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Abstract: Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged
stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with
high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance
to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan
province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR)
analysis was used to quantitatively detect virus gene expression levels in different rice varieties.
The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of
infected plants (L.L.P.), virus load (V.L.), disease index (D.I.), and insect quantity (1.Q.) per 100 clusters.
Zhongzheyoul (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with
integrated higher A.Y., lower LLP, V.L., D.I. and I.Q. features. In order to investigate the mechanism
of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry
(LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice
varieties’ SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186
may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

Keywords: southern rice black-streaked dwarf virus; rice ragged stunt virus; resistance properties;
field tests; quantitative real-time polymerase chain reaction; label-free shotgun LC-MS/MS proteomics

1. Introduction

Rice is often subjected to biotic stressors, such as fungi, bacteria, and viruses [1]. In recent years,
rice production in China has suffered from two emerging viruses, namely, southern rice black-streaked
dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) [2,3]. SRBSDYV is a novel member of the
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family Reoviridae [4,5] and possesses a genome consisting of 10 double-stranded RNA (dsRNA); this
virus is prevalent in Southern Asian countries, Vietnam, Japan, and China [6-9]. The typical symptoms
of SRBSDV include dark green and wrinkled leaves, incomplete tassels, tumor-like protrusions ending
with small enations, tiller formation on the upper parts of plants, and up-growing rootlets [10,11].
RRSV is a member of the genus Oryzavirus. A previous study reported that RRSV contains an
icosahedral particle (approximately 65 nm in diameter) with a genome consisting of 10 dsRNA
segments [12,13]. RRSV causes diseases with symptoms of twisted leaves, delayed flowering, nodal
branch production, incomplete panicle emergence, and panicles bearing mostly unfilled grains;
this virus is prevalent in China, Philippines, and Vietnam [14-17]. The major vectors of SRBSDV
and RRSV are white-backed planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH,
Nilaparvata lugens), respectively [18-20]. The epidemic and outbreak of diseases caused by SRBSDV and
RRSV are closely associated with the outbreak of viruliferous populations of BPHs and WBPHSs [21-24].
Even at a low density, viruliferous vectors can lead to significant yield loss by virus transmission,
especially in China [25]. Although progress has been made in the development of pesticides and
controlling technologies against SRBSDV and RRSV, resistant rice cultivars still must be determined to
ensure safe production and to identify their resistance characteristics.

This study aimed to evaluate rice cultivars with high resistance to virus. Field trials were
conducted to compare factors affecting virus resistance sources. Acre yield (A.Y.) and incidence of
infected plants (LLP.) were first determined in 22 different rice varieties in Jiucheng Village, Yunnan
province of China, in the year of 2012. A.Y. means yield of each rice cultivar per acre. LL.P. was defined
as the mean density of the diseased plants. Viral quantification was an essential tool for the study of
resistance mechanisms of plants [26]. Thus, SYBR Green I-based quantitative real-time polymerase
chain reaction (qRT-PCR) analysis was then applied to quantitatively detect SRBSDV and RRSV gene
expression levels in these varieties. Virus load (V.L.) was determined by comparing the relative
mRNA expression levels of the entire SRBSDV and RRSV viral genome through the qRT-PCR method.
The resistance of 10 major rice cultivars to SRBSDV and RRSV was simultaneously tested in Jiucheng
and Zhefang Village by using an evaluating-parameter, such as the disease index (D.I.) and insect
quality (1.Q.), in Yunnan province of China, in the following year of 2013. L.LP, A.Y., V.L., D.I,, and insect
L.Q. were applied to evaluate the resistance of all the rice cultivars. Results showed that Zhongzheyoul
(Z1) and Liangyou2186 (L2186) were the most suitable varieties. The underlying resistance mechanism
of Z1 and L2186 was investigated, with a common susceptible rice variety as comparison, namely,
Fengyouxiangzhan (FYXZ). Comparative proteomic approaches were conducted to comprehensively
describe the proteomics of the SRBSDV tolerance of Z1, L2186, and FYXZ. Quantitative label-free liquid
chromatography tandem-mass spectrometry (LC-MS/MS) proteomic technology identified systemic
resistance-related proteins in SRBSDV-infected cultivars. This study provides the first description of
rice resistance properties through field trials, qRT-PCR, and label-free shotgun LC-MS/MS proteomics.
Z1 and L2186 were the most suitable varieties with the lowest disease index, insect quantities, and
virus accumulation, as well optimal induced systemic resistance.

2. Materials and Methods

2.1. Field Tests

All tested rice cultivars were sown in a one-row plot with three replicates in the experiment field
(Jiucheng Village, Shidian County, Yunnan Province, China) during a period of SRBSDV and RRSV
epidemic in the prefecture in 2012. The plants were transplanted to the field in early July and harvested
in mid-November. LLP. and A.Y. of these rice varieties were determined in 2012. Twenty-two listed
rice varieties were investigated (Table 1); these varieties include Neixiangyou18 (N18), Shenzhou5 (S5),
L2186, Chuanyou3727 (C3727), IIYou6 (IIY6), Liangyoul5 (L15), ITYou629 (I1Y629), Mengyoul9 (M19),
Deyous8 (D8), Yingxiang1 (Y1), YLiangyou696 (Y696), Yunguang17 (Y17), Chuannong?2You498 (C2Y498),
Huxiang658 (H658), Liangyou816 (L816), Neixiangyoul (N1), Kefeng182 (K182), Liangyou2161 (L2161),
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Z1, Nei5You39 (N5Y39), Yingxuanl (YX1), and II'You58 (II'Y58). All of the cultivars were indica hybrid
rice type and most were cultivated in China. Meanwhile, 22 rice cultivars were not transgenic.

Table 1. 22 Rice varieties tested in Jiucheng in 2012.

Group Number Abbreviation Name of Variety SIIr{l]f;scg{i, Xlltf) Iﬁf:;s(z:/vf?
Group 1 H658 Huxiang658 + +
Z1 Zhongzheyoul + —
N18 Neixiangyoul8 + +
L2161 Liangyou2161 + —
K182 Kefeng182 + —
Group 2 N5Y39 Nei5You39 + —
L2186 Liangyou2186 + +
Y696 YLiangyou696 + +
C2Y498 Chuannong?2 You 498 + +
Y17 Yunguangl7 + +
N1 Neixiangyoul - +
L816 Liangyou816 + +
Group 3 11Y629 ITYou629 + +
ITY58 ITYou58 + -
L15 Liangyoul5 + +
I1Y6 ITYou6 + +
D8 Deyou8 + +
YX1 Yingxuanl + —
S5 Shenzhoub + +
Group 4 C3727 Chuanyou3727 + +
M19 Mengyoul9 + +
Y1 Yingxiangl + +
Control FYXZ Fengyouxiangzhan + -

SRBSDV: southern rice black-streaked dwarf virus; RRSV: rice ragged stunt virus.

Ten rice cultivars from these 22 rice varieties were separately evaluated in Jiucheng and Zhefang
Village (Mangshi City, Yunnan Province, China) in 2013. These varieties were uniformly sown on 4 June
in Jiucheng Village and 17 April in Zhefang Village, according to the actual production seeding rate.
All the plots in 2013 were cultivated in open field with three repetitions and arranged in a randomized
block design. 1.Q. per 100 clusters was surveyed every week. Three points were investigated in
each plot by the diagonal sampling method, and 10 clusters were surveyed in each point during the
maturity stage of rice. Each tiller of a cluster was classified according to the disease index classified
standard of SRBSDV. The disease index standard was divided into five levels, including level 0
(healthy asymptomatic tillers with normal height), level 1 (tillers with no obvious dwarf symptom,
yet had tumor-like protrusions ending with small enations), level 2 (three-quarters of the normal
plant height), level 3 (one-half of the normal plant height), and level 4 (one-third of the normal plant
height). Five points were investigated in each plot by the cross-sampling method, and five clusters
were surveyed in each point. The number of diseased tillers in different levels was investigated to
calculate the disease index. The same investigation and classification were used in the two villages.

D.I. = X [(total number of diseased tillers in different levels x actual level)/

1
(total number of investigated tillers x the highest level)] x 100 @

2.2. Quantification of SRBSDV and RRSV Gene Expression Levels by gRT-PCR

qPCR primers were designed according to the conserved regions of SRBSDV and RRSV identified
within the total sequence to develop a real-time PCR detection system (Tables S1 and S2). All primers
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used for RRSV amplification were designed by Primer 5.0 software. The primers used for SRBSDV
amplification were designed by Beacon Designer 7.7 and synthesized as previously described [27].
Total RNA was extracted from 100 mg of infected rice tissues by using RNAiso Plus (TaKaRa, Dalian,
Liaoning, China) according to the manufacturer’s instructions. First-strand cDNA templates were
synthesized using 2 ug of total RNA from various samples by using Moloney murine leukemia
virus (M-MLV) reverse transcriptase (TaKaRa) with a random primer as the anchor primer. After the
components were mixed, the sample was incubated at 42 °C for 1 h and then heated at 70 °C for 15 min.
The obtained cDNA was used as the qPCR template. SYBR® Premix Ex Tag™ (TaKaRa) was used in all
qPCR tests.

Before qRT-PCR, normal RT-PCR was performed using rTaq DNA polymerase (TaKaRa) with
each primer pair to ensure that correct products were amplified and that no primer dimer was present.
The amplified products were detected by 2% (w/v) electrophoresis agarose gel. Normal RT-PCR
reactions for each sample were performed at 72 °C for 10 min, followed by denaturation at 94 °C for
4 min and 35 amplification cycles of 94 °C for 30 s, 58 °C for 30 s, and 72 °C for 30 s. The non-specific
amplification of SRBSDV-cDNA and RRSV-cDNA was significantly inhibited in this assay, and all RRSV
products were sequenced. Real-time RT-PCR methods were performed using a SYBR Premix Ex Tag™
and iCycle iQ (Bio-Rad, Hercules, CA, USA) detection system with viral transcripts as the template to
quantitatively detect SRBSDV and RRSV in rice tissues. The mixture (20 pL) contained 2 x SYBR Premix
Ex Tug™ buffer, 10 uM each of forward primer, reverse primer, and template cDNA, and ice-cold
sterilized water. The reaction mixtures were incubated at 95 °C for 30 s, followed by 40 cycles of 95 °C
for 5 s and 60 °C for 30 s. The mRNA level was quantified in relation to the expression of rice 185
rRNA (GenBank Acc. No. AK059783).

Twenty-two rice varieties under the same treatment with three parallel repetitions at the dough
stage were used for qRT-PCR analysis. Suspected singly infected or co-infected SRBSDV and RRSV
rice specimens with typical dwarf symptoms were obtained from diseased fields and stored in the
laboratory at —80 °C. After the candidates were confirmed to be infected with SRBSDV or RRSV by
normal RT-PCR detection, the enations on rice plants were separated by RNA isolation for gRT-PCR
analysis. Negative control samples were obtained from rice plants grown in a greenhouse.

2.3. Quantitative Label-Free Shotgun Proteomic Analysis of Three Rice Varieties

Recently, by using a comparative proteomic analysis approach, a set of differentially expressed
proteins has been successfully identified and characterized to study the difference mechanisms of
tolerant and sensitive species [28,29]. In the present study, in order to investigate the resistance
characteristics of Z1 and L2186 compared to susceptible control FYXZ, SRBSDV infestation of these
three varieties was performed in Jiucheng village during the SRBSDV epidemic period in 2014.
The stem tissues from single SRBSDV infestation and healthy clusters were collected and maintained
at —80 °C for further use. Total protein from the rice plants was extracted by a modified trichloroacetic
acid (TCA)/acetone procedure [30]. About 1500 mg of fresh weight stem powder was suspended in
10 mL of 0.015 g of polyvinylpyrrolidone (PVPP, Sigma, Beijing, China), 10% trichloroacetic acid (TCA,
Sigma) in acetone, and 0.07% beta-mercaptoethanol (Sigma). The mixture was incubated at —20 °C
overnight, and the extract was centrifuged at 8000 x g and 4 °C for 15 min. The pellet was collected
and washed with ice-cold acetone by centrifugation at 8000 x g and 4 °C for 15 min. The acetone
washing step was repeated three times. The colorless resulting pellet was lyophilized in a vacuum
centrifuge, and protein quantification was performed by Bradford assay with bovine serum albumin
(BSA, Sigma) as the standard [31].

The extracted proteins in sodium dodecyl sulfate (SDS) sample buffer were separated on 10%
SDS-polyacrylamide gel electrophoresis (PAGE). After electrophoresis, the gels were categorized
into four groups according to the standard protein molecular weight, before protein visualization
with colloidal Coomassie G-250 overnight. The samples were air dried and reduced with 10 mM
Dithiothreitol (DTT, Solarbio Co. Ltd, Sigma)/50 mM NH4HCO; (pH 8.0, Sigma) at 56 °C for 1 h before
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alkylation in the dark for 30 min with 55 mM iodoacetamide (Sigma-Aldrich, Beijing, China)/50 mM
NH4HCO; (pH 8.0). The samples were washed with 10 mM NH4HCOs3, and 100% acetonitrile (ACN,
Sigma) twice for 10 min each and then air dried. Finally, samples were digested with trypsin in 10 mM
NH4HCOs at 37 °C for 8 h or overnight. Peptides resulting from trypsin digestion of proteins were
extracted with equal volumes of 60% ACN/5% formic acid (FA, Sigma) solution, dried, vacuum
centrifuged, and reconstituted in 50 pL of H,O (HPLC grade, Wahaha, Hangzhou, Zhejiang, China)
containing 0.1% FA for LC-MS/MS analysis.

The tryptic digest extracts from one-dimensional electrophoresis (1 DE) gel slices were analyzed
by a LC-MS/MS system according to a previous study [32]. Samples were automatically injected
onto the C18 reversed-phase column (3C18-CL, 75 um x 15 cm, CA). A 2.3 kV electrospray voltage
was applied via a liquid junction upstream of the C18 column. Each sample was loaded onto the
C18 column and subjected to an initial step in gradient elution mode at a flow rate of 300 nL/min,
with 95% solvent B (95% ACN, 5% HPLC grade water + 0.1% v/v FA) and 95% solvent A (5% ACN,
95% HPLC grade water + 0.1% v/v FA). The 5600 Triple time-of-flight (TOF) MS was operated in
data-dependent mode and automatically switched between TOF-MS and product ion acquisition in
Analyst (R) Software (TF1.6).

MaxQuant 15 version 1.5.2.8 was used to analyze and quantify the file of “wiff”. The protein
database of Oryza sativa and southern rice black-streaked dwarf virus from UniProt was used to search
the MS/MS spectra by the Andromeda search engine [33]. For peptide and protein identifications,
the false discovery rate (FDR) was set to 1.0%. For label-free quantification, the iBAQ algorithm was
used to rank the absolute abundance of different proteins within a single sample [34], and iBAQ data
were used for the Student’s t-test. The differentially expressed proteins were filtered by the following
cutoff: p-value was lower than 0.05 for the t-test. To evaluate the false positive rate of this approach,
we constructed a reversed sequence databank (a database in which the sequences have been reversed)
containing the same number of proteins in the Oryza sativa and southern rice black-streaked dwarf
virus database.

3. Results

3.1. Field Yields Test of 22 Rice Candidates in [iucheng in 2012

In early July of 2012, rice varieties were cultivated in Jiucheng during the explosion of SRBSDV and
RRSV. The LLP. and A.Y. of 22 candidates were investigated. The yield test showed that 22 candidates
were categorized into four classes, in which H658 (A.Y., 2085.05 kg) and Z1 (A.Y., 2023.74 kg) with the
highest harvest yields included in Group 1, and YX1, S5, C3727, M19, Y1 with the lowest harvest yields
were named as Group 4, the A.Y. of which range from 183.92 to 784.85 kg. Among those remaining,
C2Y498, Y696, L2186, N5Y39, K182, L2161, N18 belonged to Group 2 and had higher harvest yields
ranging from 1348.75 to 1655.29 kg. Group 3 consisted of eight varieties including D8, I11Y6, L15,
ITY58, I1Y629, L816, N1, Y17 with lower harvest yields ranging from 980.91 to 1226.14 kg (Figure 1 and
Table 1).
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Figure 1. Correlation between incidence of infected plants (L.LP., %) and acre yield (A.Y., kg) of 22 rice
varieties in the 2012 field test.

3.2. Analysis of the Relative mRNA Expression Level of SRBSDV and RRSV Genes

The relative mRNA expression quantity of all SRBSDV and RRSV genes from various infected
rice varieties was monitored through the qRT-PCR method to determine its relation to the resistance
of the rice varieties. Normal RT-PCR was performed using cDNA derived from samples co-infected
with SRBSDV and RRSV to verify the specificity of the primers used in the study. Electrophoresis
analysis showed that 13 pairs of primers based on SRBSDV (Figure S1 and Table S1) and 12 pairs of
primers based on RRSV (Figure S2 and Table 52) produced stable and specific bands, respectively.
After sequencing, the result was tested using BLAST and compared with the corresponding subtypes
of SRBSDV and RRSV. Melting curve analysis showed single peaks for all samples tested. The results
proved that the primers were suitable for qPCR tests.

Based on the detection results of candidate varieties in 2012, 15 rice varieties were confirmed to
be co-infected with SRBSDV and RRSV; one variety was singly infected with RRSV, and six varieties
were singly infected with SRBSDV; at least triplicate candidates were used (Table 1). Virus load in all
the rice tissues was correlated with the severity of infection and thus may be used as an indicator for
evaluating the infection susceptibility of different cultivars. The V.L. of 22 rice varieties were evaluated
using the virus content measured according to the 2~22¢* algorithm with the defining values of the
SRBSDV genomes of N18, RRSV genomes of N18, and SRBSDV genomes of K182 as 1.00 (Figures 2—4).
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Figure 2. Map generated from the responses of 15 dual infestation rice varieties to 13 SRBSDV genomes.
All rice varieties consisted of N18 (1), S5 (2), L2186 (3), C3727 (4), IIY6 (5), L15 (6), ITY629 (7), M19 (8),
D8 (9), Y1 (10), Y696 (11), Y17 (12), C2Y498 (13), H658 (14), and L816 (15).

The V.L. of 15 dual infestation rice varieties in relation to SRBSDV exhibited a particular trend
(Figure 2). L816 showed the highest V.L., whereas H658 and IIY6 showed the lowest. For instance,
the expression levels of SRBSDV-51 in L816, H658, and I11Y6 were 28.04-, 0.005-, and 0.17-fold higher,
respectively, than that of N18. Overall, S5, L2186, C3727, L15, 11Y629, M19, D8, Y1, Y696, Y17, C2Y498,
and N18 had no evident variation tendency, with the following exceptions: Y1 and Y17 had 10.90- and
5.48-fold higher V.L. than that of N18 of the S5-2 gene, and L15 had 4.97- and 4-fold higher V.L. than that
of N18 of S6 and S8 genes. The V.L. to SRBSDV in single infestation was also determined. The entire
contents of the SRBSDV genome decreased greatly in Z1, N5Y39, YX1, and IIY58 compared with that
in K182 and L2161 (Figure 3). Briefly, H658, 11Y6, Z1, N5Y39, YX1, and ITY58 had lower V.L. to SRBSDV
than other cultivars.
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Figure 3. Map generated from the responses of six single infestation rice varieties to 13 SRBSDV
genomes. All rice varieties consisted of K182, L2161, Z1, N5Y39, YX1, and ITY58.
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Figure 4. Map generated from the responses of 15 dual infestation rice varieties to 12 RRSV genomes.
All rice varieties consisted of N18 (1), S5 (2), L2186 (3), Chuanyou3727 (4), IIY6 (5), L15 (6), I1Y629 (7),
M19 (8), D8 (9), Y1 (10), Y696 (11), Y17 (12), C2Y498 (13), H658 (14), and L816 (15).

The V.L. of 15 dual infestation rice varieties to RRSV significantly differed from that to SRBSDV
(Figure 4). For example, RRSV content was higher in S5, I1Y629, Y17, and H658 than that in the other
cultivars. The corresponding V.L. was also slightly higher in D8 and C2Y498. The RRSV levels in N18
and II'Y6 were the lowest among all the rice varieties. The RRSV levels in L2186, C3727, and L15 were
slightly lower than those in the other varieties. The contents of RRSV in the remaining rice varieties
such as M19, Y1, Y696, C2Y498, and L816 were detected at the mid-level. Hence, N18, ITY6, L2186,
(C3727, and L15 exhibited lower V.L. to RRSV than that of the other varieties.

3.3. Field Yields Tests of 10 Major Rice Cultivars in Jiucheng and Zhefang in 2013

Twenty-two rice varieties were subjected to preliminary assessments on L.I.P., A.Y., and V.L. to
SRBSDV and RRSV, which was obtained from the field test in the first year. Ten rice cultivars among the
four groups were screened to re-evaluate the resistance to the virus in the following year. A comparison
of the field test results using 10 rice cultivars from Jiucheng showed that breeding cultivars Z1, L2161,
and L2186 performed better than other varieties; these three cultivars produced the lowest D.I. and 1.Q.
values (Figure 5a). In Zhefang, despite the absence of evident variation in 1.Q., the cultivars Z1, L2161,
and L2186 exhibited the highest resistance level, as measured by D.I., with the lowest values compared
with others (Figure 5b).
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Figure 5. Field tests in 2013. (a) Relationship between the disease index (D.1.) and insect quantity per
100 clusters (I.Q.) of 10 rice cultivars in Jiucheng village. (b) Relationship between the disease index
(D.I.) and insect quantity per 100 clusters (I.Q.) of 10 rice cultivars in Zhefang village.

3.4. Proteomic Analysis in Three Healthy and SRBSDV-Stressed Rice Cultivars

A comparative stem proteomic analysis of rice under healthy and infected conditions with
SRBSDV was performed to investigate the resistance characteristics of Z1 and L2186, with the
susceptible variety FYXZ as the contrast. Proteins from a healthy control and SRBSDV-infected stem
samples of three rice varieties were extracted and analyzed using a quantitative label-free proteomics
approach. The list of all identified and quantified proteins in cultivars was presented in Tables 53
and S4.

3.4.1. Overview of the Proteomic Analysis of Three Healthy Cultivars

A total of 1302 proteins were identified in healthy FYXZ cultivars (HFYXZ), and 1613 in healthy
L2186 (HL2186), and 1270 in healthy Z1 (HZ1). The majority of the 1046 proteins (60.3%) were detected
under three varieties, while 66 (3.8%) were uniquely identified in HFYXZ, and 265 (15.3%) in HL2186.
A total of 320 up-regulated and 186 down-regulated proteins in the HL2186 vs. HFYXZ group were
differentially expressed (flod changes > 1.5, p < 0.05); 301 up-regulated and 300 down-regulated
proteins in the HZ1 vs. HFYXZ group were differentially expressed (flod changes > 1.5, p < 0.05);
220 up-regulated and 303 down-regulated proteins in the HZ1 vs. HI2186 group were differentially
expressed (flod changes > 1.5, p < 0.05) (Figure 6 and Tables S3 and 54).
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Figure 6. Distribution and overlap of rice proteins identified in healthy rice varieties. Blue circle: healthy
FYXZ cultivars (HFYXZ); Yellow circle: healthy L2186 (HL2186); Green circle: healthy Z1 (HZ1).

3.4.2. Overview of the Proteomic Analysis in Three SRBSDV-Stressed Cultivars

A total of 1333 proteins were identified in SRBSDV-stressed FYXZ cultivars (WFYXZ), 1249 in
SRBSDV-stressed L2186 (WL2186), and 1334 in SRBSDV-stressed Z1 (WZ1). The majority of the
1043 proteins (60.3%) were detected under three varieties, while 92 (5.9%) were uniquely identified
in WFYXZ, 75 (4.8%) in WL2186, and 70 (4.5%) in WZ1. A total of 255 up-regulated and 383
down-regulated proteins in the WL2186 vs. WFYXZ group were differentially expressed (flod changes
> 1.5, p < 0.05); 235 up-regulated and 220 down-regulated proteins in the WZ1 vs. WFYXZ group
were differentially expressed (flod changes > 1.5, p < 0.05); 342 up-regulated and 190 down-regulated
proteins in the WZ1 vs. WI2186 group were differentially expressed (flod changes > 1.5, p < 0.05)
(Figure 7 and Tables S3 and S4).
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cultivars

Figure 7. Distribution and overlap of rice proteins identified in SRBSDV-stressed varieties. Blue circle:
SRBSDV-stressed FYXZ cultivars (WFYXZ); Yellow circle: SRBSDV-stressed L2186 (WL2186); Green
circle: SRBSDV-stressed Z1 (WZ1).

3.4.3. Systemic Resistance-Related Proteins

In HL2186, three proteins associated with systemic acquired resistance (SAR):
dolichyl-diphosphooligosaccharide-protein glycosyltransferase, hypoxia up-regulated protein,
and membrane-attack complex (MAC); they were up-accumulated than HFYXZ. In HZ1, four proteins
associated with SAR: dolichyl-diphosphooligosaccharide-protein glycosyltransferase, hypoxia
up-regulated protein, fatty acyl-CoA synthetase, and hydroxyproline-rich glycoprotein-like; they were
up-accumulated than HFYXZ. In WL2186, three proteins associated with SAR: mitogen-activated
protein kinase, ATP synthase B chain protein, and sedoheptulose-1,7-bisphosphatase; they were
up-accumulated than WFYXZ. In WZ1, four proteins associated with SAR: mitogen-activated
protein kinase, sedoheptulose-1,7-bisphosphatase, dolichyl-diphosphooligosaccharide-protein
glycosyltransferase, and MAC; they were up-accumulated than WFYXZ. In addition,
pathogenesis-related protein 1 (PR1) and pathogenesis-related protein 10 (PR10) were substantially
up-regulated in WL2186; pathogenesis-related protein 3 (PR3) was substantially up-regulated in WZ1
(Tables S3 and S4).

4. Discussion

Investigation into the relationship between rice varieties and anti-SRBSDV or anti-RRSV features
is important. Considering that the virus genome expression levels are relative to those of susceptible
varieties [35], scholars have established a new parameter, namely, V.L. The intensity of V.L. can be
measured using the genome variation tendency response in 22 rice varieties. The lowest SRBSDV
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quantities of H658 and IIY6 showed excellent anti-virus features to SRBSDV, and L816 exhibited almost
no anti-virus features to SRBSDV compared with that of other varieties. Moreover, Z1, N5Y39, Y1,
and II'Y58 exhibited higher anti-virus features to SRBSDV than K182 and L2161. RRSV quantity data
revealed that N18 and IIY6, as well as L2186, C3727, and L15, exhibited anti-virus features to RRSV,
and the former group was superior to the latter group. However, six varieties, including S5, 11Y629,
Y17, H658, D8, and C2Y498, were more susceptible to RRSV. In conclusion, singly infected rice varieties,
such as Z1, N5Y39, K182, L2161, and N1, and three varieties, namely, L2186, C3727, and I1Y6, with
higher anti-virus features were reevaluated in the following year. Meanwhile, two susceptible varieties,
namely, Y17 and D8, to RRSV were also selected in our following year’s field trials.

Based on the field test in the first year, a series of field tests was performed in separate districts
to evaluate the resistance of Z1 from Group 1; C3727 from Group 4; L2161, K182, N5Y39, and L2186
from Group 2; and Y17, N1, IIY6, and D8 from Group 3. Z1, L2161, and L2186 were superior to other
varieties, as indicated by their high A.Y., low LLP. and D.I., and improved anti-virus features and 1.Q.
performance. However, C3727 and Y17 still exhibited the highest D.I. and 1.Q. performance. The two
years’ field tests results of IIY6 indicated that this variety was not suitable for cultivation despite its
lower V.L. of SRBSDV and RRSV. The remaining four rice cultivars such as K182, N1, N5Y39, and D8
could not be cultivated. Among the tested rice cultivars, Z1 and L2186 were deduced to be the most
suitable varieties because of their low LI.P, D.I, 1.Q., V.L. and high A.Y. features.

A comparative stem proteomic analysis of rice under healthy and infected conditions with
SRBSDV was performed to investigate the resistance characteristics of Z1 and L2186, with the
susceptible variety FYXZ as the contrast. Hierarchical clustering was conducted to visualize the
coordinately regulated proteins. Two major clusters were produced; each of them consisted of
three healthy and SRBSDV-infected rice samples. Z1 and L2186 were further classified to the same
sub-cluster, which differed from FYXZ (Figure S3). Plants had induced resistance, which included
partial resistance (hypersensitive response, HR) and systemic resistance (SAR) and occurred as a result
of virus infection [36]. Due to no differential protein being involved in HR, we focused on SAR-related
proteins (Table S4). SAR is the plant’s immune response to pathogen attack and is a component of plants’
integrated disease-resistance repertoire [37—40]. In the present study, among the SAR-related proteins,
hypoxia up-regulated protein, mitogen-activated protein kinase, and ATP synthase B chain protein
had ATP binding activity. Intriguingly, dolichyl-diphosphooligosaccharide-protein glycosyltransferase
plays important roles in the regulation of defense responses in plants [41]. In response to pathogen
infection, a sequential and highly specific interaction between the constituent elements occurs to
form transmembrane channels which are known as the membrane-attack complex (MAC). The MAC
provides plant immunity [42,43]. Furthermore, pathogenesis-related proteins showed substantial
up-regulation features in WL2186 and WZ1. It is generally thought that SAR results from the
concerted effects of many PR proteins [39]. The PR-protein family is a common class of water-soluable
proteins generated by plants in response to pathogenic infection and stimulation by abiotic factors.
PR-1 is a glycine-rich disease resistance protein; PR-3 has 3-1,3-glucanase and chitinase activities,
respectively [44,45]. These proteins were up-regulated in WL2186 and WZ1 infected with SRBSDV,
suggesting that it may activate SAR to resist SRBSDV. Different behaviors of SAR-related proteins in
Z1 and L2186 may result in the superior resistance of these varieties compared with FYXZ.

5. Conclusions

The most economical and effective way of controlling SRBSDV and RRSV diseases is the use of
culture-resistant rice varieties. However, a comprehensive resistant variety has not yet been discovered.
In this paper, the prospects of developing rice cultivars with durable resistance to these viruses were
discussed by analyzing three parameters—ILP, A.Y., and V.L.—in an experiment. The resistance tests
of 10 major rice cultivars were conducted by measuring D.I. and 1.Q. Finally, this work represents
the most extensive proteomic description of SRBSDV responses of Z1 and L2186 and contributes
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knowledge on virus tolerance in rice varieties. To sum up, Z1 and L2186 exhibiting SAR were found to
be the most suitable varieties in the field among all the tested rice cultivars.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/9/2/37/s1,
Figure S1: Detection for specificity of primers designed for SRBSDV by conventional PCR, Figure S2: Detection
for specificity of primers designed for RRSV by conventional PCR, Figure S3: Hierarchical clustering analysis of
differentially expressed proteins in Z1, L2186, and FYXZ. Table S1: Primers used for the expression level analysis
of SRBSDV, Table S2: Primers used for expression level analysis of RRSV, Table S3: List of identified proteins,
Table S4: The differential expression proteins.
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