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Abstract: The discovery of infectious particles that challenge conventional thoughts concerning
“what is a virus” has led to the evolution a new field of study in the past decade. Here, we review
knowledge and information concerning “giant viruses”, with a focus not only on some of the best
studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude
by demonstrating that there is an abundance of new host-virus systems that fall into this “giant”
category, demonstrating that this field of inquiry presents great opportunities for future research.
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1. Introduction: Defining Giant Viruses

In their editorial introduction to the “Giant Viruses” special issue of Virology, Fischer and
Condit [1] stated “It is commonly agreed upon that these are double-stranded DNA (dsDNA) viruses
with genome sizes beyond 200 kb pairs, and particles that do not pass through a 0.2-pm pore-size
filter”. This definition illustrates the two striking features of giant viruses: their genome and particle
size are both larger than has been historically considered for viruses. Beyond their breaking of previous
paradigms, how giant viruses are defined remains contentious. Our goal in assembling this synthesis is
to provide a “primer” for students of microbiology whom are interested in knowing more about these
atypical viruses, and to establish a set of boundaries for their discussion. While not exhaustive, this
overview addresses many of the main ideas that, for now, are current within a rapidly expanding field.

Some definitions of giant viruses focus only on genome size with lower limits ranging from
undefined [2] to stringent (280 kb or 300 kb) cutoffs [3,4]. Other efforts have focused on the virus
particle, suggesting they should be larger than 100 nm [2] or need be easily visible by light microscopy
(>300 nm) [5]. One problem with establishing a particular definition for either genome or particle
size is that, as additional large viruses are isolated, the rationale may no longer be justified (e.g.,
Aureococcus anophagefferens virus (AaV), a close phylogenetic relative of Mimivirus, is only ~140 nm
in diameter) [6]. Indeed, a previous definition proposed a genome minimum of 280 kb due to a notable
inflection point in a rank order plot of virus genome size [3]. However, in re-examining the largest
100 complete virus genomes in the National Center for Biotechnology Information’s (NCBI) genome
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database, this gap is no longer present and a change in slope now occurs at ~400 kb (Figure 1A).
This undersampling of giant viruses has resulted in a lack of sufficient information to describe their
general characteristics [7,8]. While the vagaries of this definition will fade over time, herein we consider
viruses ‘giant’ if their genome is larger than 200 kb. Moreover, this review will focus primarily on
giants that infect single-celled eukaryotes.
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Figure 1. The scale of giant virus genomes. (A). Genome size vs. rank plot for the largest 100 complete
viral genomes as of January 2016 from National Center for Biotechnology Information (NCBI).
Data points noted (e) were previously used in discussion by Claverie et al. [3] to define giants viruses
as having genomes > 280 kb, open circles (O) represent additional data; (B). Genome size vs. rank
order of completed bacterial genomes in NCBI as of January 2016. Sizes are color-coded to match the
ranges of giant virus genomes.

Using a cutoff of genomic content >200 kb pairs (kbp), ~2.2% (115/5356) of all of the completed
virus genomes in NCBI fall within the realm of giants (Figure 1A). To date, all of these giants have
genomes consisting of double-stranded DNA: the largest complete genome for other nucleic acid-type
viruses is that of the double-stranded RNA (dsRNA) Dendrolimus punctatus cypovirus 22 (32.75 kbp) [9].
Perhaps more surprising is that this genome size range for giant viruses overlaps with more than ~one
third of the complete prokaryotic genomes in NCBI (Figure 1B), as well as the genome sizes of several
small eukaryotes [10]. This includes the smallest free-living archaeon (Methanothermus fervidus, 1.2 Mb)
and the smallest free-living bacterium (Candidatus Actinomarina minuta, estimated ~700 kbp) [11].
While we will not consider them beyond the occasional passing mention in this article, it should be
noted that several bacteriophages have genomes exceeding the 200 kbp genome size (see Table 1), and
therefore qualify as giants. These phages infect both Gram-positive and -negative bacteria, including
cyanobacteria [12,13].
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Table 1. Comparison of host and viral genome size and GC content. All data was collected from the NCBI repository.

30f18

Giant Virus Size Virus (Mb) Virus GC (%) ORFs * Accession Host Size Host (Mb) Host GC (%) Host-Virus Genome Size Host-Virus GC Accession
Pandoravirus salinus 2.5 61.7 2541 NC_022098.1 Acanthamoeba castellanii 46.7 58.3 189 —34 'AHJ100000000.1
Pandoravirus dulcis 1.9 63.7 1487 NC_021858.1 A. castellanii 46.7 58.3 245 —5.4 'AHJI100000000.1
Acanthariocba polyphage 12 28.0 1018 NC_014649.1 A. polyphaga 1204 59.3 102.0 313 CDFK00000000.1
AC””ﬁ‘;*Z;ffﬁy’j‘r’L{phﬂg“ 1.0 246 915 NC_020104.1 A. polyphaga 120.4 59.3 118.1 347 CDFK00000000.1
Mollivirus sibericum 0.7 60.1 523 NC_027867.1 A. castellanii 42.0 58.4 64.6 —-1.7 AHJI00000000.1
Pithovirus sibericum 0.6 35.8 467 NC_023423.1 A. castellanii 42.0 58.4 68.9 22,6 AH]JI00000000.1
Emiliania huxleyi virus 86 0.4 40.2 478 NC_007346.1 Emiliania huxleyi 167.7 65.7 409.0 25.5 AHALO00000000.1
Marseillevirus marseillevirus 0.4 44.7 457 NC_013756.1 A. polyphaga 120.4 59.3 325.5 14.6 CDFK00000000.1
Aureococeus 0.4 28.7 384 NC_024697.1 A. anophagefferens 56.7 69.5 153.1 40.8 NZ_ACJ100000000.1
anophagefferens virus
Melbournevirus 04 44.7 403 NC_025412.1 A. castellanii 42.0 58.4 113.6 13.7 'AHJ100000000.1
Paramecium bursaria Chlorella variabilis
Chlorella virus NY2A 0.4 40.7 411 NC_009898.1 NC64A 46.2 67.1 124.8 264 ADIC00000000.1
Brazilian marseillevirus 0.4 43.3 491 NC_029692.1 A. castellanii 42.0 58.4 116.7 15.1 'AH]JI100000000.1
Lausannevirus 0.4 429 444 NC_015326.1 A. castellanii 42.0 58.4 120.1 155 'AHJI00000000.1
Ectocarpus siliculosus virus 1 0.3 51.7 240 NC_002687.1 Ectocarpus siliculosus 195.8 53.5 575.9 1.8 CABU00000000.1
Parameciurm bursaria 03 408 366 NC_009899.1 C. variabilis NC64A 46.2 67.1 135.8 26.3 ADIC00000000.1
Chlorella virus AR158
Paramecium bursaria 03 400 376 NC_0008525  C. variabilis NC64A 46.2 67.1 139.9 27.1 ADIC00000000.1
Chlorella virus 1
M‘“‘i}‘ﬁzrs‘issz’“S‘ua 02 39.8 265 NC_020864.1 Micromonas pusilla 220 65.9 104.6 26.1 NZ_ACCP00000000.1
Sample Bacteriophage
Bacillus phage G 0.5 299 694 NC_023719.1 Bacillus megaterium 5.3 38.1 10.7 8.2 NZ_CP009920.1
Pr "Chl"l’,"_cs"scﬁ‘z phage 03 355 335 NC_006883.2  Prochlorococcus marinus 1.8 36.4 7.0 09 NC_005042.1
Ralstonia phage RSL1 0.2 58.0 345 NC_010811.2 Ralstonia solanacearum 5.6 66.5 243 8.5 NC_003295.1
Sinorhizobium phage phiN3 0.2 49.1 408 NC_028945.1 Sinorhizobium meliloti 3.7 62.7 17.4 13.6 NC_003047.1
Pseudomonas phage EL 0.2 49.3 201 NC_007623.1 Pseudomonas aeruginosa 6.3 66.6 29.8 17.3 NC_002516.2

* ORF = Open reading frame
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As with observed ranges in genomic size, there is also a wide range of GC content of these viruses
relative to the small eukaryotes they infect (Table 1). On average, mobile elements such as phage and
plasmids are more AT-rich than their host, but usually by only ~5% [14]. In contrast, Emiliania huxleyi
virus (EhV) and AaV, which infect eukaryotic algae, have GC contents that are 24.3% and 38.7% lower
than their hosts nuclear genomes, respectively [15,16], while the chloroviruses (freshwater viruses
infecting Chlorella) have GC contents that are ~21% lower than their host’s nuclear genome. While not
a defining feature of all large viruses, this GC difference raises interesting questions concerning the
scavenging of nucleotides during the infection cycle. Construction of new viruses is in some cases
thought to depend on materials “scavenged” from the host cell, yet in the case of these viruses there
would seem to be a discrepancy in terms of what would be available for scavenging. An interest side
note to this is that mitochondrial and chloroplast genomes are often observed to have such relative
low GC content genomes, similar to these viruses [14,15], implying a potential for scavenged materials
from organelles to be important in the construction of new virus particles.

The current size range for giant virus particles varies from our operationally defined ~200 nm
to >1500 nm in diameter [5], although as noted, phylogenetic relatives to these giants exist that are
only ~140 nm. Indeed, the upper limit of this range is larger than for several bacteria and archaea
(Figure 1B), redefining how we think about the relative size of prokaryotes and viruses. These large
particle diameters may be needed to house their large genomes (see below), but it has been argued
that there are other evolutionary pressures for these virus particles to retain large physical sizes [5].
For example, viruses infecting Acanthamoeba are internalized via phagocytosis, and it has been shown
that this process works less efficiently on smaller (<600 nm) particles [16]. Additionally, based on
standard contact kinetics, a larger particle size may increase the probability of contact between the
virus and its host in the environment [17].

In addition to a tremendous variation in genome and particle size, giant viruses also have
highly diverse morphologies that can be broadly categorized into two groups: ovoid and icosahedral
(Figure 2). These morphological differences correspond to the structural proteins that make the virion
capsids; icosahedrons are built by homologous (3-barrel jelly-roll Major Capsid Proteins (MCPs) with
minor capsid proteins acting as scaffolds connecting trisymmetrons and the outer capsid to the inner
membrane surrounding the viral genome [18]. In contrast, ovoid viruses encode phylogenetically distant
(Mollivirus) to unconvincing (Pandoravirus and Pithovirus) homologs to MCP [19-21]. It is unclear how
the virion shape provides a selective advantage, since both types have been isolated in similar habitats.

A)

Figure 2. Cont.
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(B)

Figure 2. Transmission electron micrographs of giant virus particles. (A) Pithovirus, as seen in
Michel et al. [22]. Originally identified as a KC5/2 parasite, the image shows the electron dense
viral wall consisting of perpendicularly oriented fibers or microtubules (arrows), and a marked ostiole
(0s) located at the apical end of the cell. Reprinted with permission—original magnification at 85,000
(B) Megavirus chilensis. Image courtesy of Professors Chantal Abergel and Jean-Michel Claverie.

Another mysterious aspect of these giant virus particles are the unique biochemical and
morphological features. Virus-host interactions are thought to be facilitated in one of two ways:
adsorption to the host cell wall, as is typical of algal host-virus systems [23], or phagocytosis by a protist
host. These interactions often involve unique structures. For example, Mimivirus and its close relatives
(Megavirus, Marseillevirus, Lausannevirus, and Moumouvirus) are characterized by proteinaceous
fibers anchored to the icosahedron capsid [24,25] that are covered in glycolinkages [26-28]. It has
been hypothesized that these fibers work in tandem with the large size of the viruses to facilitate
phagocytosis, as they appear to have a similar composition to peptidoglycan and thus help mimic
a bacterium (indeed, the name Mimivirus comes from “Mimicking Microbe” [29]). Additionally, the
fibrous glycoproteins enable viral adsorption to diverse organisms ranging from bacteria and fungi to
arthropods [30], implying a potential for both environmental dispersion and an incidental infection
strategy in amoeba. Phycodnaviridae may also use unique structures to gain access to their host, though
their mode of entry is typically by adsorption/injection, as opposed to phagocytosis. For example, the
Chlorovirus capsid contains one spike located at a unique vertex of the icosahedral capsid that must
be oriented towards the host cell surface to initiate infection [31]. Similarly, Mimivirus and its relatives
utilize a five-pointed vertex called the ‘stargate” structure that permits the first step in activating
infection. Infection is initiated by fusion of the internal viral lipid membrane to the phagosomal
membrane [24,32], which differs from algal viruses that fuse with the host cell membrane. This fusion
event is observed in all giant viruses despite differences in structural features or infection strategies [20].
Whether these features are the result of homologous or convergent evolution remains to be determined,
though given the breadth of physiological variation in the taxa, conservation of this mechanism is a
compelling argument for monophyly.
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2. Non-Structural Components of the Virion

An anomaly among the giant viruses are several viruses that include EhV, which have a lipid
envelope outside of the capsid. These viruses include a Phaeocystis globosa virus (PgV-07T) [33]
and several viruses infecting Micromonas pussila [34] which allows for a unique mode of infection
and provides protection from environmental stressors [35]. This may be vital to the survival and
transmission of these viruses, as they are ingested and transported across blooms by copepods [36].
An additional role of this lipid envelope and its associated proteins is an assumed association with
recognition of the host and initiation of infection.

The nucleocytoplasmic large DNA viruses (NCLDVs) (described below) package a variety of
proteins inside their capsids encoded by either viral or host genomes that are deployed immediately
upon infection. For example, the seven proteomes of giant virus particles currently available (below)
contain proteins predicted to combat oxidative stress, presumably because viral infections have been
shown to generate Reactive Oxygen Species (ROS) that can inhibit viral replication [37]. Interestingly,
Pandoravirus salinus carries one viral-encoded oxidoreductase, as well as three host-derived proteins
predicted to combat ROS [19]. P. bursaria chlorella virus-1 (PBCV-1) and the more recently described
Megavirus chilensis package homologous Cu-Zn superoxide dismutases [38,39]. In M. chilensis, this
protein is remarkable for having the unique ability to fold and incorporate key metallic cofactors
without the aid of chaperone proteins [39]. Additionally, C. roenbergensis virus (CroV) and Mimivirus
both package novel sulfhydryl oxidases that may function in the formation of disulfide bonds [40,41].
These sulthydryl oxidases as well as other protein disulfide isomerases present in CroV could aid in
protein folding or viral entry similar to those found in retroviruses [42-44].

3. Gauging the Host Range of Giant Viruses in Nature

One concern regarding giant virus isolation using Acanthamoeba spp. is that while these are
permissive, they may not be the natural hosts. Genomic analyses have been used in an attempt to
determine natural hosts. In Mimivirus, most of the genes horizontally transferred from eukaryotes
originated from amoeba, indicating amoebae are most likely the natural host of Mimivirus, but
alternative hosts are still possible [45]. Indeed, their unique size and independence from host machinery
may allow giant viruses to infect a wide range of hosts, which makes the search for the natural host
more challenging. In addition to amoeba, NCLDVs have been reported to infect mice [46] and the
symbiotic zooxanthelle of corals [47]. Giant viruses have also been isolated from human blood [48] and
have been found in the human virome [49], indicating a potential role in human health (or at least a
route of exposure). Indeed, the recent finding of Acanthocystis turfacea chlorella virus 1 (ATCV-1) from
human oropharyngeal samples is intriguing: subsequent analyses have shown consistency between
the presence of these viruses and reduced cognitive function in humans and mice [49].

4. Creating (an) Order from the Chaos: The Nucleocytoplasmic Large DNA Viruses

The NCLDYV classification was created to define a monophyletic group of families that, when
initially conceived, included Asfarviridae, Phycodnaviridae, Poxviridae, and Iridoviridae [50]. The rationale
for this grouping was based on a conserved core of (1) nine genes hypothesized as representative of a
common NCLDV ancestor and (2) a total of 22 more genes found in at least three of the four constituent
viral families. The name is a reference to the replicative strategies of the included families as they
replicate in both the nucleus and cytoplasm (phycodnaviruses, asfarvavirus and iridovirus) [51-53],
or totally within the cytoplasm (poxviruses) [54]. A NCLDV ancestor has been hypothesized to
have originated early in evolutionary history, possibly contemporaneously with early eukaryotic
evolution, as suggested by the broad host range of NCLDV members [55]. However, the nature of
this ancestral NCLDV remains unclear. Due to non-orthologous displacement of core genes [55] and
potential reductive evolution [5] it is especially difficult to estimate the approximate genome size of
any common ancestor and whether it would qualify as a giant virus when compared with modern
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giants. Indeed given theories on genome size variability, such as the genomic accordion [56,57], it is
likely that predecessors of a variety of genome sizes existed. Moreover, it has been argued that mobile
genetic elements encoded by virophages and transpovirions may have contributed significantly to the
size of the NCLDV genome [58,59]. Therefore, the ancestral NCLDV may have been much smaller in
genome size than modern representatives, and the mechanism by which it expanded its genome may
have resulted in the wide range of genome sizes seen in current NCLDV members [60].

The NCLDV classification is not without its shortcomings. As new members are added to
the group, the “nucleocytoplasmic” distinction of replicative strategies becomes less useful due to
the increasing diversity of virion production. Many NCLDV families utilize a nucleocytoplasmic
route for replication, including Asfarviridae [52], Iridoviridae and Ascoviridae [53], Phycodnaviridae [51],
and Pandoraviridae. Other families, like Poxviridae [54], Mimiviridae [61], Marseilleviridae [62] and
Pithoviridae [5], begin and complete their replication cycles exclusively in the cytoplasm, encoding the
replication and transcription machinery necessary to produce virions without nuclear involvement.
From a taxonomic perspective, the NCLDV group does not follow the naming conventions of (and is
not recognized by) the International Committee on Taxonomy of Viruses (ICTV), as the classification
lacks context within a larger hierarchy. To rectify this, Colson et al. proposed to reclassify NCLDVs
within the new viral order Megavirales [63,64] based on the presence of conserved ancestral genes and
a large icosahedral capsid composed of a homologous {3-barrel jelly roll protein. This classification
scheme, however, excludes the Poxviridae and Ascoviridae, [65] as well as Pandoravirus, Pithovirus and
Mollivirus. In addition, the Megavirales classification required the capacity to assemble viral factories
within the cytoplasm of host cells [62,66-69], a feature found in RNA viruses [70] but not seen in DNA
viruses outside of the NCLDV group [64]. Currently (as of December 2016), the Megavirales is not
considered a classification by the ICTV.

Most recently, the NCLDV genome size range has expanded to include genomes from 100 kb
to 2.77 Mb encoding from 110 to 2556 genes [19,60]. The ten groups of NCLDV (Phycodnaviridae,
Poxviridae, Asfarviridae, Ascoviridae, Iridoviridae, Mimiviridae, Marseilleviridae, Pandoraviridae, Pithovirus,
and Mollivirus) infect a broad spectrum of hosts. In keeping with the NCLDV group’s high degree
of variability regarding particle size and host range, these viruses also display varying degrees of
reliance on host metabolism and machinery, resulting in a limited number of highly conserved or
“core” genes (e.g., see [71]). Yet despite these variances in NCLDV traits, common ground does exist.
There are genes conserved amongst all available NCLDV genomes that are crucial for viral production
or virion structure, such as the D5R packaging ATPase, D13L major capsid protein, and the B family
DNA polymerase.

Comparative analyses of the genes conserved amongst different giant virus families has
historically supported the monophyletic nature of the NCLDV group, and recent efforts to
determine the clusters of orthologous groups (COGs) for giant viruses support their monophyly [72].
The conserved genes further provide potential markers that might be used in the discovery of novel
NCLDVs and the determination of phylogenetic relationships between more closely related taxa [60].
For example, Moniruzzaman and colleagues [73] demonstrated an expanded level of diversity of the
algal-specific members of the Mimiviridae by targeting the conserved MCP gene in this clade. However,
this approach has its limits; the three recently discovered representatives of Pandoravirus lack the major
capsid protein and the D5R helicase, as well as a number of other core NCLDV genes [19]. Indeed only
17 of the 49 inferred ancestral NCLDV genes were found in at least one of the Pandoravirus genomes,
calling into question their inclusion in the giant virus clade despite their particle and genome size [74].

5. Viruses as a Possible Fourth Domain of Life

Initially viruses were defined by their intrinsic filterability away from cellular life forms [75-77],
a definition subsequently refined to include their lack of ribosomes, a host-dependent metabolic
strategy, and replication by means other than binary fission [78]. That the unique capabilities of
NCLDVs still fit well within the latter definition, after fifty years of discovery and scientific scrutiny,
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highlights a fundamental difference between cellular organisms and viral particles. However, giant
viruses do challenge these distinctions. Independent of their size, which invalidates the informal
0.2-pm filter cutoff, NCLDVs are remarkably cell-like in virion structure and gene content. In addition
to their protein coat, membrane, and genome, Mimivirus and Marseillevirus particles contain messenger
RNA molecules, making them the only viruses, to date, that contain both types of nucleic acid [79].
Moreover, several viruses encode genes involved in translational processes, such as varying numbers
of aminoacyl-transfer RNA (tRNA) synthetases [69,80]. Indeed, we hypothesize these proteins may be
useful in overcoming differences in GC content seen between some viruses and hosts (Table 1), but this
has yet to be empirically demonstrated.

The discovery of translational machinery (including that mentioned above) encoded in select virus
genomes allows for comparisons to traditionally “cellular” functions normally associated with the
three domains of life. Sequence alighments comparing multiple genes involved in DNA replication and
repair, transcription, and translation shared between cellular organisms and NCLDVs appear to show
deeply branching relationships as ancient as the domain Eukarya. It was subsequently hypothesized
that giant viruses evolved from a cellular common ancestor belonging to a currently extinct fourth
domain of life, unique from Bacteria, Archaea, and Eukarya [63,81]. Seemingly in support of this
hypothesis is the abundance of coding sequences (ORFans) in giant viral genomes with no known
homologues in the other domains.

These ideas have proven somewhat controversial, as direct sequence comparison of genes
conserved among cellular organisms with virus-encoded homologs is problematic. As selective
pressures on similar genes within viruses and their hosts are likely different, accelerated sequence
divergence in viruses may exaggerate their perceived distance from the derived gene [82]. Subsequent
alignments accounting for compositional heterogeneity and homoplasy place giant virus genes with
eukaryotes [83]. While it has been countered that giant virus genes do not evolve more quickly
than their cellular counterparts, this has yet to be demonstrated outside of a single example within
Marseilleviridae [5,84]. Indeed, an overabundance of viral open reading frames (ORFs) without known
homologues is not a problem unique to giant viruses [85]. These observations and others have led
to the alternative hypothesis: gene content within the different NCLDV families suggests that their
genomes have been built up from smaller viruses over time, rather than by loss of unnecessary genes
by an ancient cellular ancestor [72]. As some of the current NCLDVs replicate in phagotrophs like
Acanthamoeba and Cafeteria roenbergensis, it was hypothesized that smaller viruses may incorporate
genetic material from other organisms phagocytosed by the host.

6. Giant Viruses in the Environment

While surveys are not yet exhaustive, giant viruses appear to be found in all environments.
Since the discovery of Mimivirus from a water cooling tower [86], giant viruses have been found in
locations where amoebae normally thrive, including seawater, soil, aerosols, and man-made aquatic
environments such as sewage, fountains and air conditioners [87], in addition to harsh, unexpected
ecosystems such as permafrost [20]. Lastly, giant viruses or their DNA sequences have been observed
in animals such as dinoflagellate-associated coral [47], arthropods, and humans [49,88].

A powerful tool in the identification of putative new viruses are environmental metagenomic
studies (Table 2), though most have not focused specifically on giant viruses until recently [21].
Current research suggests giant viruses only comprise a small percentage of viruses (<1%) in most
samples. However, virus densities can fluctuate based on contact with their host: for example,
Chlorella viruses are much more abundant when their hosts, normally sequestered as endosymbionts of
Paramecium bursaria, are made available as a consequence of predatory activity on the Paramecium [89].
Regardless, it is clear some families tend to be more common than others: in marine metagenomics
samples Phycodnaviridae-related sequences were found to be highest in abundance, followed by
Mimiviridae [90,91]. It is also clear that these viruses are persistent: the discovery of 30,000-year-old
Mollivirus particles in permafrost suggests that giant viruses can survive, under the correct conditions,
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for long periods of time [21]. When combined with other tools such as flow cytometry sorting of either
individual particles [92] or infected hosts [93], these new approaches will begin to shed significant
light on the natural diversity of these populations.

Table 2. Comparison of giant virus reads to total viral reads in shotgun metagenomic studies from
different environments.

Environment Location Abundance Total Reads Most Common Virus Families Present Source
Marine Indian Ocean 0.3%-1.4% N/A Mimiviridae, Phycodnaviridae [91]
Antarctic soil Antarctica 2.82%~7.71% 123/1595-177 /6264 Mimiviridae, Phycodnaviridae [94]
Coral USA 1.2% 744 /60485 Mimiviridae, Phycodnaviridae [95]
Human (respiratory system) Sweden 0.00002% 2/111931 Mimiviridae [96]

To date, much of the focus on giant viruses has been on their genomics rather than their influence
on the environments in which they persist. Several large, dsDNA viruses including EhV [97], PgV [9§],
AaV [6,97] and Heterosigma akashiwo virus (HaV) [99] are associated with algal blooms, although only
a few have been directly shown to infect and lyse the phytoplankton involved with the bloom in
situ [97,100]. Algal blooms occur on large geographical scales and result in significant influxes of
atmospheric carbon into the world’s oceans. Viruses, particularly bacteriophages, are known drivers
of dissolved organic matter (DOM) release back into the environment via a process known as the
“viral shunt” [101,102]. With the large biomass of algae associated with these blooms, virus-mediated
collapse by giant viruses may also be an important driver of dissolved and particulate organic matter
release. Giant viruses that infect algae may be likened to bacteriophages in terms of participating in
the viral shunt, and the release of nutrients back into the environment may be an important part of the
ecological cycle in aquatic systems [102].

A recent estimate suggested that giant viruses available in culture were infectious to at least
22 different algal species [103]. Globally, it has been proposed that there are more than 350,000 algal
species [104]. Given the possibility that all algae may be infected with one or more viruses [105,106],
the possibility of a collection of unknown giants remains very real, and indeed molecular data point to
at least a broad diversity within the known groups [107,108]. Building on the above, it is clear from a
survey of the literature that researchers identified candidate protist-giant virus systems well before
Mimivirus was documented (Table 3). In the late 1960s and early 1970s, the expanded availability of
transmission electron microscopes to researchers resulted in a series of observations concerning the
presence of large virus-like particles inside algal cells [107,109]. In many cases, these virus-host systems
have been largely ignored by the scientific community, creating a broad spectrum of opportunities
for researchers to begin to cultivate these plankton in an effort to isolate and characterize new giant
viruses. Given the expansive putative host-range that has been observed, it is likely that many of these
viruses could fill in knowledge gaps concerning the diversity and potential function of these particles.
Indeed, one example of how new hosts can be used to discover new viruses are the Faustovirus, recently
discovered using Vermamoeba (a protist found in both humans and natural systems) as a screen [110]:
unique to these viruses is a collection of genes three times larger than the other members of the
Asfarviridae family.

And while it is obvious that there is a dearth of knowledge concerning giant viruses that infect
algae in the environment, there is an even larger knowledge gap regarding giant viruses infecting
heterotrophic eukaryotes. The most studied of these viruses is CroV, which infects the heterotrophic
grazer Cafeteria roenbergensis [111]. Given this organism is a grazer of primary producers it is possible
that infection of this organism by CroV could have effects on lower trophic level organisms. It has
been shown that grazing can be an important driver of algal bloom decline [112], so it stands to reason
that the effects giant viruses have on mixo/heterotrophic-plankton are critical to understanding bloom
dynamics. Almost no information, at this time, is available to discuss the impacts of these infections,
but they will most likely result in interesting discoveries and further our understanding of how giant
viruses alter the microbial food web.
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Table 3. A chronological list of organisms shown in the literature to contain viruses consistent with the
giant virus size class.

Year Organism Particle Size References
1970 Apbhelidium sp. (fungal parasite of algae) 190-210 nm [113]
1972 Oedogonium spp. “L” (Chlorophyceae) 240 nm [114]
Chorda tomentosa (Phaeophyceae) 170 nm [115]

1973 Ectocarpus sp.; Ectocarpus fasciculatus (Phaeophyceae) 150 nm, 170 nm [116,117]

Aulacomonas submarina (Chlorophyceae) 200-230 nm [118]
1974 Pylaiella littoralis (Phaeophyceae) 130-170 nm [119]
Pyramimonas orientalis (Prasinophyceae) 200 nm [120]
19751 Chara corallina (Charophyceae) 18 nm x 532 nm [121]
1978 Sorocarpus uvaeformis (Phaeophyceae) 170 nm [122]
1979 Gymnodinium uberrimum (Dinophyceae) 385 nm [123]
Mallomonas sp. (Synurophyceae) 175 nm [123]
1980 Uronema gigas (Chlorophyceae) 390 nm [124]
1984 Paraphysomonas corynephora (Chrysophyceae) 150-180 nm, 270-300 nm [125]
1993 Various Phaeodarian food vacuoles 300-750 nm [126]

t Although in length this virus qualifies as a giant, its rod shaped morphology is more consistent with Tobacco
mosaic virus than any member of the Mimiviridae.

7. Intimate Interactions with the Host: Eco-Evolutionary Consequences

Only recently have we come to appreciate the possibility of gene transfer between giant viruses
and their hosts. A large proportion of giant virus genes comes from diverse sources, including from
their eukaryotic hosts [127]. In EhV, seven genes involved in sphingolipid biosynthesis pathway were
putatively transferred from the host algae [128]. Upon infection, the host sphingolipid biosynthesis
pathway is downregulated concomitant with the upregulation of the corresponding viral genes,
leading to increased production of viral glycosphingolipids (vGSLs) [129]. EhV particles are covered
by vGSLs, and this unique lipid molecule ultimately induces programmed cell death (PCD) in infected
hosts [130].

A genome wide phylogenetic study of AaV identified a number of genes having their highest
phylogenetic affinity to host (Aureococcus) homologs, [71]. This agrees with observations made
by earlier studies on several other giant viruses [127,131]. While gene acquisition may be one of
the evolutionary strategies of giant viruses, how these genes confer ecological advantages remains
largely unknown. As the vast majority of viruses harbor streamlined genomes with few genes,
the enormous genetic resource of giant viruses poses a paradox in terms of energetic cost of
replication. Closer inspection of a number of sequenced eukaryotic genomes revealed a large number
of genes originated from giant viruses [132,133]. In a recent study, large genomic islands, putatively
derived from both giant viruses and a virophage, were found in Bigelowiella natans, a Cryptomonad
algae [134]. In another study, “core” genes from giant viruses were detected in eight protists and a
metazoan (Hydra magnipapillata) genome [132]. Remarkably, a 400-kb region in the H. magnipapillata
was putatively identified to be of viral origin [132]. Major capsid gene phylogeny indicated the
genes were likely from a Mimiviridae family member. Giant virus particles and marker genes
have also recently also been observed associated with zooxanthellae from the genus Symbiodinium,
a dinoflagellate typically found closely associated with corals [47]. Giant virus-like genes were also
found in several other protists [133,135] and some plant genomes, namely Physcomitrella patens and
Selaginella moellendorffii [136]. The role of giant virus-derived genes in host remain an open question.

Host—virus interactions result in an evolutionary arms race—leading to the emergence of new
diversity in the host and virus population [137]. Hosts of giant viruses have evolved a variety of
defense mechanisms against giant viruses. An elegant example is the ‘Cheshire cat’ strategy adopted
by Emiliania huxleyi [138]. The diploid calcified cells of E. huxleyi are susceptible to EhV infection, while
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the haploid stage is ‘invisible” to infection. It has been suggested that during the decline of the Brown
tide blooms, a virus-resistant population of the Aureococcus persists, maintaining a relatively high
abundance of Aureococcus even after the demise of the bloom [73,97].

8. Virophage

Another interesting characteristic of some giant viruses is their susceptibility to infection by other
bioactive particles, termed “virophage”. The first virophage to be isolated was named Sputnik [59],
which replicates within the viral factory used by Mamavirus within Acanthamoeba castellanii. Because
of this, Sputnik only replicates within A. castellanii co-infected with Mamavirus. Infection by the
virophage causes abnormal capsid structure of Mamavirus, increasing capsid size and causing abnormal
fiber localization on its surface, suggesting a parasitic relationship between the two [59]. Co-incubation
of Sputnik and Mamavirus decreased infective Mamavirus particle titers by approximately 70% and
increased the survival rate of the A. castellanii [59]. Similar virophages have been found infecting other
giant viruses as well [139-142]. The discovery of “viruses that infect viruses” has strengthened the
argument that viruses are living entities [143]. Some classes of Mimivirus appear to have developed
a CRISPR-CAS-like system suggested to combat these virophages, called the Mimivirus virophage
resistant element (MIMIVIRE) [144]. Interestingly, a number of genes homologous to those in the
MIMIVIRE system are present in other giant viruses, suggesting that the MIMIVIRE-like defense
systems might not be exclusive to Mimivirus [134,145]. Other interpretations, however, are questioning
these conclusions [146]. Much has yet to be learned in these systems, but virophages may act like both
‘provirophage” and ‘provirus’, depending on the genomic context at multiple levels.

9. Conclusions

The discovery of Mimivirus has driven both the nascence and evolution of a new area of scientific
inquiry. Giant viruses are now the topics of evolutionary, ecological and biotechnological inquiries.
Moreover, broad-scale efforts to identify new virus-host systems, ranging from classic culture-based
approaches to newer bioinformatics efforts to link viruses and their hosts [147] will soon provide a
larger data base of information concerning the key features of these novel virus particles. Indeed,
a survey of older literature (Table 3) clearly demonstrates that there are many virus—host systems
that have been observed but are yet to be isolated and characterized. Moving forward, there is little
doubt that the study of giant viruses will shed new light not only on virus-host relationships, but also
on key evolutionary processes including the natural occurrence rates of transduction and horizontal
gene transfer.
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