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Abstract: Chloroviruses are large double-stranded DNA (dsDNA) viruses that infect certain isolates
of chlorella-like green algae. They contain up to approximately 400 protein-encoding genes and 16
transfer RNA (tRNA) genes. This review summarizes the unexpected finding that many of the
chlorovirus genes encode proteins involved in manipulating carbohydrates. These include enzymes
involved in making extracellular polysaccharides, such as hyaluronan and chitin, enzymes that make
nucleotide sugars, such as GDP-L-fucose and GDP-D-rhamnose and enzymes involved in the
synthesis of glycans attached to the virus major capsid proteins. This latter process differs from that
of all other glycoprotein containing viruses that traditionally use the host endoplasmic reticulum
and Golgi machinery to synthesize and transfer the glycans.
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1. Introduction

In discussing enzymes involved in manipulating carbohydrates, one usually does not consider
viruses to play a role in this important subject. However, as described in this review, chloroviruses
(family Phycodnaviridae) that infect certain isolates of single-celled, eukaryotic chlorella-like
green algae are an exception to this process because they encode enzymes involved in making
extracellular polysaccharides, nucleotide sugars and the synthesis of glycans attached to their major
capsid glycoproteins.

The plaque-forming chloroviruses are large icosahedral (190 nm in diameter), double-stranded DNA
(dsDNA)-containing viruses (genomes of 290 to 370 kb) with an internal lipid membrane. They exist
in inland waters throughout the world with titers occasionally reaching thousands of plaque-forming
units (PFU) per mL of indigenous water. Known chlorovirus hosts, which are normally
endosymbionts and are often referred to as zoochlorellae [1,2], are associated either with the
protozoan Paramecium bursaria, the coelenterate Hydra viridis or the heliozoan Acanthocystis
turfacea [3-6]. Four such zoochlorellae and their viruses are Chlorella variabilis NC64A and its viruses
(referred to as NC64A viruses), Chlorella variabilis Syngen 2-3 and its viruses (referred to as Osy
viruses), Chlorella heliozoae SAG 3.83 and its viruses (referred to as SAG viruses) and Micractinium
conductrix Pbi and its viruses (referred to as Pbi viruses). The zoochlorellae are resistant to virus
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infection when they are in their symbiotic relationship, because the viruses have no way of reaching
their hosts.

The genomes of 43 chloroviruses infecting these four hosts have been sequenced, assembled and
annotated [6-11]. Collectively, the viruses encode genes from 643 predicted protein families;
however, any given chlorovirus only has 330 to 416 protein-encoding genes (PEGs). Thus, the genetic
diversity among these viruses is large, and many of the proteins are unexpected for a virus. With the
exception of homologs solely in other chlorovirus members, about 50% of their PEGs do not match
anything in the databases.

The prototype chlorovirus Paramecium bursaria chlorella virus type 1 (PBCV-1) is an NC64A
virus [12]. PBCV-1 is an icosahedron (190 nm in diameter) with a spike-like structure at one vertex
and a few external fibers that extend from some of the viral capsomeres [5,13]. The outer capsid layer
covers a single lipid bilayered membrane, which is essential for infection. The PBCV-1 major capsid
protein (named Vpb54) is a glycoprotein, and three Vp54s form a trimeric capsomere, which has
pseudo-six-fold symmetry. A proteomic analysis of PBCV-1 virions revealed that the virus contains 148
virus-encoded proteins and at least one host-encoded protein [10]. The PBCV-1 genome is a linear
~331-kb, non-permuted dsDNA molecule with covalently-closed hairpin termini. Identical ~2.2-kb
inverted repeats flank each 35-nucleotide-long, incompletely base-paired, covalently closed hairpin loop
[14,15]. The remainder of the PBCV-1 genome contains primarily single-copy DNA that encodes ~416
putative proteins and 11 transfer RNAs (tRNAs) [5]. The G + C content of the PBCV-1 genome is 40%;
in contrast, its host nuclear genome is 67% G + C. PBCV-1 and other chlorovirus genomes contain
methylated bases, which occur in specific DNA sequences. The methylated bases are part of
chlorovirus-encoded DNA restriction and modification systems [16].

As the title of this review indicates, many of the chlorovirus genes encode enzymes involved in
various aspects of carbohydrate metabolism. We have listed putative chlorovirus genes involved in
carbohydrate metabolism, which are encoded by the 43 chloroviruses whose genomes have been
sequenced, in Tables 1, 2 and 4. Recombinant proteins have been produced from some of these genes,
and the proteins have been characterized (indicated in bold in the tables). When some of the genes
were initially cloned and the recombinant proteins characterized, the genes were hybridized to many
other chlorovirus genomes by dot blots to determine the distribution of the genes. Because of the
large number of viruses, these experimental results are not included in the tables, unless the virus
genome was subsequently sequenced.

2. Chlorovirus Encoded Polysaccharide Synthesizing Enzymes

Three PBCV-1 encoded enzymes are involved in the synthesis of the extracellular matrix
polysaccharide hyaluronan (also referred to as hyaluronic acid), including glycosyltransferase Class I
hyaluronan synthase (HAS; Table 1) [17,18]. Until the has gene (a098r) was discovered in PBCV-1,
hyaluronan was only thought to occur in vertebrates and a few pathogenic bacteria, where it forms
an extracellular capsule, presumably to avoid the immune system [19,20]. Hyaluronan is an essential
constituent of the extracellular matrix in vertebrates and consists of ~10,000 or more alternating {3-
1,4-glucuronic acid (GlcA) and [3-1,3-N-acetylglucosamine (GIcNAc) residues. Typically, the HAS
enzyme is located on the inner surface of the plasma membrane. The newly-synthesized hyaluronan
then moves through the membrane and cell wall to the extracellular matrix.

Table 1. Chlorovirus encoded enzymes involved in the synthesis of polysaccharides.

Host Viruses HAS? CHS 2 CBP?
AN69C 390R 3951, 438L
AR158 C418R C423L, C475L
CviK1 102R 365R 370L, 414L
CvsAl 375R 380L, 427L
NC64A IL-3A 386L, 4321
IL-5-2s1 134L 503L, 562L
KS-1B 314L, 360L

MA-1D 485L 362R 367L, 472L
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MA-1E 113L 4071, 451L
NE-JV-4 390L
NY-2B 5421, 4841
NY2A B139R, B472R B480L,
NYs-1 137R 360R,4951,, 5551
PBCV-1 a A098R A333L, A348DI, A383R
SYN OSY-NE-5 038R 1671, 184L
AP110A 1521, 175R 828R
CVA-1 150L, 169R 834R
CVB-1 1771, 791R
CVG-1 146R 792R
CVM-1 165L, 186R 832R
CVR-1 838R
, CZ-2 798R
Pbi Can18-4 163R 839R
FR483 N124R N690R
FR5L 151L 797R
MT325 M128R M701R
NE-JV-1 278R, 282R 7341
NW665 133R 821R
OR0704.2.2 116R 804R
ATCV-1 7734R
BrO604L 834R 431R
Can0610SP 438R, 442R
Canal-1 746R 405R
GMO0701 852R 436R
MN0810 087R, 900R 466R, 468R, 5311
SAG MO0605SPH 435R
NE-JV-2 462R
NE-jv-3 431R
NTS-1 893R 461R, 463R, 5291
OR0704.3 431R
TN603 869R 425R
W10606 457R

! Hyaluronan synthase; 2 chitin synthase; 3 chitin binding proteins, except for the chitinase proteins
reported in Table 5; @ the recombinant protein has the predicted activity. The numbers refer to the
protein names, and the R and L refer to the strand orientation.

PBCV-1 also encodes two enzymes involved in the biosynthesis of hyaluronan precursors,
glutamine:fructose-6-phosphate amidotransferase (GFAT, gene a100r) and UDP-glucose dehydrogenase
(UDP-GIcDH, gene a6091; Table 2) [21]. All three PBCV-1 genes involved in hyaluronan synthesis are
expressed early during virus infection, and all three transcripts decrease significantly by 60 min
post-infection (PI) [18,21]. However, these three genes do not function like an operon, although two
of the genes, a98r and a100r, are adjacent to one another and are co-linear in the PBCV-1 genome.
In contrast, a609! is located ~240 kb away and is transcribed in the opposite orientation [17].
The identification of these three genes led to the discovery that hyaluronan lyase-sensitive hair-like
fibers begin to accumulate on the surface of PBCV-1-infected host cells by 15 min PI. By 4 h PI, the
infected cells are covered with a dense fibrous hyaluronan network (Figure 1) [18].

Three additional enzymes are needed to convert glucosamine-6-phosphate (GIcN-6P) to
UDP-N-acetylglucosamine (UDP-GIcNAc), and these enzymes (EC2.3.1.4, EC5.4.2.3, EC2.7.7.23) are
encoded by the host [22]. This is not surprising because the host NC64A cell wall is predicted to
contain chitin, which is a polymer of GlcNAc residues, and so, the alga must encode these enzymes.
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Table 2. Chlorovirus encoded enzymes involved in sugar metabolism.

40f23

Host Viruses GFAT ! UDP-GIcDH ? GMD 3 GMER *4 UGD 5 AT ¢ D-LD’ ADP-RGH 8 FRD°
AN69C 109R 384R, 487R 129R 334L 739L 055R
AR158 C132R C413R, C729L C155R C344L C767L
CviK1 105R 359R, 662L 122R 312L 742L 055R
CvsAl 064R 368R 083R 321L 716L 131R
IL-3A 104R 375R, 685L 126R 326L 726L 051R
IL-5-2s1 130R 492R, 858L 106L 417L 896L
KS-1B 066R 261L 643L
NCe4A MA-1D 481L 355R, 838L 456L 284L 872L
MA-1E 116R 396R 134R 355L 806L 045R
NE-JV-4 131R 340L 740L 064R
NY-2B 473R, 836L 185R 408L 881L
NY2A B143R B465R B163R B395L B853L
NYs-1 143R 483R, 846L 167R 404L 879L
PBCV-1 2 A100R 2 A609L 2 AT18R 2 A295L A654L A053R
SYN OSY-NE-5 039R 045R 139L 340L 015R 308R
AP110A 071R 146L 893R 053L
CVA-1 056R 144L 900R 040L 205R
CVB-1 071R 1721 856R 056L 221R
CVG-1 050R 812L 857R
CVM-1 069R 159L 893R 052L 222R
CVR-1 062R 151L 906R 046L 210R
Pbi CZ-2 059R 718L 865R 048L 917L
Can18-4 061R 859L 908R 048L 212R
FR483 NO35R N712L N747R N170R
FR5L 087R 145L 863R 076L
MT325 MO036R, M037R M719L M758R MO026L
NE-JV-1 081R 291R 861R 810L
NW665 046R 846L 889R 189R
OR0704.2.2 062R 7221 862R 051L
ATCV-1 Z571L a 7804L Z282L Z544R Z147L Z295L
Br0604L 667L, 839R 934L 332L 631R 173L 350L
SAG Can0610SP 687L 965L 338L 658R 170L 355L
Canal-1 605L, 751R 847L 329L 576R 188L 343L 898L 886R
GMO0701 664L, 856R 954L 337L 629R 180L 354L
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MNO0810 887L 720L, 904R 992L 365L 689R 204L 379L
MO0605SPH 656L 897L 341L 625R 181L 359L 943R
NE-JV-2 708L 981L 367L 672R 186L 383L
NE-JV-3 679L 935L 332L 648R 175L 347L 981R
NTS-1 714L, 898R 10121 378L 681R 188L 391L
OR0704.3 676L 960L 335L 639R 179L 354L
TN603 659L, 873R 966L 326L 625R 179L 3421
W10606 679L 916L 360L 651R 185L 375L 962R

1 Glutamine-fructose-6-phosphate ~aminotransferase; 2 UDP-glucose-6-dehydrogenase; 3 GDP-D-mannose dehydratase; 4 GDP-4-keto-6-deoxy-D-mannose
epimerase/reductase (= GDP-L-fucose synthase 2); 5 UDP-D-glucose 4,6-dehydratase, ¢ acetyltransferase; 7 D-lactate dehydrogenase; 8 ADP-ribosylglycohydrolase;
? fumarate reductase; @ the recombinant proteins have the predicted activities. The numbers refer to the protein names, and the R and L refer to the strand orientation.
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Figure 1. Location of hyaluronan on the surface of infected Chlorella variabilis NC64A cells and
ultrastructural changes in the algal cell wall after chlorovirus Paramecium bursaria chlorella virus type 1
(PBCV-1) infection. The figure shows the cross-sections of (A) the surface of the uninfected
cells; (B) cells at 4 h post-infection (PI); and (C) cells at 4 h PI that were treated with hyaluronan
lyase. Note that after treatment with hyaluronan lyase, the cell surface resembles the surface of
uninfected cells. C is the cell wall, and Cyto is cytoplasm. Micrographs were taken from Graves et al.
[18] with permission.

The has gene that encodes hyaluronan synthase is present in 12 of the 43 chloroviruses isolated
from diverse geographical regions, including 5 NC64A viruses, 6 Pbi viruses and 1 Osy virus (Table 1). In
contrast, the udp-glcdh gene is present in 40 of the 43 viruses, 14 of which have two copies of the gene,
while the gfat gene is present in 27 chloroviruses, including 11 of the 14 NC64A viruses, all 14 Pbi
viruses, one of the 13 SAG viruses and the only Osy virus that has been sequenced (Table 2). Both of
these latter two genes are present in all of the 12 viruses that have a has gene, except for the one Osy
virus that lacks a udp-glcdh gene.

Surprisingly, 19 of the 31 chloroviruses that lack a has gene have a gene encoding a chitin synthase
(CHS). Chitin, an insoluble linear homopolymer of B-1,4-linked-GlcNAc residues, is a common
component of insect exoskeletons, shells of crustaceans and fungal cell walls [23]. Chitin is rare in
algal cell walls, although it has been reported to exist in some green algae [24]. Like the has gene, the
chs gene is expressed as early as 10 min PI and peaks at 20-40 min PI, and the transcript disappears
at 120-180 min PI. Furthermore, cells infected with chs-containing viruses produced chitin fibers on
the external surface of their hosts [25]. As discussed below, many of the chloroviruses also encode
chitinases and chitosanases.

At least one chlorovirus, CVK2, has replaced the PBCV-1 has gene with a 5-kb region containing
chs, udp-gdh?2 (a gene encoding a second UDP-GIcDH) and two other ORFs [26]. Therefore, at least
some chloroviruses have changed from HAS viruses to CHS viruses or vice versa, by swapping genes.

Two NC64A chloroviruses have both has and chs genes, and at least one of them forms both
hyaluronan and chitin on the surface of their infected cells [25,27]. Finally, 12 chloroviruses lack both
genes, and no extracellular polysaccharides are formed on the surface of cells infected with at least
one of these viruses [18]. The fact that many chloroviruses encode enzymes involved in extracellular
polysaccharide biosynthesis suggests that the polysaccharides, which require a large expenditure of
ATP for their synthesis, are important in the virus life cycles. However, the extracellular hyaluronan
does not play an obvious role in the interaction between PBCV-1 and its algal host because neither
plaque size nor plaque numbers were altered by including either hyaluronidase or free hyaluronan
in the top agar of the PBCV-1 plaque assay [17].

The three genes involved in synthesizing hyaluronan have probably been obtained rather
recently in evolutionary terms because the coding portions of the PBCV-1 gfat and udp-glcnc genes
are 44% G + C, while the has gene is 46.7% G + C. In contrast, PBCV-1, as well as all the NC64A viruses,
have a 40% G + C content [11,21].

Currently, it is not known how or why the chloroviruses acquired these
polysaccharide-synthesizing genes. We have considered the following possible evolutionary advantages
for acquiring these genes: (1) the polysaccharides prevent infection by a second chlorovirus; (2) they
cause the infected cells to clump with uninfected host cells, thus increasing the probability that
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progeny viruses can infect healthy host cells; (3) they prevent paramecia from taking up infected algal
cells, (4) the chloroviruses have another host in nature, and this other host is attracted to or binds to
hyaluronan or chitin on virus-infected algae, which would facilitate progeny-virus infections; or
(5) polysaccharides increase the functional diameter of the infected cell, which might facilitate
consumption by a predator. This could aid virus movement in the water column. In regards to the
first possibility, it is known that attachment of other viruses to PBCV-1-infected cells at 4 h PI is
inhibited when the external surface of the host is covered with hyaluronan fibers [18]. However, this
is unlikely to be the explanation for the presence of hyaluronan because normally the host, C. variabilis
NC64A4, is only infected by one virus, and this restriction occurs in the first few min PI [28,29]. In
regards to the second possibility, host cells often clump shortly after infection, and this phenomenon,
which does not always occur, could be due to hyaluronan production. The last three possibilities have
not been explored experimentally.

We have experimentally tried to address the question: does the presence of hyaluronan and/or
chitin on the exterior surface of the host cell wall confer an evolutionary advantage to a virus that has
one or both of these genes? To answer the question, chlorella cells were co-infected with combinations
of chloroviruses that: (1) have both genes; (2) only have the has gene; (3) only have the chs gene; and
(4) lack both genes. The resulting lysates were then added to fresh cells and allowed to replicate and lyse.
After five passages, progeny viruses were plaqued, and 20 plaques were randomly picked to determine
if one virus type dominated. However, after repeating these experiments several times, no consistent
pattern was obtained [30].

To ideally conduct this experiment, one would like to either add the chs gene to the PBCV-1
genome so that both genes are present, replace the has gene with the chs gene or remove the has gene
so that PBCV-1 lacked both genes. Unfortunately, this experimental protocol is currently not possible
because procedures are not available for reverse genetic manipulation of chlorovirus genomes.
Therefore, in the experiments described above, viruses were selected that had the desired properties
and also had similar growth kinetics as PBCV-1.

In addition to not knowing why the chloroviruses acquired the has and chs genes, another question
is: how are the newly-forming hyaluronan and/or chitin fibers moved through the membrane and the
complex cell wall to the exterior of the algal host from the plasma membrane? This phenomenon
would appear to be equivalent to pushing a thread through a furnace filter. One would expect the
polysaccharide fibers to bunch up underneath the cell wall. In fact, this happened when the viral has
gene was expressed in cultured tobacco cells [31]. Could a pilot protein(s) that is attached to the
leading end of the polymer guide the hyaluronan chain through the wall?

3. Chlorovirus Encoded Nucleotide Sugar Metabolism Enzymes

Many chloroviruses also encode enzymes involved in nucleotide sugar metabolism, as well as
other sugar metabolic enzymes (Table 2). Two enzymes encoded by all of the NC64A, SAG and Syn
chloroviruses, GDP-D-mannose 4,6 dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose
epimerase reductase (GMER) (Table 2), comprise a highly-conserved pathway in bacteria, plants and
animals that converts GDP-D-mannose to GDP-L-fucose (Figure 2) [32]. Fucose is found in
glycoconjugates of many organisms, where it often plays a fundamental role in cell-cell adhesion and
recognition [33]. The Pbi chloroviruses lack both gmd and gmer genes (Table 2) even though the glycans
attached to the major capsid protein from the three evaluated Pbi viruses have fucose [34,35].

In vitro reconstruction of the pathway using recombinant PBCV-1 GMD and GMER
proteins resulted in the synthesis of GDP-L-fucose as expected. Unexpectedly, however, the
PBCV-1 GMD also catalyzed the NADPH-dependent reduction of the intermediate GDP-4-keto-6-
deoxy-D-mannose, to form GDP-D-rhamnose. That is, the enzyme has two activities, and both sugars
are produced in the infected cell [32]. The PBCV-1 recombinant GMD has another property that is
unusual. Unlike recombinant GMDs from many other organisms, the viral encoded enzyme is very
stable when stored at either 4 °C or -20 °C [32]. The PBCV-1 GMD enzyme was crystalized, and the
structure resembles other GMDs [36].
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Figure 2. Scheme of the biosynthesis of GDP-L-fucose and GDP-D-rhamnose. PBCV-1 GDP-D-mannose
4,6 dehydratase (GMD) catalyzes both the dehydration of GDP-D-mannose to the intermediate
GDP-4-keto-6-deoxy-D-mannose and the NADPH-dependent reduction of this latter compound to
GDP-D-rhamnose. NADP* serves as the cofactor for GMD during the internal oxidoreduction reaction
involved in the dehydration process. The epimerization and the NADPH-dependent reduction of the
4-keto group leading to GDP-L-fucose are carried out by PBCV-1 GDP-4-keto-6-deoxy-D-mannose
epimerase reductase (GMER). Figure was taken from Tonetti et al. [32] with permission.

A recombinant GMD protein encoded by another chlorovirus, Acanthocystis turfacea chlorella
virus 1 (ATCV-1), which has 53% amino acid identity with the PBCV-1 GMD, was also characterized
because the amino acid differences between the two enzymes suggested they might have slightly different
properties. In fact, the ATCV-1 GMD does not form GDP-D-rhamnose, and so, it lacks the second
enzyme activity [37]. Both GMD enzymes bound NADPH tightly, and this association was essential
for the stabilization and function of both enzymes, even though NADP* is the co-enzyme required to
initiate the GMD catalytic cycle. Phylogenetic analyses established that the PBCV-1 GMD is the most
evolutionarily diverged of all the GMDs, whereas the ATCV-1 GMD was in a clade of bacterial
GMDs [37].

The GMER enzymes from PBCV-1 and ATCV-1 have 63% amino acid identity to each other and
phylogenetically are more similar to one another and to other GMERs than are the two GMDs.
The possible evolutionary consequences of these differences have been discussed previously [37].
Both fucose and rhamnose are constituents of the glycans attached to the PBCV-1 and ATCV-1 major
capsid proteins (see below). However, the PBCV-1 glycan contains three rhamnose residues, with
one in the D-configuration, whereas only one with L-configuration is present in the ATCV-1 glycan.
Perhaps there was enough natural selection pressure on the PBCV-1 GMD gene to evolve to
synthesize GDP-D-rhamnose, whereas the ATCV-1 GMD did not face this pressure.

ATCV-1 and all of the SAG viruses, however, encode another enzyme, UDP-D-glucose
4,6-dehydratase (UGD), that is one of two enzymes involved in the synthesis of L-thamnose [38], and
this enzyme may contribute to thamnose synthesis. The PBCV-1 host chlorella, which is closely
related to the ATCV-1 host chlorella, encodes the second enzyme in the rhamnose pathway [22], and
so the host is predicted to be able to synthesize the rhamnose required for ATCV-1 glycan synthesis.

4. Unusual Attachment of Glycans to the Chlorovirus Major Capsid Proteins

Structural proteins of many viruses, such as rhabdoviruses, herpesviruses, poxviruses and
paramyxoviruses, are glycosylated. Glycans contribute to the protease resistance and the antigenicity
of these viruses. Most virus glycans are linked to Asn in the protein via N-acetylglucosamine, although
some viruses also have O-linked glycans attached to either Ser or Thr residues via an amino sugar,
usually N-acetylglucosamine or N-acetylgalactosamine. Typically, viruses use host-encoded
glycosyltransferases and glycosidases located in the endoplasmic reticulum (ER) and Golgi apparatus to
add and remove N-linked sugar residues from virus glycoproteins either co-translationally or shortly
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after translation of the protein. This post-translational processing aids in protein folding, progression
in the secretory pathway and in the regulation of host-virus interactions [39-42]. After folding the
protein, virus glycoproteins are transported by host-sorting and membrane-transport functions to
virus-specified regions in host membranes where they displace host glycoproteins. Progeny viruses
then bud through these virus-specific target membranes, which is usually the final step in the
assembly of infectious viruses. Thus, nascent viruses only become infectious after budding through
the membrane, usually the plasma membrane, as they exit the cell. Consequently, the glycan portion
of virus glycoproteins is host-specific. The theme that emerges from these viruses is that virus
glycoproteins are synthesized and glycosylated by the same processes as host glycoproteins.
Therefore, the only way to alter virus protein glycosylation is to either grow the virus in a different
host or have a mutation that alters the virus protein glycosylation site.

Unlike the process described above, glycosylation of the chlorovirus major capsid proteins
differs from that scenario because the viruses encode most, if not all, of the machinery for the process.
In addition, the process occurs in the cytoplasm. The conclusion that the chlorovirus PBCV-1 major
capsid protein (Vp54, gene a430I) is glycosylated by a different mechanism than that used by other
characterized viruses originally arose from antibody studies [43]. Rabbit polyclonal antiserum
prepared against intact PBCV-1 particles inhibited virus plaque formation by agglutinating the
virions. However, spontaneously-derived, antiserum-resistant, plaque-forming variants of PBCV-1
occurred at a frequency of 105-10-. At the time of the 1993 publication, these antiserum-resistant
variants fell into four serologically-distinct classes; two additional antigenic variants have
subsequently been isolated for a total of six variants (Table 3). Polyclonal antisera prepared against
members of each of these antigenic classes react predominately with the Vp54 equivalents from the
viruses in the class used for the immunization. Each of the Vp54 proteins from the antigenic variants
migrated faster on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) than
those of the strains from which they were derived, indicating a lower molecular weight. However,
all of the de-glycosylated Vp54 proteins migrated at the same rate on SDS-PAGE, indicating that the
differences resided in the size of the attached glycans. In addition, the nucleotide sequence of the
a430! gene in each of the variants was identical to the wild-type gene, which verified that the
polypeptide portion of Vp54 was not altered in the mutants. Western blot analyses of Vp54 proteins
isolated from the variants, before and after removing the glycans with trifluoromethane-sulfonic acid
or altering the glycan with periodic acid, also supported the notion that the antigenic variants
reflected differences in the Vp54 glycans, not the Vp54 polypeptide [43].

Table 3. PBCV-1 antigenic variants that affect the molecular weight of the major capsid glycoprotein.

Antisera Classes

Class > Label ® Predicted MW (kDa) © SDS-PAGE Estimates (kDa) 4

+ Wild-type 54.1 54

F CME6 54 not determined

A P91 52.8 53

E EPA-15 52.8 not determined

B EPA-2 51.6 52

C E1L3 51.1 51

D P1L6 50.5 50.5

a Listed in order of predicted molecular weight based on nuclear magnetic resonance (NMR) analysis (De
Castro et al., [44,45]); b representative mutant strain label; © the gene encoding the PBCV-1 major capsid
protein (a430I) is wild-type in sequence and does not vary among antisera classes; ¢ Graves et al. [46].
MW, molecular weight.

All of the glycan antigenic variants form plaques on their C. variabilis NC64A host, so one can
infer that the glycans are not directly involved in virus infection and virus replication. However,
anecdotal evidence suggests that the glycans are important in virus stability because the variants with
the smallest glycans do not remain infectious in storage as long as wild-type virus.
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Additional observations supported the concept that PBCV-1 Vp54 glycosylation was unusual:
(1) unlike viruses that acquire their glycoproteins(s) by budding through a plasma membrane, which
results in infectious particles, plaque-forming PBCV-1 particles accumulate inside the host 3040 min
before virus release [47]; (2) all of the antigenic variants were grown in the same host so the glycan
differences are not due to the host; (3) polyclonal antibodies to Vp54, the major capsid protein, do not
react with host glycoproteins; (4) the Vp54 protein lacks an ER and Golgi signal peptide; (5) unlike
most glycoproteins that exhibit size micro-heterogeneity, PBCV-1 Vpb4 appears homogeneous on
SDS-PAGE; in addition, mass spectrometry analysis only revealed one satellite peak that differed
from the main peak by 140 Da, the approximate weight of either one arabinose or xylose residue [46];
and (6) the ability to easily crystallize Vp54 as a homotrimer provided additional evidence that the
protein is essentially homogeneous [48,49].

Evidence that the N-linked Vp54 glycans are not attached to the Vp54 protein by a traditional
N-linkage was initially obtained from the X-ray crystal structure of the protein. The structure revealed
that the protein had four N-linked glycans at Asn positions 280, 302, 399 and 406 [48]. None of these
Asn were located in an Asn-X-(Thr/Ser) sequon sequence commonly recognized by ER located
glycosyltransferases [50-52]. This finding also explained why prior attempts to remove Vp54 glycans
with enzymes that cleave traditional N-linked glycans were unsuccessful [53] Nandhagopal et al. [48]
also reported that Vp54 contained two O-linked glycans. However, re-examination of the X-ray
crystal data (Figure 3) indicates that no O-linked glycans are present in the protein [49], which agrees
with our unsuccessful attempts to detect them by chemical procedures.

Figure 3. Structure of the revised PBCV-1 Vp54 monomer. The two jelly-roll domains are colored in green
and red, respectively. The glycans located on the surface are shown as a space-filling representation of their
atoms and are colored according to the residue they are attached to (Asn-280: green, Asn-302: black,
Asn-399: red, Asn-406: blue). Taken from De Castro et al. [49] with permission.

5. Glycan Structures Attached to Chlorovirus Major Capsid Proteins

The structures of the PBCV-1 Vp54 N-linked glycans were reported recently, and they consist of
8-10 neutral monosaccharide residues, producing a total of four glycoforms (Figure 4) [54]. These
structures do not resemble any structure previously reported in the three Domains of Life. Among
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their most distinctive features are: (1) the four glycoforms share a common core structure, and the
four glycoforms are related to the non-stoichiometric presence of two monosaccharides, L-arabinose
and D-mannose; the most abundant glycoform consists of nine neutral monosaccharide residues
organized in a highly-branched fashion; (2) the glycans are attached to the protein by a [3-glucose linkage,
which is rare in nature and has only been reported in glycoproteins from a few organisms [55-58];
and (3) the glycoform contains a dimethylated rhamnose as the capping residue of the main chain, a
hyper-branched fucose residue and two rhamnose residues with opposite absolute configurations.

20Me
30Me

20Me
30Me

20Me
30Me

20Me
30Me

@ oMan A Rha:X=Lorp @ p-Glc

* L-Araf A L-Fuc O ob-Gal * D-Xyl

Figure 4. Structures of PBCV-1 Vp54 N-glycans. Arabinose and mannose are not stoichiometric
substituents and create four different glycoforms. The two on the left are the most abundant, and both
have mannose. The structure at the bottom represents the conserved core oligosaccharide that is
present in all of the chloroviruses studied to date. Residues within the box are those strictly conserved,
while rhamnose (outside the box) is a semi-conserved element because its absolute configuration is
virus dependent. The figure was modified from De Castro et al. [34,54] with permission.

Attempts to fit the Vp54 glycan structures into the original Vp54 X-ray crystal structure [48] were
unsuccessful and led to a re-examination of the original structure. This re-examination produced a
structure that was compatible with the four N-linked glycan structures (Figure 3) [49]. As mentioned
above, the revised structure lacks the two O-linked glycans reported originally.

The PBCV-1 Vp54 has a molecular weight of 53,790 Da. The 4430l gene encodes Vp54 with a
predicted molecular weight of 48,165 Da so the combined sugars have a molecular weight of 5625 Da,
which is about the weight of the four glycans. Vp54 was also reported to have a myristic acid attached
to the carboxyl portion of the protein [59]. However, myristic acid has not been observed in any of
the recent Vp54 structural experiments, and so, its status is currently unknown. The structures of the
Vp54 glycans from the PBCV-1 antigenic variants, referred to above, are currently being determined,
and as expected, the structures are truncated forms of the wild-type PBCV-1 glycans [44]. PBCV-1
particles were reported to have two additional glycoproteins in addition to Vp54 [59]. Both of these
glycoproteins react with the PBCV-1 antibody, and so, the glycan structures are predicted to be
similar or identical to the glycans associated with Vp54. The gene encoding one of these proteins
(Vp260) was identified (gene a122r). Gene a122r homologs are common in the chloroviruses, and
some of the viruses have as many as five copies of the gene [60]. The role that Vp260 plays in the
PBCV-1 virion is unknown.

The glycan structures of the major capsid proteins from seven more chloroviruses, which
represent all four chlorovirus types, were recently reported (Figure 5) [6,34,35]; collectively, all of the
glycans have a common core region (outlined in Figure 4). The common core region consists of a
pentasaccharide with a 3-glucose linked to an Asn residue, which is not located in the typical sequon
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Asn-X-(Thr/Ser). The glucose has a terminal xylose unit and a hyperbranched fucose, which is in turn
substituted with a terminal galactose and a second xylose residue. The third position of the fucose
unit is always linked to a rhamnose, which is a semi-conserved element because its configuration is
virus dependent. Additional decorations occur on this core N-glycan and represent a molecular
signature for each chlorovirus.

ATCV-1 40Me 40Me
2 4 o2 4 o2 4
p.4 “us B g Bd,l a3 B
oMe a3z P 40Me ws P as P
30Me 30Me 30Me 30Me
(10Me)
TNGO3

30Me

@ oMan A Rha X=Lorp @ bp-Glc

S Xulf A Fuc O pGal ¥ o-Xyl

(20Ac)
30Me

Figure 5. Structures of N-glycans from seven chloroviruses representing all four chlorovirus types.
Substituents in brackets are not stoichiometric. All sugars are in the pyranose form, except where
specified. Virus NY-2A is an NC64A virus, virus Osy-NE5 an Osy virus, viruses ATCV-1 and TN603 SAG
viruses and MT325, CVM-1 and NE-JV-1 Pbi viruses. This figure was modified from [6,34,35] with
permission.

6. Chlorovirus PBCV-1 Encoded Glycosyltransferases

In addition to the two glycosyltransferases, hyaluronan synthase and chitin synthase previously
described, the 43 chloroviruses collectively encode eight putative glycosyltransferases (Table 4). Six
of these eight glycosyltransferase-encoding genes are in PBCV-1; they are scattered throughout the
PBCV-1 genome. None of these six PBCV-1 encoded glycosyltransferases have an identifiable signal
peptide that would target them to the ER. Furthermore, with the exception of PBCV-1
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glycosyltransferases A473L (six transmembrane domains; CESA CelA-like) and A219/222/226R (nine
transmembrane domains; CXCX-2), none of the four remaining PBCV-1 encoded glycosyltransferases
are predicted to have transmembrane domains. Therefore, these enzymes are expected to be soluble
proteins. The genes for the six PBCV-1 encoded glycosyltransferases are expressed early during
PBCV-1 infection [61]. Thus, assuming the enzymes are stable, they would be available for adding
sugars to the Vp54 glycans during virus replication.

The PBCV-1 a064r gene encodes a 638-amino acid protein with three predicted domains.
The N-terminal 211 amino acid domain resembles a “fringe-class” of glycosyltransferases (GT-GTA)
and contains the last four of the five conserved motifs characteristic of this group of
glycosyltransferases [62,63], including the proposed catalytic amino acids, the Asp-X-Asp sequence in
motif 3 and the first Asp residue in motif 5. However, spacing between some of the four motifs differs
from that of the fringe-glycosyltransferases. As mentioned above, the A064R protein, which is only
present in five NC64A viruses, lacks both an identifiable signal peptide that would target the protein
to the ER and a membrane-spanning motif, in contrast to “fringe” glycosyltransferases.

The 211-amino acid A064R glycosyltransferase domain was cloned, and the recombinant protein
was crystallized [64]. The 1.6 A crystal structure of the peptide has a mixed a/p fold containing a
central, six-stranded {3 sheet flanked by « helices. The overall fold is similar to the catalytic domains
in retaining glycosyltransferases in the GT-A group, family 34, although the amino acid
similarity between them is low. Zhang et al. [64] suggested that the A064R glycosyltransferase bound
to UDP-glucose better than to UDP-galactose or UDP-N-acetyl glucosamine. However, these
binding experiments were conducted prior to knowing the Vp54 glycan structures. Now, there is
evidence that the glycosyltransferase domain adds L-rhamnose to the distal xylose residue in the core
structure [45].

Analysis of the six PBCV-1 antigenic variants revealed mutations in a064r that correlated with a
specific antigenic class, B (EPA-1) (Table 3). The a064r gene in all six of these antigenic variants was
sequenced to determine if mutations in a064r correlated with the EPA-1 antigenic variation [46].
The a064r sequences from three of the mutants had single nucleotide substitutions, which produced
a single amino acid substitution in the glycosyltransferase portion of the A064R protein. Two of the
amino acid substitutions occurred in the Asp-X-Asp motif (domain 3), and the other one was in
domain 4. A fourth variant had an extra base in the coding sequence, which created a frame shift
mutation in the gene. Finally, the entire gene was deleted in the other two antigenic variants.

Dual infection experiments with some of the different antigenic variants established that viruses
containing wild-type a064r complemented and recombined with viruses that contained variant a064r
to form wild-type virus. Therefore, it was concluded that a064r encodes a glycosyltransferase
involved in the synthesis of the Vp54 glycan [46].

As noted above, the protein product of the 1064r gene contains three domains with domain 1
being the glycosyltransferase. Domain 2 does not match anything in GenBank, but the C-terminal
domain 3 is predicted to be a methyltransferase. We suspect that this C-terminal domain of
approximately 200 amino acids is involved in methylating the terminal L-rhamnose in the Vp54
glycan [45].

A homolog of PBCV-1 glycosyltransferase, A546L (GT-GT4), has also been produced and
crystallized [65]. The 546! gene homolog was from another NC64A chlorovirus NY-2A (gene b736]),
and the 396-amino acid protein resembles members in the GT4 family of glycosyltransferases in the
CAZy classification [66,67]. However, its biochemical function remains to be elucidated.

Of the eight glycosyltransferases encoded by the 43 chloroviruses, only two of them, homologs
of PBCV-1 A111/114R and A075L, are present in all of the viruses, and so, they are predicted to be
involved in the synthesis of the core glycan structure. A111/114R is especially interesting because it
is predicted to have at least two glycosyltransferase catalytic domains.
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Table 4. Chlorovirus encoded enzymes involved in synthesizing glycans attached to virus major capsid proteins.

14 of 23

Host Viruses EXT ! GT-A? GT-GT43 GT-GTA ¢ CESA CelA-like 5 CSCS-2 ¢ GT”’ GT178
AN69C 078L 123R 559R 065R 104R 255R
AR158 C093L C150R C661L C265R C559R
CviK1 080L 117R 594L 518L 242R
CvsAl 039L 077R 611L 535L 247R
IL-3A 071L 120R 606L 060R 099R 240R
IL-5-2s1 175R 109L 773L 313R 649R
NC64A KS-1B 024L 060R 528L 009R 046L 170R
MA-1D 531R 4549L 753L 194R 637R
MA-1E 533R 128R 702L 626L 281R, 210R
NE-JV-4 085L 124R 631L 074R 108L 250R
NY-2B 116L 180R 754L 160R 323R 633R
NY2A 107L B159R B736L B618R
NYs-1 098L 162R 760L 187R 641R
PBCV-1 AQ75L Al111/114R A546L A064R A473L A219/222/226R
SYN OSY-NE-5 025L 044R 283L 097L
AP110A 013L 548R 226R 970R
CVA-1 016L 532R 220R 971R
CVB-1 025L 538R 232R 811L 918R
CVG-1 019L 520R 217R 815L 920R
CVM-1 022L 550R 237R 953R
CVR-1 020L 545R 225R 977R
Pbi CZ-2 012L 532R 380L 822L 932R
Canl18-4 020L 557R 229R 862L 971R
FR483 NO12L N472R N191R N715L N805R
FR5L 046L 537R 819L 926R
MT325 MO09L M467R M186R M721L MS813R
NE-JV-1 079L 464L 801R 930R
NW665 015L 532R 849L 955R
OR0704.2.2 017L 549R 382L 823L 923R
ATCV-1 Z830R Z120R Z667L Z178L, Z823R, Z417L Z425R Z347R
SAG Br0604L 959R 137R 225L, 952R, 483L 489R 399R
Can0610SP 1007R 140R 789L 210L, 1002R, 978L, 487L 495R 407R
Canal-1 874R 141R 164L 871R 447R 380R
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GMO0701 977R 141R 752L 228L, 975R, 486L 493R 405R
MNO0810 1009R 165R 244L 424R
MO0605SPH 932R 138R 164L 230L, 926R, 479L 488R 412R
NE-JV-2 1020R 150R 804L 1015R, 992L, 516L 523R 438R
NE-JV-3 970R 145R 778L 215L, 210L, 964R, 484L 493R 407R
NTS-1 1044R 156R 1016L, 516L 441R
OR0704.3 1006R 146R 944L 1001R, 972L, 485L, 219L 493R 404R
TN603 991R 141R 226L, 986R, 475L 483R 400R
WI0606 951R 141R 233L, 945R, 506L 514R 430R

15 of 23

Exotosin glycosyltransferase; cosyltransferase fami ; cosyltransferase GT4-type super family; cosyltransferase GTA-type super family; > CE: el A-like cellulose
1 glycosyl f 2 glycosyl i family A; 3 glycosyl f GT4-type super family; 4 glycosyl fi GTA-type super family; > CESA CelA-like cellul

synthase catalytic subunit (UDP-glucose as substrate); ¢ cellulose synthase catalytic subunit; 7 glycosyltransferase; ® glycosyltransferase family 17.
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Now that structures of the glycans from the chlorovirus major capsid proteins are becoming
available, one can begin to characterize the viral encoded glycosyltransferases biochemically. One
question that needs to be addressed is: Are the sugars added sequentially to the Vp54 protein backbone
or are the glycans initially synthesized independently of Vp54, possibly on a lipid carrier and then
attached to the protein in a single step? A slight variation of these two possibilities is that the core
glycan is synthesized independently of the protein and then attached to Vp54. Additional sugars
could then be added sequentially to these core glycans [68]. We suspect that this viral encoded
glycosylation pathway represents a previously undescribed pathway, possible even a pathway that
existed in eukaryotes prior to the ER and Golgi glycosylation pathway [18].

7. Additional Chlorovirus Encoded Sugar Metabolism Enzymes

Besides the chlorovirus-encoded enzymes described above, the viruses have four additional
genes predicted to encode enzymes involved in sugar metabolism (Table 2). Recombinant proteins
have not been produced from any of these genes, and so, it is unknown if they encode functional
enzymes. These putative enzymes include an acetyltransferase (AT) encoded by all 43 chloroviruses, a
D-lactate dehydrogenase (D-LD) encoded by 32 chloroviruses, fumarate reductase (FRD) encoded
by five chloroviruses and ADP-ribosyl glycohydrolase (ADP-RGH) encoded by nine chloroviruses,
all but two of which are Pbi viruses. The roles these putative enzymes play in the viral life cycles
are unknown.

8. Chlorovirus-Encoded Polysaccharide Degrading Enzymes

In addition to the polysaccharide synthesizing enzymes described above, the chloroviruses also
encode polysaccharide-degrading enzymes (Table 5). The chloroviruses are unique among viruses
infecting eukaryotic organisms in that they, like bacteriophages, need to penetrate a rigid algal cell
wall to initiate infection. The icosahedral shaped chlorovirus PBCV-1 has a spike-like structure at one
vertex [13], which appears to make the initial contact with the cell wall of its host, C. variabilis NC64A [69].
Attachment is immediately followed by host cell wall degradation at the point of contact by a
virus-packaged enzyme(s) [70]. After wall degradation, the viral internal membrane fuses with the
host membrane to produce a narrow (~5 nm in inner diameter), membrane-lined tunnel, which allows
entry of the viral DNA and some viral proteins [71]. This membrane fusion results in immediate host
membrane depolarization [72] and potassium ion efflux [73]. This process results in an empty capsid
remaining on the host cell surface.

Table 5. Chlorovirus encoded enzymes involved in degrading polysaccharides.

Host Viruses CHI ! CHIS 2 GUN BCHIL ¢ Lysin5 GH¢ CD’ ALGLS®
AN69C 297R 331L 102L 204R 540R 387L 250L
AR158 C342L C126L C220R C681L C415L  C263L
CviK1 309L 99L, 194R 610L 362L 237L
371L,
CvsAl 318L 058L 200R 627L L 243L,
IL-3A 285R 323L 097L 196R 624L 378L 235L
IL-5-2s1 373R 415L 140R 262R 796L 495L 310L
NC6IA KS-1B 22i1111§ 257L 048R 132R 546L 166L
MA-1D ’ 283L 491R 147R 777L 359L 191L
242R
MA-1E 352L 114R 194R, 229R 717L 399L 277L
NE-JV-4 298R 337L 110R 205R 648L 246L
NY-2B 367R 406L 158L 270R 777L 476L 319L
NY2A B393L B137L B239R B756L B469L  B28SL
NYs-1 360R 403L 134L 251R 487L
PBCV-1 1 A260R 2 A292L 1 A094L 1A181/182R  2AS561L 1 A215L
SYN OSY-NE-5 119R 138L 037L 117L 290L 099R
AP110A 106R 122R 174L 942R 306R 158L 338R
CVA-1 102R 114R 167L 942R 297R 156L 327R
Pbi CVB-1 129R 143R 890R 310R 183L 342R
CVG-1 105R 113R 142L 896R 303R 329R

CVM-1 122R 133R 184L 927R 330R 171L 360R



Viruses 2017, 9, 88

17 of 23

CVR-1 109R 121R 174L 948R 163L 335R
CZ-2 070R 079R 114L 902R 263R 293R
Canl18-4 113R 121R 160L 944R 316R 349R
FR483 NO87R N119L N779R N262R N293R
FR5L 098R 106R 897R 300R 157L 336R
MT325 MO85R MO091R M124L M791R M258R M289R
NE-JV-1 328L 218L 275L 088R 592L 050L 269L 472L
NW665 088R 128L 921R 281R 315R
OR0704.2.2 074R 082R 113L 895R 257R 292R
ATCV-1 Z780L Z204R Z819L Z814L Z511L Z771L
Br0604L 253R, 254R 950L 902R, 942L 518L 832L 895L
Can0610SP 244R 985R, 1001L 936R, 996R 613L 919L
Canal-1 815L 242R 866L 138L, 855L 546L 743L 806L
GMO0701 251R 972L 917R, 963L 526L 846L 910L
MNO0810 271R 082L 162L, 1003L 659L 896L 959L
SAG MO0605SPH 871L 257R 920L 911L 588L 862L
NE-JV-2 950L 258R 1000R, 1013L 1008R 634L 932L
NE-JV-3 907L 244R 957L 948L 603L 897L
NTS-1 973L 276R 1024R 1039R 556L 886L 961L
OR0704.3 251R 979R, 999L 918R, 994R 604L 910L
TN603 253R 983L 939R, 977L 520L 867L 931L
WI0606 889L 262R 938L 929L 6121 878L

! Chitinase; 2 chitosanase; ® 1-3-beta glucanase; * bifunctional chitinase/lysozyme; 5 lysin homologs
from encoded by PBCV-1 CDS A561L; ¢ glycosyl hydrolase; 7 chitin deacetylase; ® alanine alginate
lyase; 2 the recombinant proteins have the predicted activity.

In addition to virus entry into the host cells, nascent infectious PBCV-1 viruses exit the cells at
6-8 h PI by lysis of the plasma membrane and the cell wall. Therefore, it is not surprising that the
chloroviruses encode polysaccharide-degrading enzymes in order to enter and exit the host cell.
In fact, PBCV-1 encodes five such enzymes (Table 5), including two chitinases [74,75], a chitosanase
[74,76], a $-1,3 glucanase [77] and an alkaline alginate lyase [78] or a polysaccharide lyase, cleaving
chains of (3- or a-1,4-linked glucuronic acids [79,80]. Recombinant proteins have been produced from
each of these genes and shown to have the expected activity. Interestingly, the (3-1,3 glucanase gene
is expressed very early and disappears by 60 min PI. The protein is also made very early and
disappears by 90 min PI [77]. Therefore, this enzyme is unlikely to be involved in either viral entry
or viral exit from the cell. One possible function for the enzyme is to degrade host (3-1,3 glycans,
which might serve as host storage polysaccharides. Gene transcripts from the other four
polysaccharide-degrading enzymes are present throughout the viral life cycles [74,81].

Experiments conducted about 30 years ago established that a crude enzyme preparation made
from PBCV-1 lysates, named lysin, had good wall degrading activity and could be used to produce
C. variabilis NC64A protoplasts [82,83]. Therefore, it was assumed that one or more of the five PBCV-1
encoded enzymes would be packaged in the PBCV-1 virion and be responsible for degrading the host
cell wall at the point of infection. In fact, Yamada et al. [76] reported that a chitosanase activity was
packaged in a closely-related chlorovirus, CVK2. However, an ensuing report [75] indicated that the
CVK?2 chitosanase activity was due to incomplete purification of the virion. Subsequently, a PBCV-1
proteome study identified 148 virus-encoded proteins and one host-encoded protein in highly
purified virions [10]. Surprisingly, none of the five polysaccharide-degrading enzymes were packaged in
the PBCV-1 virions.

Consequently, the 148 virus-encoded proteins packaged in the PBCV-1 particles were re-examined
for possible polysaccharide or cell wall degrading activity. This effort revealed that one of the
PBCV-1-encoded proteins packaged in the virion, A561L, has a putative glycosyl hydrolase domain.
A recombinant protein produced from this domain has cell wall degrading activity, and the protein
is under active investigation [84]. Homologs of the A561L domain (named A561L lysin) are present
in most of the chloroviruses (Table 5), but not all. For example, viruses NYs-1 and CVR-1 appear to
lack an 45611 gene homolog encoding this domain, and the similarity between the predicted A561L
homolog from viruses NY-2B and WI0606 is not very high. The apparent absence of the protein from
these viruses deserves to be investigated further because one would expect the enzyme(s) that
degrades the host cell wall during virus infection would be highly conserved.
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Twenty-four of the 43 chloroviruses encode a protein that has a polysaccharide deacetylase
domain (Table 5). Viruses in three of the four types (Osy being the exception) have the gene, but it is
also missing in some viruses in each of the three types, so the gene is clearly not required for the
success of the viruses. Its role might be to remove the acetyl group from chitin during host cell
wall degradation.

In addition to these glycolytic enzymes, 42 of the 43 chloroviruses, encode a functional glycosylase
protein that initiates pyrimidine photodimer excision [85,86]. The enzyme is part of a DNA
repair pathway.

9. Conservation of the Chlorovirus Encoded Sugar Enzymes

Only three of the 21 chlorovirus encoded proteins listed in Tables 1, 2 and 4 are present in all 43
chloroviruses, and these would be considered to be core proteins. The three are an acetyltransferase
(AT), an exostosin glycosyltransferase (EXT) and a family A glycosyltransferase (GT-A). As noted
above, we predict that the two glycosyltransferases are involved in the synthesis of the glycan core
attached to the major capsid protein. The predicted function of the acetyltransferase is unknown.

Two of the seven viral encoded proteins involved in polysaccharide degrading activity are
conserved in all of the viruses, the chitosanase (CHIS) and a putative bifunctional chitinase/lysozyme
(BCHIL) (Table 4). Presumably these two enzymes play a role in the release of the nascent viruses
from the cell. As indicated above, they are not packaged in the PBCV-1 virion, and so, they are not
involved in the immediate early virus infection process.

The presence or absence of some of the chlorovirus sugar encoding enzymes displays some
interesting patterns. For example, the GMD and GMER encoding genes are present in all of the
NC64A, SAG and Osy viruses and absent in all of the Pbi viruses. This observation would suggest
that the three virus types that have these genes would be more closely related to each other than to
the Pbi viruses. However, a phylogenetic tree that shows the evolutionary relationship between the
43 viruses based on 29 concatenated core proteins [6] indicates that SAG and Pbi viruses are in the
same branch and that the NC64A and Osy viruses are in a separate branch. Therefore, these results
would imply that the SAG and NC64A/Osy viruses either acquired the genes separately after the four
virus types had separated from a common ancestor or that the chlorovirus ancestor had both genes
and for some reason, they were lost in the Pbi lineage.

Most of the other protein patterns are even more difficult to explain. For example, the GFAT
encoding gene is present in all of the Pbi viruses and present in 11 of the 14 NC64A viruses and one
SAG virus. Several of the other genes have similar complicated patterns and await explanations.

10. Sugar Enzymes Coded by Other Large DNA Viruses

This review has focused on carbohydrate enzymes encoded by the chloroviruses, primarily
because these enzymes have been the most intensively studied. However, as new giant viruses are
being discovered and their genomes sequenced, it is clear that some of them encode putative enzymes
involved in carbohydrate manipulations. The most extensively studied of these other large DNA viruses
is Acanthamoeba polyphaga mimivirus, which has genes encoding both glycosyltransferases and nucleotide
sugars (see the recent review by Piacente et al. [87]). Other large DNA viruses encoding putative sugar
manipulating enzymes include prasinoviruses (family Phycodnaviridae like the chloroviruses) that infect
small marine green algae, including Ostreococcus, Bathycoccus and Micromonas species; these viruses have
clusters of putative genes for enzymes involved in nucleotide-sugar metabolism and glycosyltransferases
[88]. Similar genes are present in other members of the Mimiviridae family, including Phaeocystis globosa
virus [89] and Cafeteria roenbergensis virus [90]. Putative glycosyltransferase-encoding genes have also
been reported in the genomes of pandoraviruses [91], Pithovirus sibericus [92] and Mollivirus sibericus [93].

In conclusion, it is becoming clear that virus-encoded sugar-manipulating enzymes and
glycosylation systems can no longer be considered a hallmark solely of cellular organisms, but that
some viruses also encode unique and complex glycan systems, which are still largely unknown. One
encourages young glycobiologists to consider working on some of these systems.
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