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Abstract: Telomerase extends the repetitive DNA at the ends of linear chromosomes, and it is 
normally active in stem cells. When expressed in somatic diploid cells, it can lead to cellular 
immortalization. Human papillomaviruses (HPVs) are associated with and high-risk for cancer 
activate telomerase through the catalytic subunit of telomerase, human telomerase reverse 
transcriptase (hTERT). The expression of hTERT is affected by both high-risk HPVs, E6 and E7. 
Seminal studies over the last two decades have identified the transcriptional, epigenetic, and 
post-transcriptional roles high-risk E6 and E7 have in telomerase induction. This review will 
summarize these findings during infection and highlight the importance of telomerase activation 
as an oncogenic pathway in HPV-associated cancer development and progression. 
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1. Introduction: Human Papillomavirus Infections 

Human Papillomavirus Infection and Life Cycle in Stratified Squamous Epithelium 

Human papillomaviruses (HPVs) are small, non-envelope, double stranded DNA viruses, and 
there are more than 200 papillomavirus types identified to date (see curated list at Papillomavirus 
Episteme (PaVE); https://pave.niaid.nih.gov/#home). All HPVs complete their life cycle in stratified 
squamous epithelium, either cutaneous or mucosal dependent on their tropism (reviewed in [1,2]). 
The HPV life cycle begins with infection of basal cells in stratified squamous epithelium. These cells 
are reached either through microabrasions or at anatomic sites where monolayer, columnar 
epithelium transition to stratified squamous epithelium. These sites of transition are the found at the 
cervical transformation zone, the anal verge, and crypts in the oral mucosa, and intriguingly these 
are also where many HPV-associated cancers occur [3]. There is also evidence the cervix and anal 
verge contain specific cells that support HPV-associated cancers and have signature gene expression 
profiles [4,5]. Whether or not these cells represent a preferred host for the virus or more narrowly for 
the initiation of cancer, we broadly understand that a productive HPV infection begins in the bottom 
layer of stratified squamous epithelium. 

In the basal layer, the HPV genome escapes its viral capsid and is maintained at 50–60 copies 
per cells (ranging from 10 to 200 copies) [2,6], while the early (E) viral genes are expressed. E1 and E2 
support HPV DNA replication and the measured expression of E6 and E7 [2,6]. One function of E6 
and E7, as well as E5, is to reduce activation of the innate immune system and avoid viral clearance 
[7–9]. Evading immune sensing and maintaining copies of the viral genome are both critical to 
establishing an infection. 
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As cells leave the basal layer, they rise through the suprabasal and spinous layers and progress 
through differentiation. HPV requires this cellular differentiation program to complete its own viral 
life cycle. Without it, HPV has an abortive infection. Therefore, as HPV-infected host cells rise 
through the differentiating layers, HPV progresses through its own life cycle. In these differentiating 
layers, HPV DNA becomes amplified to several thousand copies per cell [2], and late (L) gene 
expression is activated. L1 and L2 form the protein shell of HPV, and they incorporate the HPV 
episomal DNA into new infectious virions. Those released as epithelial cells are sloughed off at the 
top of stratified squamous epithelium, completing the viral life cycle. 

Although HPV requires its host cell to differentiate in order to complete its life cycle, it also 
requires it host cell to continue to grow when normally it would not. HPV dysregulates the balance 
of growth and differentiation found in stratified squamous epithelium to do so. In low-risk HPV 
types, this is manifest as warts. In high-risk HPV types, this leads to dysplasias and carcinoma in situ 
[10]. This dysregulation of growth and differentiation is driven primarily by the E6 and E7 genes. E6 
and E7 drive cells to continue to grow and divide when they otherwise would not, and, to that end, 
E6 and E7 are expressed in the differentiating layers of stratified squamous epithelium [2,10]. By E6 
and E7 disrupting the typical segregation of cell cycle and growth from differentiation, more HPV 
DNA can be copied and expressed, and more cells infected by HPV can grow. 

There are at least 15 HPV types that are defined as high-risk (HR) by their association with 
cervical cancer [11]. HPV-associated cancers universally express the HR E6 and E7 genes, thus are 
considered to be HPV’s viral oncogenes. If HR E6 and E7 are introduced into normal diploid cells, 
they become immortalized [12,13]. If HR E6 and E7 expression is reduced in HPV-positive cervical 
cancer cell lines, the cells growth arrest [14,15]. This implies that not only are the HR E6 and E7 genes 
required for oncogenesis, but they are also required for the maintenance of malignant phenotype. 
There are critical oncogenic pathways that HR E6 and E7 affect. HR E7 targets the retinoblastoma 
protein (Rb) for degradation in epithelial cells [16,17]. This allows infected epithelial cells to proceed 
through S phase and the cell cycle. HR E6 targets p53 for degradation to avoid apoptosis [18,19]. It 
similarly targets PSD-Dlg-ZO-1/2 (PDZ) containing proteins for degradation, disrupting cellular 
apicobasal orientation and cell-to-cell adhesion in the epithelium, leading to hyperplasia [20–24]. HR 
E6 also activates gene expression; its most critical gene to activate is human telomerase reverse 
transcriptase (hTERT), the catalytic subunit of telomerase. It is the degradation of Rb by HR E7 and 
the activation of hTERT by HR E6 that drives normal keratinocytes to immortalization [12,13]. 

In this review article, we will describe the roles E6 and E7 have in telomerase induction during 
HPV infection and in oncogenesis. We will first define telomeric DNA, its role in DNA protection, 
and the enzymatic function of telomerase. Then, we will highlight the multiple ways HR E6 and E7 
derepress hTERT to activate and accelerate telomerase activity. Finally, we will discuss how E6, E7, 
and hTERT expression changes during oncogenesis. 

2. Telomeric DNA and Telomerase 

Telomeric DNA caps the ends of linear chromosomes, is repetitive, and is approximately  
5000 to 15,000 nucleotides in length in humans [25,26]. No genetic material is found within telomeric 
DNA itself. Rather, it is bound by the shelterin protein complex to block double strand (dsDNA) 
repair signaling [27], protecting against non-homologous end joining and erroneous chromosomal 
break repair [27]. Telomerase, a ribonucleoprotein enzyme complex, extends this repetitive telomeric 
DNA. The holoenzyme includes the catalytic subunit hTERT that is expressed at rate-determining 
levels [28–30], the telomerase RNA component, TERC or TR, used to extend the six nucleotide repeat 
5’ TTAGGG 3’ found in telomeric DNA, and the protein dyskerin [26,31]. Telomerase is typically 
active during embryonic and fetal development [32] and in stem cells [33]. It is not active in normal 
somatic cells. However, telomerase activity has been detected in almost all human tumors and 
immortalized cells in culture [29,30,34]. 

Without telomerase activity, the linear chromosomes of cellular DNA are serially shortened 
with every cell cycle and division by 100 to 200 nucleotides [35]. This DNA loss is called the “end 
replication problem.” As telomeric DNA becomes critically shortened over time, normal somatic 
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diploid cells enter mortality stage one (M1) and undergo either replicative senescence or apoptosis 
[35–38]. If these cells continue to cycle beyond stage M1, they lose the protective shelterin protein 
complexes and enter mortality stage two (M2) or crisis. In crisis, cells signal that there are dsDNA 
breaks at the ends of chromosomes requiring repair. This genomic instability creates the “end 
protection problem.” It leads to anaphase bridges and chromosomal breaks that are catastrophic to 
the cell [39–41]. Only clonal cells survive that have had enormous chromosomal rearrangements 
[41]. Consequently, the extension of telomeric DNA by telomerase allows diploid cells to grow over 
time, avoiding apoptosis, senescence, and chromosomal rearrangements. It is because of this 
allowance that telomerase and its rate-determining catalytic subunit hTERT are expressed in nearly 
all cancers [30,34,42,43]. 

3. Telomerase and hTERT Activity Driven by HR E6 and E7 

Studies in the late 1980s defined the roles HR E6 and E7 played in cellular immortalization, 
cancer development, and cancer progression [12,13]. In a seminal paper by Kiyono et al. HR E6 and 
E7 were found to collaborate in the immortalization of both primary fibroblasts and keratinocytes, 
specifically by dysregulating Rb/p16INK4A and telomerase [44]. HR E7 was important for 
immortalization, but it did not directly affect telomerase [44]. Rather, HR E6 did. HR E7 was 
described to increase hTERT driven expression of luciferase and augment telomerase activity driven 
by HR HPV E6 [45]. In HeLa cells, re-expression of either HR E6 or E7 after their removal led to 
increased hTERT [46]. Although E7 could synergize the E6 regulation of telomerase and cellular 
immortalization, HR E6 is the principal trigger and regulator of hTERT expression and telomerase 
activity (Table 1). Other studies built on these foundational reports. 

Table 1. HR E6 and E7 regulation of hTERT and cellular protein targets for that regulation. 

HPV Gene Effect on hTERT Cellular Protein Target 
Chromatin Effects

E6 and E7 Promoter methylation changes  
E6 Increase promoter acetylation HATs and HDACs, mSin3A 

Transcription Effects
E6 Increase transcriptional activators c-Myc/Max, Sp1 
E6 Decrease transcriptional repressors c-Myc/Mad, Maz, USF1, NFX1-91 
E7 Increase expression with E6  

RNA Effects
E6 Increase transcript stability NFX1-123, PABPCs 
E6 Increase active spliced isoform of hTERT c-Myc 

Protein Effects
E6 Binds hTERT hTERT 

HR: high-risk ; hTERT: human telomerase reverse transcriptase; HPV: human papillomavirus; HATs: 
histone acetyltransferases; HDACs: histone deacetylases; mSin3A: SIN3 transcription regulator 
family member A; c-Myc: MYC proto-oncogene; Max: MYC associated factor X; Maz: MYC 
associated zinc finger protein; USF1: Upstream transcription factor 1; NFX1-91: Nuclear transcription 
factor, X-box binding 1, isoform 3; NFX1-123: Nuclear transcription factor, X-box binding 1, isoform 
1; PABPCs: cytoplasmic poly(A) binding proteins. 

Recent studies have confirmed that low-risk (LR) E6 does not activate telomerase [47] while HR 
E6 is necessary and sufficient for telomerase activation in keratinocytes [48–51]. Without HR E6, 
telomerase is not detected in epithelial cells, and the catalytic subunit of telomerase, hTERT, is not 
expressed [48,50]. In addition to HR E6 regulating the activity of telomerase, HR E6 was found to 
bind hTERT itself and repetitive telomeric DNA [52]. Therefore, the role HR E6 has in hTERT, 
telomerase, and telomeric DNA regulation is multilayered, demonstrated by its redundant actions to 
drive immortalization.  
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The E3 Ubiquitin Ligase E6 Associated Protein (E6AP) is important for the activation of hTERT 
expression and telomerase activity by HR E6 [53–55]. E6AP partners with HR E6 to polyubiquitinate 
and degrade p53 and PDZ-containing proteins [18,19,21,56,57], but this partnership does not lead to 
the degradation of hTERT or telomerase; instead, it increases hTERT and telomerase. Decreasing HR 
E6 and E6AP by microRNA (miR375) indirectly reduced hTERT and telomerase activity in cells [58], 
and the E6 motifs needed to bind E6AP were also required for telomerase activation and 
immortalization in fibroblasts and keratinocytes [59]. Hence, HR E6 and E6AP (E6/E6AP) function as 
principal inductors of telomerase, and its catalytic subunit hTERT. 

3.1. hTERT: Promoter Regulation 

Most research on telomerase regulation has focused on the expression of its catalytic subunit, 
hTERT. The hTERT gene is constitutively repressed in somatic epithelial cells; this repression occurs 
at its promoter. The hTERT promoter is approximately 1100 nucleotides in length, with its core 
promoter being only 200 to 300 nucleotides long [60–62]. Normally, transcriptional repressors of 
hTERT are bound to cis elements in its core promoter, blocking transcription [48,60,61,63–69]. These 
cis elements are E boxes, GC-rich sites, and X boxes. 

Two E box cis elements flank the transcriptional start site of hTERT [61,62,66], and if these E 
boxes are mutated or deleted, hTERT expression and telomerase activity are dramatically reduced 
[50,54]. These E boxes are normally bound by c-Myc as a heterodimer with either Max or Mad. These 
c-Myc/Max or c-Myc/Mad heterodimers are important for hTERT transcriptional activation or 
repression, respectively [65,66,70–72]. Upstream transcription factor 1 (USF1) also binds to E boxes, 
competitively and sterically repressing hTERT expression by c-Myc/Max [50,73,74] Although the 
amount of c-Myc that binds to the hTERT promoter does not correlate to hTERT expression, the 
presence of c-Myc at the promoter is important [51,72,75]. E6/E6AP are also bound at E boxes in the 
hTERT promoter [51,54,74,75], and they interact with c-Myc to drive gene expression [51]. The 
requirement for E6AP to drive hTERT expression at the promoter with HR E6 is controversial [53–
55,76,77], but the cis E boxes within the hTERT promoter are required for its transcriptional 
activation with or without HR E6. 

There are five GC-rich cis elements in the hTERT promoter 5′ of the transcriptional start site 
[50,71,74]. Sp1 binds to these elements and transcriptionally activates hTERT expression [50,71]. Maz 
also is bound at these sites but is a transcriptional repressor [71]. Like deletion of the E boxes, 
deletion of GC-rich cis elements leads to loss of hTERT promoter-driven transcriptional activation 
[50]. 

Finally, there are two X boxes in the hTERT promoter [48]. One is downstream of the hTERT 
transcriptional start site, lies within the 5′ UTR of hTERT, and overlaps with the downstream E box 
to which c-Myc/Max binds [48]. The second is upstream of the hTERT core promoter in an inverted 
position [48]. Nuclear transcription factor X-box binding 1, isoform 3 (NFX1-91) is a repressor of 
hTERT transcription and is bound constitutively at the hTERT downstream X box [48,78]. NFX1-91 is 
polyubiquitinated by E6/E6AP and targeted for proteasomal degradation [48]. Its removal from the 
hTERT promoter leads to transcriptional activation of hTERT [48]. 

3.2. hTERT: Epigenetic Regulation 

Beyond studies of the hTERT promoter cis elements and the transcriptional proteins that bind 
those elements, epigenetic studies of the hTERT promoter demonstrate important structural 
chromatin changes that affect transcriptional activation of hTERT [78]. Several studies document the 
importance of E6/E6AP in opening the hTERT promoter chromatin structure as they change histone 
acetyltransferase (HAT) and histone deacetylase (HDAC) recruitment to the hTERT promoter 
[53,78]. The hTERT repressor NFX1-91 not only binds the promoter X box cis element but also binds 
SIN3 transcription regulator family member A (mSin3A), a transcriptional co-repressor that recruits 
HDACs to promoters [78]. When NFX1-91 is degraded by E6/E6AP, HDAC activity at the hTERT 
promoter is lost and HAT activity increases [78], and with this, histone acetylation increases further 
over time [53]. 
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DNA methylation patterns at the hTERT promoter also shift during an HPV infection and in 
tissue culture studies of HPV positive cells. Specific regions of the promoter become 
hypermethylated, while other regions become hypomethylated, during long-term tissue culture of 
cells with HR E6 and E7 [79–82]. Although a direct causal association between hTERT promoter 
methylation and cancer development has not been seen [83], there are changes that parallel increases 
in hTERT expression, and these changes in methylation patterns correlate with HR and probable HR 
E6 expression [84]. 

3.3. hTERT: Post-Transcriptional Regulation 

Post-transcriptional regulation of hTERT by alternative mRNA splicing and mRNA 
stabilization is important for telomerase activity [32,85,86]. In non-HPV studies, c-Myc shifts hTERT 
mRNA expression from a non-active splice variant to an active form [87]. RNA processing proteins, 
such as Serine-Arginine Rich Splicing Factors, are also expressed at increased levels in high-grade 
cervical dysplasias [88], pointing indirectly to HR HPV manipulating RNA processing proteins 
during oncogenesis. 

We found that hTERT and telomerase activity are upregulated post-transcriptionally by HR E6 
through the host cellular protein NFX1-123 [86]. NFX1-123 is the longer splice variant of the NFX1 
gene (the hTERT transcriptional repressor NFX1-91 is the shorter splice variant) [48,89]. Greater 
expression of NFX1-123 leads to increased hTERT and telomerase activity with HR E6, and knock 
down of endogenous NFX1-123 reduces the ability of HR E6 to increase hTERT and telomerase 
[86,89]. The mechanism by which NFX1-123 augments hTERT expression is through stabilization of 
the hTERT mRNA, and the 5′ UTR of the hTERT transcript is necessary for this stabilization [86]. 

NFX1-123 contains two protein motifs important for binding, stabilizing, and augmenting 
hTERT expression. The R3H domain of NFX1-123 has putative single-stranded nucleic acid binding 
capabilities [86,89,90], and when this motif is deleted, the stabilization and increased expression of 
hTERT seen in HR E6 expressing cells is lost [86,89]. Second, the poly(A) binding protein interacting 
motif (PAM2) of NFX1-123 directs binding of cytoplasmic poly(A) binding proteins (PABPCs) to 
NFX1-123, and PABPCs increase the stability and translation of genes with poly (A) tailed mRNA 
[89,91]. Like the R3H domain, when the PAM2 motif of NFX1-123 is mutated or deleted, its ability to 
augment hTERT expression and telomerase activity by HR E6 is also lost [86,89]. 

Cytoplasmic poly(A) binding proteins themselves are important in hTERT expression and 
telomerase activity in HR E6 positive cells. When PABPC types 1 and 4 are knocked down, hTERT 
and telomerase activity are reduced [92]. Conversely, when PABPC type 4 is overexpressed, hTERT 
and telomerase are augmented, and cells with either more hTERT or more PABPC type 4 grow better 
in culture [92]. 

Collectively, these research findings highlight multiple ways hTERT mRNA is 
post-transcriptionally regulated. Again, the duplicative mechanisms, from DNA, chromatin, and 
RNA regulation, that HR E6 uses to increase hTERT and telomerase emphasizes its importance to 
HPV and oncogenesis. 

3.4. hTERT: Beta HPV E6 

Most studies examining the regulation of telomerase by HPV have focused on HR HPVs from 
the α genus. More recent work has examined the role β genus HPVs play in nonmelanomatous 
squamous cell carcinoma, and how the beta E6 and E7 proteins may also activate oncogenic 
pathways, whether similar or disparate to α HR E6 and E7 proteins. Work by Galloway et al. has 
determined the oncogenic potential of β HPV types through direct analysis of their E6 and E7 
protein functionality, and specifically how different E6 types activate hTERT expression, telomerase 
activity, and immortalization [40,93]. β E6 proteins with greater effect on hTERT activation and 
telomerase activity have improved cellular growth and longevity in culture [93]. This improvement 
is not only proportional to telomerase activity but also depends on the presence of E6AP [93]. 
Therefore, like α HR HPV types, several β genus E6 genes drive hTERT expression and telomerase 
activity. 
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4. Telomerase in HPV-Associated Cancers 

During cervical cancer initiation and progression, the expression of hTERT and the activity of 
telomerase parallels worsening disease [94–97]. Approximately half of HPV positive squamous 
intraepithelial lesions and cervical intraepithelial grade III lesions have detectable telomerase 
activity and that increases to over 90% in HPV positive cervical cancer samples [94,98]. The level of 
hTERT expression and telomerase activity found in cervical lesions is proportional to the pathologic 
severity of disease detected [94,96,98]. In HPV-positive cancers, telomerase is universally expressed 
(modeled in Figure 1) [34]. Telomerase is increasingly identified as having both canonical and 
non-canonical functions, and each is important to HPV-induced cellular immortalization and 
oncogenesis [99]. 

 

Figure 1. HPV infection and telomerase induction. Telomerase, and its rate determining catalytic subunit, 
hTERT, is normally not expressed in somatic cells. With a HR HPV infection, E6 and E7 activate the hTERT 
gene. With disease progression, hTERT activation and telomerase activity increases (demonstrated by 
darker, larger arrows), and the expression of HR E6 and E7 also increases with the integration of HPV 
DNA into the host cell chromosomal DNA or loss of E2 regulation. LGSIL (low-grade squamous 
intraepithelial lesion) is typical for an active HPV infection. HGSIL (high-grade squamous intraepithelial 
lesion) is typical for a HR HPV infection with worsening cytologic changes and parallel greater histologic 
involvement, with multiple layers of the stratified squamous epithelium. CIN2/3 (cervical intraepithelial 
neoplasia 2 or 3) shows histologic changes due to an active HPV infection that involved most (2) or all (3) 
of the stratified squamous epithelium. Carcinoma in situ is the full thickness involvement of stratified 
squamous epithelium without breakdown of the basement membrane. 

Interestingly, during the transition from HR HPV infection, to dysplasia, to frank cancer, HPV 
DNA typically no longer remains episomal. It becomes integrated in the cell’s chromosomes. This 
happens within the context of genomic instability, created and supported by the functions of HR E6 
and E7 themselves. This, by definition, means HPV can no longer form infectious virions; it also 
means HPV gene expression itself is dysregulated. With HPV DNA integration, the HR E6 and E7 
genes are universally preserved, but the regulatory E1 and E2 genes are often lost. Even in 
non-integrated HPV driven cancers, the binding sites for E2 often become methylated. These 
changes allow for greater expression of E6 and E7, as E2 moderates the expression level of these viral 
oncogenes [100,101]. Although not required, with increased E6 and E7, there is a parallel increase in 
telomerase activity [102]. During HR HPV infection and its associated cancer development and 
progression, HR E6, with E7, activates telomerase. This activation is augmented over time by 
changes that support cellular immortalization and growth and by the acceleration of viral and 
cellular genomic instability that was first initiated by HR E6 and E7. 

High-risk HPV infections are associated with cancers in other sites besides the cervix [3]. These 
include vulvar, vaginal, anal, penile, and the head-and-neck. Each of these HPV-associated cancers 
are also associated with upregulated telomerase activity [34]. Therefore, the anatomic location of a 
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HR HPV infection is not the singular instigator of immortalization—the commonality among these 
cancers is HR HPV, and HR E6 specifically, driving telomerase. 

5. Conclusions 

High-risk E6 hijacks host cell proteins from their usual function (E6AP, c-Myc, HDAC, HAT, 
mSin3A, NFX1-91, NFX1-123, PABPCs, and mRNA splicing factors) to activate hTERT and 
telomerase activity. This supports cellular immortalization. These viral-cellular protein partnerships 
primarily control the derepression of telomerase’s catalytic subunit, hTERT. They increase hTERT 
through the promoter’s cis and trans elements, the chromatin structure, the mRNA product, and 
associated RNA regulatory proteins. There are still many unanswered questions in the 
dysregulation of telomerase activation by HPV during infection and oncogenesis. However, its 
universality implies it is critical to the core function of HR HPV types and to induction of cancers 
caused by HPV. 
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