
viruses

Review

Roles of APOBEC3A and APOBEC3B in Human
Papillomavirus Infection and Disease Progression

Cody J. Warren 1,†, Joseph A. Westrich 1, Koenraad Van Doorslaer 2 and Dohun Pyeon 1,3,* ID

1 Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora,
CO 80045, USA; cody.warren@colorado.edu (C.J.W.); joseph.westrich@ucdenver.edu (J.A.W.)

2 BIO5 Institute, School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson,
AZ 85721, USA; vandoorslaer@email.arizona.edu

3 Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
* Correspondence: dohun.pyeon@ucdenver.edu; Tel.: +1-303-724-7279
† Current address: BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.

Academic Editors: Alison A. McBride and Karl Munger
Received: 26 July 2017; Accepted: 16 August 2017; Published: 21 August 2017

Abstract: The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3
(APOBEC3) family of cytidine deaminases plays an important role in the innate immune response
to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3
enzymes also induces somatic mutations in host genomes, which may drive cancer progression.
Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality.
HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A
and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus
infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and
APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of
an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to
cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and
APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.
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1. Introduction

The family members of apolipoprotein B messenger RNA-editing, enzyme-catalytic,
polypeptide-like 3 (APOBEC3; A3) are DNA cytidine deaminases that remove the amino group
from a cytosine, converting it to uracil. Cytosine deamination by A3 results in DNA degradation or
mutations if not repaired (Figure 1A) [1–3]. For many years following their initial discovery, the A3
family members APOBEC3A (A3A) and APOBEC3B (A3B) were considered as viral restriction factors,
important only for inhibiting the replication of endogenous retroviruses and retroelements [4–7].
However, several studies from our and other groups have revealed a broader range of viruses
restricted by A3A and A3B: human immunodeficiency virus 1 (HIV-1) [8–10], parvovirus [11–13],
herpesvirus [14,15], hepatitis B virus (HBV) [16,17], and human papillomavirus (HPV) [18–20] (Table 1).
In addition, recent studies have identified additional important roles for these family members in
diverse cellular processes, including (1) promoting catabolism of foreign DNA [21,22]; (2) editing of
mRNA transcripts [23–25]; and (3) promoting host genome mutations and DNA damage that may
contribute to cellular transformation [26–34].
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Figure 1. Structural features of the human apolipoprotein B messenger RNA-editing, enzyme-catalytic, 
polypeptide-like 3 (APOBEC3s). (A) APOBEC3 family members convert cytosine to uracil and induce 
DNA degradation or mutations if the APOBEC3-mediated conversion of cytosine to uracil is not 
repaired; (B) All APOBEC3 family members are arrayed in tandem on chromosome 22; (C) Schematic 
of APOBEC3 family members containing one or two cytidine deaminase (CD) domains. The 
catalytically active (green) and inactive (red) cytidine deaminase domains are pictured. The conserved 
zinc-coordinating motif is pictured between dashed lines. 

Table 1. Restriction of DNA viruses by APOBEC3 family members. 

Virus APOBEC3 Family Members Functions on Viral Genome References
Parvovirus A3A Unknown [11–13,35] 

Herpesvirus A3A, A3G DNA editing, unknown [14,15] 
Papillomavirus A3A, A3C (?) DNA editing, unknown [18,20,36] 
Hepadnavirus A3A, A3B, A3C, A3F, A3G, A3H DNA editing, deamination, and degradation [16,17,37–40] 

A3-mediated mutagenesis of cellular genomes is hypothesized to contribute to genetic 
aberrations that lead to cancer [30,41]. This A3 mutator hypothesis is supported by several lines of 
evidence: (1) A3A and A3B mutation signatures are distinguishable from those caused by other 
mutagens [29]; (2) A3A and A3B localize to the nucleus [42–44] and induce DNA damage [26,45]; and 
(3) mutation loads correlate with A3A and A3B mRNA expression levels [30,34]. It has been proposed 
that A3B might be responsible for up to half of all the mutations in breast cancer [46]. A3 mutation 
signatures are also prevalent in many other different types of cancers, including HPV-associated 
cervical (CxCa) and head/neck (HNC) cancers [30,31,41,46,47]. Studies from our group and others 
have shown that A3A and A3B are the only two A3s transcriptionally upregulated in HPV-positive 
keratinocytes and cancer cells [18,48]. In the context of HPV positive cells, A3A and A3B upregulation 
is mainly driven by the HPV oncoproteins E7 and E6, respectively. These findings suggest that high 
levels of E6 and E7 expression during HPV persistence may be a major trigger for A3A- and A3B-
mediated mutations. A3A and A3B appear to be primary players in HPV infection and associated 
cancer mutagenesis, and therefore will be the main focus of this review article. 
  

Figure 1. Structural features of the human apolipoprotein B messenger RNA-editing, enzyme-catalytic,
polypeptide-like 3 (APOBEC3s). (A) APOBEC3 family members convert cytosine to uracil and
induce DNA degradation or mutations if the APOBEC3-mediated conversion of cytosine to uracil
is not repaired; (B) All APOBEC3 family members are arrayed in tandem on chromosome 22;
(C) Schematic of APOBEC3 family members containing one or two cytidine deaminase (CD)
domains. The catalytically active (green) and inactive (red) cytidine deaminase domains are pictured.
The conserved zinc-coordinating motif is pictured between dashed lines.

Table 1. Restriction of DNA viruses by APOBEC3 family members.

Virus APOBEC3 Family Members Functions on Viral Genome References

Parvovirus A3A Unknown [11–13,35]
Herpesvirus A3A, A3G DNA editing, unknown [14,15]

Papillomavirus A3A, A3C (?) DNA editing, unknown [18,20,36]
Hepadnavirus A3A, A3B, A3C, A3F, A3G, A3H DNA editing, deamination, and degradation [16,17,37–40]

A3-mediated mutagenesis of cellular genomes is hypothesized to contribute to genetic aberrations
that lead to cancer [30,41]. This A3 mutator hypothesis is supported by several lines of evidence:
(1) A3A and A3B mutation signatures are distinguishable from those caused by other mutagens [29];
(2) A3A and A3B localize to the nucleus [42–44] and induce DNA damage [26,45]; and (3) mutation
loads correlate with A3A and A3B mRNA expression levels [30,34]. It has been proposed that A3B
might be responsible for up to half of all the mutations in breast cancer [46]. A3 mutation signatures
are also prevalent in many other different types of cancers, including HPV-associated cervical (CxCa)
and head/neck (HNC) cancers [30,31,41,46,47]. Studies from our group and others have shown that
A3A and A3B are the only two A3s transcriptionally upregulated in HPV-positive keratinocytes and
cancer cells [18,48]. In the context of HPV positive cells, A3A and A3B upregulation is mainly driven
by the HPV oncoproteins E7 and E6, respectively. These findings suggest that high levels of E6 and E7
expression during HPV persistence may be a major trigger for A3A- and A3B-mediated mutations.
A3A and A3B appear to be primary players in HPV infection and associated cancer mutagenesis,
and therefore will be the main focus of this review article.
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2. Biology of APOBEC3

2.1. Structural Features of APOBEC3s

There are seven human A3 genes (A3A, A3B, A3C, A3D, A3F, A3G, and A3H) that are arrayed in
tandem on chromosome 22 (Figure 1B) [49]. Each of the seven A3 proteins has one (A3A, A3C, A3H) or
two (A3B, A3D, A3F, A3G) cytidine deaminase (CD) domains that are characterized by a conserved
zinc-coordinating motif (H-X-E-X23-28-P-C-X2-4-C) (Figure 1C) [50]. Previous research suggested that
the C-terminal CD domain (CD2) of the double-domain A3s is catalytically active, while the N-terminal
pseudocatalytic domain (CD1), lacking enzymatic activity, is involved in nucleic acid binding (reviewed
in References [51,52]). This generalization is largely based on studies of A3F and A3G, and their
roles in the inhibition of HIV-1 infection, and may not hold true for other A3s [53–56]. Bogerd et al.
showed that point mutations in either domain significantly limited the ability of A3B to restrict HIV-1
infectivity. This suggests that both CD1 and CD2 of A3B are catalytically active [9]. Interestingly, C-to-T
editing of HIV-1 reverse transcripts is still detected if one CD domain of A3B is left functional, but
not when both are rendered inactive [9]. However, the ability of both CD1 and CD2 to edit DNA is
likely context specific. For instance, mutations in CD1 of A3B had no effect on the overall ability to
induce hypermutation of HBV and bacterial DNA, which is in contrast to effects on HIV-1 [9,57]. While
both CD domains of A3B may be catalytically active, it is likely that cytidine deamination is either
preferentially mediated by CD2 or context specific, in terms of the nature of the substrate recognized.

In contrast to A3B, A3A has a single CD domain that mediates both nucleic acid binding and
cytidine deamination. The mechanism by which A3A coordinates both DNA binding and cytidine
deaminase activities has recently been uncovered. A3A exists as both a monomer and dimer when
in solution and bound to a substrate [58,59]. However, the formation of the homodimer is necessary
for high affinity DNA binding [60]. Examination of the A3A crystal structure identified a positively
charged groove that is formed upon A3A dimerization. The positively charged amino acids within
this groove are positioned to bind to the negatively charged phosphate residues of single stranded
DNA (ssDNA) [35,61,62]. These structural studies suggest that the catalytically active form of A3A
exists as a homodimer when bound to a substrate.

The substrate specificity of single-domain A3s, like A3A, is likely dependent on relative protein
abundance. Bohn et al. hypothesized that A3A, at low protein concentrations, is mostly found in
monomeric form and has poor binding affinity for ssDNA. When protein levels are elevated, however,
A3A molecules dimerize and deaminate target cytidines with high binding affinity and specificity
to ssDNA [60]. On the other hand, the double-domain A3s may have evolved to separate DNA
binding from cytidine deamination, resulting in proteins that are more refined to their target. Given
that off-target activity of A3s is associated with cancer risk (discussed further in Section 4), targeting
the activity of these proteins may be crucial for developing next-generation cancer therapies. Such
developments will only be achieved by a thorough understanding of the physiological properties of
A3s, which will be greatly aided by mechanistic insights from studies of A3 structure and function.

2.2. Evolution of APOBEC3s

The A3 locus is specific to mammals, yet there is significant variation in the number and
arrangement of individual A3 family members across species (Figure 2) [50]. For instance, primates and
rodents are relatives within the superorder of placental mammals, Euarchontoglires [63–65]. However,
primate and rodent genomes contain dramatically different numbers of A3 genes: seven A3 genes are
encoded in primates while only one is encoded in rodents [49,66–69]. Additionally, other mammals
grouped together within the superorder Laurasiatheria [68] have varying numbers of A3s, including
dog/pig (two) [70], sheep/cow (three) [71], cat (four) [70], and horse (six) [72]. These studies highlight
the complex evolutionary trajectory of A3s during mammalian speciation, which arose following
a series of gene duplications, fusions, and losses (Figure 2). In addition to having an expanded
repertoire of A3s, primate A3 proteins also display signatures of rapid protein evolution. The rate of
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non-synonymous amino acid substitutions is significantly greater than synonymous substitutions for
several primate A3s [73–76]. This feature, termed positive natural selection, indicates the existence
of a strong selective pressure on the host protein to change and adapt (reviewed in Reference [77]).
The relatively rapid expansion of the number of A3 genes in primates may reflect the necessity,
and likely non-redundant function, for specialization of the A3 family members against particular
pathogens. Given that A3s restrict viral infections, and that mammalian viruses have evolved
countermeasures to avoid A3 restriction, it is plausible that the diversification of primate A3s is
a direct response to cope with a wide array of viruses.
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Figure 2. Copy number variation in mammalian APOBEC3s. Placental mammals are taxonomically
split into four diverse groups (superorders), which include Afrotheria, Xenarthra, Euarchontoglires,
and Larasiatheria. APOBEC3s have been described in the groups belonging to Euarchontoglires and
Laurasiatheria. During mammalian speciation, A3s have evolved through a series of gene duplications,
fusions, and losses. This has resulted in the copy number variability of mammalian A3s during speciation.

2.3. Target Specificity of APOBEC3s

While all A3s deaminate cytidine residues, specific dinucleotide motifs are preferably targeted
by each A3. The dinucleotide motifs for A3 specificity are immediately 5′ to the target cytidine.
For instance, 5′-CC dinucleotides (underline denotes the cytidine targeted for deamination) are the
preferred target for A3G [1,78]. In contrast, A3A and A3B preferentially target 5′-TC dinucleotides [61,
62,79,80]. By analyzing additional bases adjacent to target cytidine dinucleotides, a recent study
further revealed tetra-nucleotide motifs, YTCA and RTCA, differentially targeted by A3A and A3B,
respectively [29]. Target site specificity and relative expression levels in different cell and tissue
types have been used as a proxy for determining the respective roles of individual A3s on cytidine
deamination of both viral and host DNA [20,29,30,81,82].

All seven human A3s bind to ssDNA. A3G targets the minus strand DNA of HIV-1 that is
generated during reverse transcription [1,2]. Additionally, A3A potently inhibits the infection of
adeno-associated virus (AAV), whose genome consists of a linear ssDNA molecule [11]. However,
given that these instances of ssDNA in the cell are relatively rare, additional mechanisms must be
available for A3s to target DNA. In theory, the double-stranded genomes of most DNA viruses and
their host should be protected from A3-mediated cytidine deamination. Nevertheless, A3-induced
mutations have been frequently found in double-stranded DNA (dsDNA) genomes [20,36,82,83].
It has been speculated that transient ssDNA intermediates during gene transcription and genome
replication may serve as substrates for A3 deamination. Using the yeast Saccharomyces cerevisiae as
a model, Hoopes et al. recently demonstrated that A3A- and A3B-mediated mutations are mainly
caused by the deamination of the lagging strand template during DNA replication [84]. Consistently,
an independent group has shown that A3-associated mutations, identified in sequencing data from The
Cancer Genome Atlas (TCGA), are highly enriched on the lagging strand during DNA replication [85].
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In addition to ssDNA generated during replication and transcription, replication stress that leads
to dsDNA breaks also generates ssDNA substrates that A3A and A3B may act upon [32,42]. These
findings imply that cancer cells, given their high levels of cellular proliferation and replication stress,
are prime targets for A3A- and A3B-mediated cytidine deamination. This topic is further explored in
the sections that follow.

2.4. RNA Editing by APOBEC3A

Although ssDNA is the well-known substrate for A3s, recent studies have suggested that A3A
can also mutate cellular RNAs [23–25]. By analyzing RNA sequencing data from monocytes and
macrophages, Sharma et al. discovered widespread C-to-U editing of host cellular mRNAs under
hypoxic conditions or after interferon (IFN) treatment [23]. Knockdown of A3A expression reduced
RNA editing of succinate dehydrogenase B (SDHB), which was previously shown to be mutated under
hypoxic conditions in monocytes [23,86]. Furthermore, editing of cellular RNAs was recapitulated
in 293T cells by transient overexpression of A3A [23,24]. The discovery that A3A deaminates RNA,
in addition to ssDNA, markedly expands the cellular roles of the A3 family.

Despite numerous antiviral roles for A3A, the precise mechanisms of A3A-mediated restriction
are unknown. For instance, transgenic mice expressing human A3A are capable of restricting several
murine retroviruses such as mouse mammary tumor virus and murine leukemia virus, yet very minimal
DNA deamination was observed [87]. In the context of HPV infection, overexpression of A3A during
HPV virion production markedly reduced infectivity [18]. Unexpectedly, despite their restriction being
dependent on a functional A3A catalytic domain, no A3A-induced mutations were found in the HPV16
long control region or E2 gene [18], which were previously identified as A3A mutation hotspots [20,36].
While it is still possible that other regions of the HPV genome may be edited by A3A, RNA editing
may provide an alternative mechanism by which A3A restricts HPV infection in lieu of DNA editing.
For example, deamination of the transcripts encoding L1 and L2 capsid proteins would likely have a
dramatic effect on HPV virion infectivity. Supporting this idea, previous studies have revealed that
virus restriction by A3A can occur in a deaminase-dependent mechanism without DNA sequence
editing, or by a deaminase-independent mechanism [11,12]. A study from the Malim group further
supports this concept by showing that cytidine deamination and DNA editing is not sufficient for
antiviral activity during HIV-1 infection [88]. These results suggest alternative mechanisms by which
A3A restricts virus infections beyond editing viral DNA sequences. Editing of viral transcripts may
provide a novel mechanism by which A3A inhibits virus infection through cytidine deamination.

2.5. Transcriptional Regulation of APOBEC3A and APOBEC3B

The innate antiviral immune response is commonly initiated by cellular sensors that recognize
foreign entities. These sensors relay intracellular signals to their effectors, which are responsible for
clearing invading pathogens from the host cell. The A3 family members are important effectors of the
innate antiviral immune defense (reviewed in Reference [89]). The detection of viral factors by cellular
sensors leads to the activation of type 1 IFN signaling [90], which upregulates the expression of numerous
antiviral genes, including the A3 family members [36,38,91–93]. A3B transcription also appears to be
activated through protein kinase C and nuclear factor kappa-light-chain-enhancer of B cells (NF-κB)
signaling [94,95]. When expressed at high levels, A3s are capable of limiting infection of a diverse range
of viruses, including retroviruses and DNA viruses. We and others have demonstrated that A3A and
A3B transcription is also upregulated by the HPV oncoproteins E6 and E7 [18,48]. Interestingly, analyses
of gene expression data from patient tissue specimens and cell lines confirm that A3A and A3B mRNA
levels are elevated in HPV-positive cancers compared to normal tissues [18,30,48,96]. Together, these
studies suggest that HPV infection induces the expression of A3A and A3B.

The A3B promoter is composed of a distal region for basal transactivation and a proximal
region for transcriptional repression [97]. Interestingly, both the distal and proximal regions contain
E6-responsive elements, which are essential for A3B promoter activity. DNA pull-down and chromatin
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immunoprecipitation assays further identified zinc finger protein 384 (ZNF384) as an important player
for HPV-induced A3B transactivation [97]. Additionally, the same group has reported that HPV16
E6 upregulates A3B transcription by enhancing the expression of transcriptional enhancer factor
(TEA) domain (TEAD) transcription factor that then binds to the A3B promoter [98]. These results
suggest that A3B transcription may be directly activated by HPV16 E6. However, it is still possible that
increased A3A and A3B mRNA levels may be, at least in part, due to an inadvertent consequence of a
master transcription factor dysregulated by the HPV oncoproteins.

It has been speculated that HPV16 E6 expression increases A3B transcription through the
functional inactivation of p53 [48]. Consistent with this notion, it was recently shown that wildtype
p53 represses A3B transcription, and inactivating mutations in p53 protein leads to the upregulation of
A3B expression [30,99,100]. In contrast to A3B, a study showed that A3A expression is upregulated
by activated p53 [99]. A3A alters genome integrity by inducing DNA strand breaks and activating
the DNA damage response [26,42], resulting in cell cycle arrest and apoptosis closely linked to p53
responses. As it is possible that the p53 regulation of A3 expression influences the course of a viral
infection under conditions of cellular stress, understanding the interactions between p53 and A3s may
provide novel avenues to treat persistent viral infections and neoplastic lesions.

3. Restriction of DNA Viruses by APOBEC3A

3.1. APOBEC3A Restriction of HPV Infection

A3A is localized throughout the cell in both cytoplasmic and nuclear compartments [26,42,43].
A growing body of evidence has implicated A3A as an important contributor to somatic mutations in
human genomes [29], further emphasizing that A3A has access to nuclear DNA. Access to the nucleus
may partially confer specificity to the types of viruses targeted by A3A (discussed further below).
A3A is expressed in several cell types, including keratinocytes and myeloid cells [10,20,36,101,102].
Particularly, we have found that compared to cutaneous skin, A3A is expressed at high levels in
mucosal tissue, which is vulnerable to the entry of foreign invaders like viruses [103].

Recent findings suggest that A3A is arguably the most important A3 family member targeting
foreign DNA (Figure 3). A3A can localize to the nucleus [26,42,43], binds to ssDNA with
high affinity [59,61], and deaminates cytidines in transient ssDNA undergoing transcription or
replication [84,104]. The partially single-stranded genomes of HBV and AAV are highly susceptible
to A3A restriction [11,17,37,81,105]. Several lines of evidence suggest that HPV genomes are also
targeted by A3A [20,96,103,106,107]. Based on substrate specificity (TC dinucleotide targets) and high
A3A expression levels in keratinocytes (the host cell for HPV infection), Vartanian et al. provided the
first in vitro and in vivo evidence to suggest that A3A is a mutator of HPV genomes [20]. Since this
seminal study, there have been multiple reports of HPV genome editing in patient tissue biopsies,
including CxCa and oropharyngeal cancers [96,106,107]. These studies highlight that A3A may play
an important role in restricting HPV infection.

Interferon-β (IFN-β) treatment significantly restricts HPV infection in keratinocytes as well
as represses HPV DNA replication in infected keratinocytes [18,108–111]. Given that A3s are
IFN-inducible proteins that target retroviruses and DNA viruses, Wang et al. sought to clarify whether
A3s are also involved in the IFN-β-mediated response against HPV infections. This study revealed that
IFN-β treatment upregulated A3A expression in cervical keratinocytes, and that knockdown of A3A
expression reduced IFN-β-induced hypermutation of the viral E2 gene [36]. However, A3A-induced
hypermutation was detected only after enrichment by differential DNA denaturation PCR (3D-PCR),
indicating that A3A-induced mutation events are rare. These interesting discoveries led us to question
whether A3A affects HPV infectivity. Using our high-yield HPV production system [112], we have
shown that virions packaged in cells overexpressing A3A is dramatically less infectious in keratinocytes.
In contrast, the expression of other nuclear-localized A3s, A3B and A3C, had no effect on restricting
viral infection [18]. HPV restriction by A3A is deaminase dependent, as a catalytically inactive mutant
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A3A was unable to restrict HPV infection [18]. However, using highly sensitive next-generation
sequencing, we were unable to detect A3A-induced mutations in genomic regions previously shown
to be edited by A3s [18,20,36]. Further analysis of whole viral genome or RNA sequences may identify
critical A3A mutation targets that disrupt HPV infectivity.
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Figure 3. A3A is arguably the most important A3 family member in HPV restriction, evolution, and
cancer mutagenesis. (A) A3A localizes to both the cytoplasm and nuclear compartments. Nuclear
access broadens the substrates targeting by A3A; (B) In addition to restricting lentiviruses during
reverse transcription in the cytoplasm, A3A also restricts DNA viruses that replicate in the nucleus,
such as human papillomavirus (HPV) and hepatitis B virus (HBV); (C) Selection pressures imposed
by A3A may lead to viral genome evolution (pictured in red) and partial escape from A3A restriction,
as has been proposed for HPV [103]; (D,E) A3A activity enhanced by virus persistence and/or chronic
inflammation may promote DNA damage and induce somatic mutations in host DNA; (F) Somatic
mutagenesis and DNA damage further enables cancer cell evolution and drives disease progression.

3.2. APOBEC3A-Mediated Clearance of HPV DNA during Persistent Infection

A3A also plays an important role in mediating the clearance of foreign, circular DNA from
cells [21,22]. Stenglein et al. have shown that A3A overexpression leads to the deamination and
degradation of transfected foreign plasmid DNA [22]. Both HBV and HPV genomes are maintained as
dsDNA episomes in the nucleus of persistently infected cells. Given that A3A is nuclear and restricts
foreign circular DNA, it is possible that A3A may mediate the clearance of HBV and HPV DNA
in persistently infected cells. Indeed, Lucifora et al. have shown that IFN-α-induced A3A triggers
cytidine deamination and degradation of nuclear HBV DNA [16]. Confocal microscopy revealed that
A3A colocalizes with the HBV core protein, which likely facilitates close contact with viral DNA in
the nucleus. The degradation of HBV DNA prevents virus reactivation without hepatotoxicity [16],
suggesting that A3A may be used as a tool for the treatment of persistent HBV infection, for which
current therapies are limited. Accordingly, it would be of immense interest to the HPV field to
determine whether A3A can similarly clear persistent HPV infection. In a series of elegant studies,
the Coleman group has identified important roles for antiviral IFN responses in clearing persistent
HPV infection, showing that IFN-β treatment of HPV-positive CxCa cells leads to a rapid loss of viral
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episomes [108,113]. In addition, loss of HPV DNA in CxCa cells during serial passaging is correlated
with a surge in expression of IFN-inducible antiviral genes. This suggests that the antiviral IFN
response is likely one of the key contributors in promoting spontaneous loss of extrachromosomal
HPV DNA [113]. Along with other similar results, these findings collectively suggest that antiviral
IFN responses likely play an important role in limiting the persistence of extrachromosomal HPV
DNA [114–116]. Given that A3A is an IFN-inducible protein in keratinocytes [36], and that A3A can
eliminate foreign DNA [22], it is plausible that A3A may contribute to the loss of HPV genomes in
persistently infected cells, similar to clearance of HBV DNA [16]. However, the restriction pressure
of IFN and A3A may also accelerate HPV-induced cancer progression by facilitating the integration
of HPV DNA into the host chromosome. Kondo et al. have found that A3A expression is strongly
linked to HPV integration in oropharyngeal cancers [96]. Similarly, either IFN-β or IFN-γ treatment
significantly enhances HPV integration in persistently infected cervical keratinocytes [108,115]. These
findings suggest that using IFN and/or A3A may not be feasible as antiviral agents to treat patients.
Developing therapeutics to treat chronic HPV infections requires an in-depth understanding of the
complicated interactions between A3A and HPV during persistent infection.

3.3. Viral Evasion of APOBEC3A-Mediated Restriction

Given the antiviral potency of A3A, it is likely that viruses have evolved countermeasures to
combat or avoid A3A-mediated restriction. For instance, A3A significantly inhibits HIV-1 replication
following infection of myeloid cells [10]. Interestingly, the viral accessory proteins Viral infectivity
factor (Vif) and Viral protein X (Vpx) of HIV-1 and simian immunodeficiency virus of macaques
(SIVmac), respectively, are capable of degrading A3A protein [10]. A3A degradation by viral proteins
appears to be conserved in primate lentiviruses, further emphasizing the importance of antagonizing
A3A during lentiviral infection. Similarly, as A3A restricts HPV infectivity, elevated A3A expression in
HPV-infected cells is likely to be deleterious for viral fitness. Thus, one would predict that HPV has
evolved strategies to evade A3A-mediated restriction. It is well known that the HIV-1 accessory protein
Vif degrades another A3 family member, A3G, through a ubiquitin mediated, proteasome-dependent
process that requires the cellular factors cullin 5, elongin B/C, and Ring-box protein 1 (RBX1) [117–119].
Interestingly, high-risk HPV E7 coordinates a similar process whereby interactions with the cullin
2 ubiquitin ligase complex, which also contains elongin B/C and RBX1, mediates the degradation
of the tumor suppressor retinoblastoma protein (pRB) [120–122]. Given these striking similarities,
it stands to reason that high-risk HPV E7 might facilitate the degradation of A3A protein in a process
similar to HIV-1 Vif. Contrary to this hypothesis, we found that the expression of high-risk HPV E7
in keratinocytes significantly increased A3A protein levels [123]. While this relative increase in A3A
protein may well explain the A3 mutation signatures in HPV-positive cancers, it implies that HPV
likely employs other mechanisms to cope with elevated A3A levels during persistent infection.

As explained above, A3s deaminate cytidines within the context of preferred dinucleotides.
A3A, for instance, prefers targeting cytidine residues that are preceded by thymidine (5′-TC).
An alternative mechanism to evade A3A deaminase activity would be to reduce the prevalence
of A3A target sequences within the viral genome. Underrepresentation of CG dinucleotides in small
DNA viruses, including polyomaviruses and papillomaviruses, has been suggested as a means to evade
toll-like receptor 9 (TLR9) recognition and/or host DNA methylation of viral genomes [103,124–127].
As papillomaviruses have co-evolved with their host over millions of years, it is possible that A3A
has exerted selective pressure on papillomavirus evolution, resulting in reduced TC dinucleotide
contents in viral genomes (Figure 3). Analysis of 274 papillomavirus genomes has revealed that CG
and TC dinucleotides are significantly depleted in all papillomavirus genomes [103]. Interestingly,
the magnitude of TC depletion is greater in HPV genotypes from the Alphapapillomavirus genus
(α-HPV) than β- or γ-HPV genotypes, while the degree of CG depletion is similar across all HPV
genera. The significant difference in TC depletion between α- and β/γ-HPVs may be caused by either
(1) the ancestral Alphapapillomavirus having low TC contents that subsequently radiated to all extant
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genotypes, or (2) a strong selective pressure that was exerted on the entire Alphapapillomavirus clade
leading to extreme TC depletion. Phylogenetic reconstruction of the ancestral Alphapapillomavirus
state revealed that the most recent common ancestor of all Alphapapillomavirus had TC contents
significantly higher than extant members of this clade [103]. Thus, TC depletion likely occurred after
Alphapapillomavirus began to diverge. This finding is suggestive of a possible role for A3 restriction
that drove TC depletion within this clade. One major hallmark of most α-HPVs is tropism for mucosal
tissues, while β- and γ-HPVs are typically found in association with cutaneous skin [128]. Analysis of
publicly available RNA sequencing data revealed that A3A expression levels are significantly higher in
mucosal skin compared to cutaneous skin [103]. Taken together, these findings suggest an evolutionary
model in which HPV copes with elevated A3A expression by limiting the number of TC dinucleotides
within their genomes [129]. In addition to the reduction of A3A target motifs, HPV may employ other
means of escaping restriction by A3A. Further studies may provide additional clues about the complex
interactions between HPV and A3s.

4. Cancer Mutagenesis by APOBEC3A

4.1. Sources of APOBEC3 Mutational Signatures in HPV-Positive Cancer

Although many studies have identified A3 mutational signatures in multiple human cancers,
the molecular triggers resulting in off-target A3 activity on cellular DNA remain poorly understood.
We and others have reported that the mRNA levels of A3A and A3B are significantly higher in
HPV-positive keratinocytes and cancer tissues compared to uninfected keratinocytes and normal
tissues, respectively [18,48]. A3A mRNA expression is increased by high-risk HPV E7, while A3B
mRNA expression is upregulated by both the HPV oncoproteins E6 and E7 in cultured keratinocytes
and human tonsillar epithelial cells. Interestingly, our results have shown that the mRNA expression
levels of A3A and A3B are highly correlated, indicating that A3A and A3B may share common
mechanisms for transcriptional regulation [18]. While mRNA expression of A3A and A3B has been well
studied, little is known about their protein levels and posttranslational modification. Our unpublished
study found that A3A protein levels are dramatically increased in human keratinocytes by high-risk
HPV E7 mediated protein stabilization [123]. Consistent with these results, analysis of exome
sequencing data from TCGA has revealed that HPV-positive HNC genomes contain high levels
of A3-mediated driver mutations, while HPV-negative HNC displays a smoking-associated mutational
signature [130]. Further, A3 deaminase activity is causally associated with helical domain hotspot
mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene,
which are more prevalent in HPV-positive cancers when compared to HPV-negative cancers [131].
Taken together, these findings strongly suggest that HPV oncoprotein expression during persistent
viral infection may be the trigger for the increase of A3A and A3B expression, culminating in the
accumulation of somatic mutations in HPV-positive cancers (Figure 3).

4.2. The Relative Contributions of APOBEC3A and APOBEC3B to Cancer Mutagenesis

The expression of the HPV oncoproteins E6 and E7 immediately inactivates numerous cellular
proteins, including the tumor suppressors p53 and pRB [132,133]. While these mechanisms are
important for promoting cell proliferation, they alone are not sufficient to drive cancer progression.
The accumulation of additional somatic mutations over decades of persistent infection is necessary for
cancer progression. Recent findings suggest that A3A and/or A3B potentially play important roles in
cancer mutagenesis by mutating host genomic DNA [30,31,41,46,47,134]. Since both A3A and A3B are
upregulated in HPV-positive epithelial cells and target the same TC dinucleotide motif, it is difficult to
tease out the relative contributions of either in promoting somatic mutations in cancer cell genomes.
Previous studies have correlated elevated A3B mRNA expression with A3-associated mutation loads,
and proposed A3B as the source of A3 mutation signatures in cervical, bladder, lung, head and neck,
ovarian, and breast cancers [30,47,135,136]. Burns et al. further showed that knockdown of A3B



Viruses 2017, 9, 233 10 of 20

expression by short-hairpin RNA (shRNA) abrogates cytidine deaminase activity in the lysate of a
breast cancer cell line [41]. Contrary to these findings, recent studies have shown that the A3B deletion
polymorphism, highly prevalent in South East Asia, China, and Oceania, is associated with increased
risk of breast and ovarian cancer [136–138]. Caval et al. revealed that A3B deletion frequently generates
a chimeric A3A–A3B deletion allele in which the A3A gene is fused to the 3' untranslated region (UTR)
of A3B [139]. The mRNA generated from the chimeric A3A–A3B deletion allele is more stable than
wildtype A3A transcripts, and the resulting protein facilitates DNA damage. Using yeast models,
Chan et al. recently found that A3A and A3B mutation signatures may be distinguishable by the
preferred target motifs: YTCA favored by A3A and RTCA favored by A3B [29]. Further analysis
of sequence data from yeast and human cancer genomes uncovered that A3A-like mutations are
10 times more abundant than A3B-like mutations. Based on these results, the authors propose that
mutagenesis and DNA damage caused by A3A might be greater than A3B in HPV-associated cancers.
Interestingly, A3A expression is tightly correlated with HPV DNA integration into host chromosomes,
which is facilitated by dsDNA breaks [96,140]. Consistently, A3A protein dramatically accumulates in
HPV-positive keratinocytes by E7-mediated protein stabilization [123]. Taken together, these findings
suggest that both A3A and A3B may contribute to cancer mutagenesis, but likely have differential
contributions in various cancers when triggered by different mechanisms.

4.3. Source of APOBEC3 Signature in Other Virus-Associated Cancers

Type I IFNs, commonly induced during various virus infections, highly upregulate A3A and A3B
expression. This suggests that persistent inflammatory responses may generally facilitate somatic
mutations by A3A and A3B [16,18,38,92]. A3B is also upregulated by several polyomaviruses (PyV),
including JC PyV, Merkel cell PyV, and BK PyV through a mechanism dependent on large T antigen
expression [141]. These results suggest that A3 mutation signatures from A3A and A3B may also
be caused by other virus infections as well. However, it is not clear whether the increase of A3B
expression observed in many HPV-negative cancers is mediated by type I IFN or by other factors such
as viral proteins similar to the HPV oncoproteins. Further investigations are required to determine the
mechanisms by which A3A and A3B are activated and contribute to cancer mutagenesis.

4.4. APOBEC3-Mediated Somatic Mutations and Clinical Outcomes of HPV-Positive Cancers

Somatic mutagenesis has been recognized as a key mechanism of carcinogenesis by generating
driver mutations in numerous genes including p53, epidermal growth factor receptor (EGFR), pRB,
and PIK3CA [142,143]. Given that the deaminase activity of A3A and A3B in epithelial cells mutates
the TC motifs of host DNA as well as viral DNA, somatic mutagenesis by A3A and A3B is likely
associated with cancer risk. Indeed, a high frequency of activating PIK3CA mutations was observed
in HPV-positive HNCs compared to HPV-negative HNCs [131,144]. Our analysis also showed that all
PIK3CA mutations in HPV-positive HNC, dominant with the E542K and E545K substitutions, are caused
by GA-to-AA changes, while only about a half of PIK3CA mutations in HPV-negative HNC are from
GA-to-AA changes (Figure 4). As PIK3CA is an oncogenic driver gene, A3A- and/or A3B-mediated
somatic mutations may contribute to HPV-associated cancer progression through mutations in PIK3CA.

Contrary to the idea that A3-mediated somatic mutations may drive HPV-positive cancer
progression, recent cancer immunology studies have shown that high levels of somatic mutations favor
antitumor immune responses that also coincide with better prognosis after immunotherapies [145–147].
In these instances, tumor neoantigens are recognized as emerging targets for personalized cancer
immunotherapies. This implies that cancers with a high degree of A3 mutation signatures may be
beneficial for immunotherapies that induce robust antitumor T cell responses specific to neoantigens
generated by A3-mediated mutations. A recent study has revealed that tumor infiltrating lymphocytes
in CxCa are more reactive to neoantigens than to HPV viral epitopes [148]. This suggests that abundant
neoantigens in HPV-positive cancers may be associated with the deaminase activity of upregulated
A3A and A3B expression. If this is true, A3-mediated mutations could be utilized beneficially to identify
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T cell epitopes and treat HPV-positive cancer patients. Thus, it would be interesting to investigate if
A3 mutation loads in patients correlate to better outcome following current immunotherapies with
immune checkpoint blockades.Viruses 2017, 9, 233 11 of 20 
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W328S). Shown are the percentage of patients containing each mutation signature. 
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compared to HPV-negative HNCs. Amino acid mutation data of PIK3CA in HNC patients was
obtained from The Cancer Genome Atlas through cBioPortal (cbioportal.org) [149]: HPV-positive HNC
(HPV+ HNC), n = 36; HPV-negative HNC (HPV- HNC), n = 243. Amino acid changes by TC/GA
mutations are indicated as red (E542K and E545K) and orange (M1043V, R88Q, G1007R, G451R, R335G),
and amino acid changes by non-TC/GA mutations are indicated as blue (H1047L, H1047R) and green
(C604R, C901F, C971R, E110del, E365V, G363A, K111E, K111N, Q75E, R975S, V344G, W328S). Shown
are the percentage of patients containing each mutation signature.

5. Conclusions and Perspectives

The inactivation of tumor suppressors by HPV oncoproteins is robust and quick. For example,
p53 and pRB are degraded in host cells in which high-risk HPV E6 and E7 are expressed [132,133].
Nevertheless, HPV-associated cancer progression is a slow process, typically taking two to three
decades. A growing number of studies have shown that the continuous expression of E6 and E7
is required through the full process of cancer progression and maintenance [150–156]. Our CxCa
progression study has shown that many HPV-specific gene expression changes occur in a later stage
or continuously throughout decades of cancer progression [157]. In this regard, the roles of A3A
and A3B in HPV-associated cancer progression are particularly interesting. However, most of these
new findings have generated more questions than answers, particularly due to the causal relations
and the need for defining the mechanistic elements of these interactions. Now, most studies on
A3-induced cancer mutagenesis have been limited to using highly biased sequencing approaches
or are based on correlations between expression levels and preferred target sequence changes.
Since A3-induced somatic mutations probably accumulate over decades, it would be technically
challenging to recapitulate and confirm this process in experimental models. To overcome these
barriers, developing transgenic animal models expressing human A3s along with HPV oncoproteins
may provide useful tools to track cancer mutagenesis. Additionally, further work is needed to elucidate
the mechanisms of A3A restriction of HPV infection, which are distinct from A3B and A3C. It would
also be interesting to further investigate whether A3A and A3B restrict other small DNA tumor viruses
and contribute to somatic mutagenesis of their associated cancers. Future studies may provide great
insights into how virus-host interactions drive the evolution of viruses and host cells, and how these
interactions may lead to unexpected consequences such as cancer development.
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