cancer therapy.
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