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Abstract: The human coronaviruses (CoV) include HCoV-229E, HCoV-OC43, HCoV-NL63, and 
HCoV-HKU1, some of which have been known for decades. The severe acute respiratory syndrome 
(SARS) CoV briefly emerged into the human population but was controlled. In 2012, another novel 
severely human pathogenic CoV—the Middle East Respiratory Syndrome (MERS)-CoV—was 
identified in the Kingdom of Saudi Arabia; 80% of over 2000 human cases have been recorded over 
five years. Targeted research remains key to developing control strategies for MERS-CoV, a cause 
of mild illness in its camel reservoir. A new therapeutic toolbox being developed in response to 
MERS is also teaching us more about how CoVs cause disease. Travel-related cases continue to 
challenge the world’s surveillance and response capabilities, and more data are needed to 
understand unexplained primary transmission. Signs of genetic change have been recorded, but it 
remains unclear whether there is any impact on clinical disease. How camels came to carry the virus 
remains academic to the control of MERS. To date, human-to-human transmission has been 
inefficient, but virus surveillance, characterisation, and reporting are key to responding to any 
future change. MERS-CoV is not currently a pandemic threat; it is spread mainly with the aid of 
human habit and error. 
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1. Introduction 

Acute respiratory tract infections (ARTIs) are a frequent cause of morbidity and mortality and a 
common reason for both outpatient visits and hospitalisations. Among humans worldwide, RNA 
viruses the agents that cause ARTI most frequently—usually a self-limiting upper respiratory tract 
syndrome. Coronaviruses (CoVs) are recombining, enveloped viruses with long positive-sense RNA 
genomes. They are ancestrally zoonotic in origin, having adapted to bind a diverse range of cellular 
receptors [1]. Four human coronaviruses (HCoVs) have evolved, initially from bats, camelids, and 
rodents, to become distinct global, endemic, seasonal pathogens causing mild to moderate ARTI 
among humans [2,3]. 

The HCoVs occupy two of four genera in the subfamily Coronavirinae [4]. Human coronavirus 
229E and Betacoronavirus-1 subspecies HCoV-OC43 have been known for more than 50 years, while 
Human coronavirus NL63 and Human coronavirus HKU1 were first characterised in 2004 and 2005, 
respectively. 

A Severe acute respiratory syndrome-related coronavirus (SARS-CoV) briefly emerged into the 
human population during 2002–2004 but was controlled and is not known to circulate today. Its brief 
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but severe emergence sparked renewed study of CoVs. In 2012, another novel, severely pathogenic 
CoV was identified in the Kingdom of Saudi Arabia (KSA); 80% of over 2000 human cases have been 
recorded over five years [5]. Both SARS-CoV and the new Middle East respiratory syndrome 
coronavirus (MERS-CoV; belonging to the species Middle East respiratory syndrome-related coronavirus) 
evolved from ancestral, but different, bat CoVs. Travel history and laboratory analysis would be 
required to differentiate MERS from SARS, if it still occurred [6]. To date, most MERS cases have been 
limited to countries in the Arabian Peninsula with rare travel-related spillovers. One case precipitated 
a large healthcare multi-facility outbreak in the Republic of Korea in 2015. 

A confirmed case of MERS occurs when a person, irrespective of signs or symptoms, has a 
laboratory-reported MERS-CoV infection. A probable case requires a minimum of a clinically 
diagnosed acute febrile disease, an epidemiologic link, and a partial laboratory diagnostic profile [7]. 

We briefly review recent literature and the current understanding of MERS and MERS-CoV 
highlighting some knowledge gaps. 

2. Virus Attachment 

The viral receptor for MERS-CoV is a transmembrane glycoprotein called dipeptidyl peptidase-
4 (DPP-4), which has a wide tissue distribution in humans, including on alveolar cells of the lower 
respiratory tract and in the small intestine [8,9]. DPP-4 interacts with the MERS-CoV at its receptor-
binding domain (RBD) within the spike fusion protein (Figure 1). DPP-4 expression is upregulated 
in the lower respiratory tract of those with poor lung function, in the lower respiratory tract of those 
with untreated asthma, and in soluble form in the plasma of obese patients [8,10–12]. Whether blood 
borne DPP-4 interferes with MERS-CoV or, through reversible binding, contributes to its systemic 
distribution of MERS-CoV during serious disease, are questions worthy of further investigation. 
Studies of the upper respiratory tract have found little to no sign of DPP-4 expression levels or tissue 
distribution, although one study identified DPP-4 enzymatic activity, suggesting it is present 
[10,13,14]. It may be useful to expand the search for DPP-4 expression to tissues indicated by cases 
with different disease states. Co-infections, especially with viruses known to inflame the lower 
respiratory tract and trigger asthma exacerbations such as rhinoviruses are also of interest. MERS-
CoV may also use sialic acids as a low-affinity but selective cellular receptor to aid attachment and 
entry into DPP-4 positive cells [15]. 

 
Figure 1. Schematic of a predicted MERS-CoV virion. Along with membrane and envelope 
transmembrane proteins, the spike glycoprotein protrudes from a host cell-derived lipid bilayer, 
giving the virion a distinctive appearance. Positive-sense viral RNA is associated with nucleocapsid 
phosphoprotein in a helical structure. DOI:10.6084/m9.figshare.5639320. 
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3. Disease and Immunity 

MERS is most well characterised as a respiratory disease of humans. Extensive inflammation 
and immune evasion are hallmarks of severe disease ascribed to CoVs [16,17]. Among confirmed 
MERS cases, fever, cough, and dyspnoea are the most common clinical manifestations [18,19]. The 
mean incubation period for MERS is between 2 and 13 days. Longer periods are associated with a 
reduced risk of death [20–22]. MERS-CoV infection also results in mild and subclinical outcomes. 

The typical MERS case is a Saudi male aged between 21 and 60 years, often presenting to a 
hospital with pneumonia, or worse [18,23,24]. Severe MERS occurs most frequently among those with 
comorbidities including diabetes mellitus, cirrhosis, and others affecting respiratory, renal, and 
cardiac systems [23,25,26]. Downregulation of innate immune response mediators associated with 
some of these disorders may be related to the severity of MERS [27]. It may be that the high frequency 
of severe MERS reflects elevated prevalence of certain comorbidities in the Middle East region [27]. 
Comorbidities did not feature among SARS cases, as they have among cases of MERS; MERS-CoV is 
a highly opportunistic pathogen. 

In June 2015, an outbreak in the Republic of Korea found confirmed cases presented with fever, 
cough, and upper respiratory tract signs and symptoms, progressing within a week to lower 
respiratory tract distress with lymphopenia and elevated liver enzymes [23,24,27,28]. MERS can 
progress to acute respiratory distress syndrome and multiorgan system failure requiring intensive 
supportive care [23,24,29]. Extra pulmonary infection does occur, likely resulting from 
haematogenous transport of virus, which is an area in need of further study [9,30]. Similarly, little is 
known about sequelae following MERS-CoV infection; in one study, those who survived acute 
respiratory distress syndrome were well one year later [19]. Another study identified delayed 
neurological manifestations during treatment of MERS cases, but lacked long-term follow-up [31]. 

Death occurs among 30–40% of MERS cases; approximately 40% of cases in the KSA, and 20% 
of cases in the Republic of Korea, where mortality ranged from 7% among younger age groups to 
40% among those aged 60 years and above. Among studies of fatal cases, death occurred between 5–
15 days after symptom onset [18,21,32,33]. Because the extent of subclinical or mild infections in the 
community remains unquantified, mortality figures may be overestimates [34]. 

MERS-CoV variants exist as a single antigenic group in lineage C of the genus Betacoronavirus 
[35,36]. When MERS-CoV infection is subclinical or less severe, humoral immune responses may be 
weak, delayed, short-lived, or undetectable [37–41]. Humans can still be reinfected if they have pre-
existing neutralising antibodies, similarly to what is seen in camels [41]. However, survivors of 
symptomatic MERS do develop antibodies, including neutralising antibodies, which decline but 
persist for 1–3 years [37,42]. Whether these antibodies prevent future infection remains to be 
examined. Those with mild or subclinical MERS still develop CD8+ T-cell responses, and survivors of 
more severe MERS, including those who do not mount an antibody response, develop both CD8+ and 
CD4+ T-cell responses [43]. 

4. Detection Methods and Gaps 

Robust laboratory-based real-time RT-PCR diagnostic tools were described immediately after 
MERS-CoV was discovered and remain reliable [44]. Several different research-based antibody 
detection protocols have also been reported for human and animal studies [45]. Molecular and 
serological kits are commercially available [46]. While current molecular methods are rapid, there are 
many steps that combine to delay publication of a final test result; from the initial decision to request 
a MERS-CoV test, to sample collection, nucleic acid extraction, PCR, additional sampling, repeat 
testing, and reporting processes. Molecular, rapid, and sensitive point-of-care tests (POCTs) are not 
available but would help support infection control in healthcare settings. 

The World Health Organisation recommends testing of appropriate samples for MERS-CoV 
RNA using real-time RT-PCR methods with subgenomic sequencing to confirm screening results, as 
necessary [47]. Repeat testing is often required [17,48]. Virus isolation by culture is not a 
recommended tool. Detecting antibodies against MERS-CoV may be useful to identify a 
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seroconversion that can define a probable case when confirmation by RT-PCR has been unsuccessful 
or impossible [47]. 

Mild and subclinical MERS cases are reported among younger people including healthcare 
workers and children [17,49,50]. It remains unclear what proportion of MERS-CoV infections are truly 
subclinical after one study found many were initially incorrectly classified [51]. Difficulty identifying 
a useful diagnostic antibody response in mild and subclinical disease means seroprevalence studies 
likely under-report the history of MERS-CoV [40]; MERS-CoV specific CD8+ testing may be helpful 
[43]. The usefulness of serology needs clarification. 

5. Virus Origins: Camel to Human with a Bat Ancestry 

Humans are incidental hosts of MERS-CoV. The principal natural reservoir host of MERS-CoV 
is the dromedary camel [16]. Among camels, MERS-CoV infection manifests in a manner similar to 
that in which the common cold manifests in humans. The camel upper respiratory tract expresses 
high levels of the DPP-4 receptor [13]. The study of MERS-CoV highlights the need for collaboration 
between politics and diverse basic and applied fields of research at the human–animal interface—a 
One Health approach. Camel trade plays a central role in the movement of infected hosts around the 
Arabian Peninsula. Pakistan and North, West, and East Africa all harbour MERS-CoV-infected 
camels [52–55]. Alpacas, llamas, and pigs are potential hosts according to experimental evidence [56–
58]. In addition, alpacas have been found to be naturally infected [59]. 

The virus genetically detected or biologically cultured from humans is nearly identical to that 
isolated from camels and, in some instances, has been used to identify transmission routes. Signs of 
virus change have appeared with continued surveillance over time. Recombination has been 
identified, and variation in the region of the tropism-defining spike protein in a divergent Egyptian 
camel MERS-CoV variant [60] has been associated with reduced infectivity in vitro, compared to 
human and less divergent camel MERS-CoV variants [61]. Nearly 300 human and animal MERS-CoV 
genome sequences have been produced from MERS-CoV infections since 2012, but few studies of the 
functional impact of identified mutations have been conducted. Among MERS-related coronaviruses 
[62], there may now exist three conspecific viruses: the camel MERS-CoV and the bat CoVs, BtVs-
BetaCoV/SC2013 [63] and PREDICT/PDF-2180 [64], each with related but distinct genomes and 
divergent spike genes. Ongoing viral surveillance and characterisation is essential to ensure variants 
with increased efficiency in attachment, fusion, or replication do not emerge unnoticed. Surveillance 
of human respiratory illness in MERS-CoV-positive camel countries outside of the Arabian Peninsula 
is currently lacking [52]. 

6. Transmission: Known Unknowns 

According to the KSA Ministry of Health [65], nearly half of all MERS cases are classified as 
primary cases: zoonoses originating from direct or indirect contact with infected dromedary camels, 
or from an unidentified source which had no link to any other (known) human case. The precise 
mechanism by which MERS-CoV spreads from camels to humans is unknown but is not essential for 
enacting precautions to reduce exposure to infected animals. Secondary cases make up slightly more 
than half of all MERS cases, mostly resulting from exposure associated with a healthcare facility. 

Infectious MERS-CoV is presumed to be found in droplets [59] but modelling has also suggested 
the possibility of airborne spread [45]. Virus remains viable for at least 48 h on plastic and steel 
surfaces, presumably underpinning the extensive contamination of air and surfaces in hospitals 
housing patients with MERS [66–71]. The virus appears sensitive to standard heat and chemical 
inactivation measures [72,73]. 

Antibodies to MERS-CoV have been found in camel sera as far back as 1983. In each animal, 
antibodies to MERS-CoV are short-lived and do not prevent reinfection [52,74,75]. 

Human contact with camels is often associated with the collection, preparation, and ingestion of 
camel milk or meat. Female camels, especially those bred for milking, have the highest rates of MERS-
CoV seropositivity; MERS-CoV RNA has been detected in milk from one study and virus was found 
to be stable after being spiked into milk samples from another study [53,76,77]. Camels in larger herds 
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have higher rates of seropositivity compared with smaller herds [52,53]. Female and young camels 
also have higher rates of MERS-CoV RNA than older and male camels [53]. While no evidence for 
human infection resulting from ingestion has been presented, it has been found that experimentally 
inoculated human intestinal cells and organoids can host productive MERS-CoV infection and that 
MERS-CoV can remain infectious after transit through gastric acids [9]. Further, intestinal, 
respiratory, and neurological infection follows intragastric inoculation of DPP-4 transgenic mice [9]. 
Whether camel milk and meat actually contain a suitable infectious dose to cause intestinal infection 
of humans is yet to be determined [78]. It seems likely that the processes of milking and butchery 
may contaminate surfaces and generate infectious droplets that include sufficient inoculum from 
which a human infection could result via inhalation or self-inoculation. It is not known whether the 
eyes act as a portal for MERS-CoV entry. 

Since the majority of human-to-human MERS-CoV infections are associated with healthcare, 
improved infection control and prevention is considered key for preventing outbreaks among 
humans not at occupational risk of exposure to infected animals [79]. In the outbreak in the Republic 
of Korea, 5 of 186 cases were responsible for 83% of transmission events; most new cases did not 
result in any identified onward transmission; the reproduction (R0) number was calculated as 3.9 and 
1.9–6.9 from selected KSA outbreaks [80]. Three of these five cases were coughing; prolonged 
exposures, crowding, and large numbers of contacts were important factors for disproportionate 
virus transmission [81–83]. 

The role, if any, for mild or subclinical MERS-CoV infections in maintaining the virus in the 
human population has not been convincingly addressed. A healthcare worker found to shed viral 
RNA for more than five weeks in the absence of disease adds urgency to the need for such studies 
[84]. None among 82 contacts of a mildly symptomatic MERS-CoV-infected healthcare worker 
seroconverted, but there was no mention of whether the index case seroconverted [85]. In a KSA 
hospital outbreak investigation, contacts of subclinical MERS-CoV-infected healthcare workers 
became RT-PCR positive, suggesting transmission was a possibility [17]. Some studies report very 
rare camel contact among human cases and no history of contact with other MERS-CoV-infected 
humans, and this raises the question of how these primary cases acquire infection [18]. Community 
spread and subclinical transmission need more attention. 

The Hajj pilgrimage, an annual mass gathering in the KSA, provides many opportunities for 
MERS-CoV to transmit and then spread globally. However, it is rhinoviruses, influenza viruses, and 
other seasonal respiratory viruses that have, to date, driven the bulk of respiratory disease associated 
with the Hajj. This indirectly reinforces that MERS-CoV does not transmit efficiently among humans 
outdoors [86]. In hospital environments, healthcare workers and other patients and carers who 
experience prolonged exposure to infectious cases, in the absence of suitable personal protective 
equipment (PPE), are those who usually become infected. There have been examples of the 20/80 rule, 
whereby relatively few infected individuals are responsible for a disproportionate number of new 
cases [83]. Insufficient cleaning of room surfaces, inadequate room ventilation, and overcrowding 
have also been suggested to drive indoor MERS-CoV transmission. 

7. Prevention and Treatment 

No specific antiviral or licensed vaccine is available for a CoV that infects humans, but a range 
of candidates exist. Even if MERS-CoV infection is rare, transmits poorly, and does not evolve to 
become a pandemic threat, it serves in a useful role to drive vaccine research of other CoVs, both 
current and yet to emerge. For cases in healthcare facilities, improving hand hygiene, the use of PPE 
(gloves, gown, respiratory, and eye protection [87]), and surface cleaning can help disrupt 
transmission, as can rapid triage of febrile patients with respiratory signs and symptoms. To prevent 
MERS-CoV infection from dromedary camels, precautions include avoiding contact with camel nasal 
secretions, cooking camel meat, and pasteurising camel milk until further studies better quantify the 
risk attached to each of these potential pathways. 

Vaccines to prevent CoV disease require both humoral and cellular immunity [88]. Because 
airway immune responses may be key to preventing the establishment of human MERS-CoV 



Viruses 2017, 9, 369 6 of 13 

 

infection, localised deposition of an aerosolised vaccine could prove useful [88]. A number of vaccine 
platforms and payloads have proceeded although progress has been challenged by the need for 
animal models that suitably reconstitute human lower respiratory tract disease to show evidence of 
any preventative effect [89,90]. Some candidates have progressed to clinical trials [91,92]. The spike 
protein and RBD elicit neutralising antibody responses and have been employed as the payload for 
a number of platforms [88,93,94] including DNA vaccines [95], modified vaccinia virus Ankara 
[96,97], measles virus [97–100], and human- [26,101] and chimpanzee-adenovirus-based vectors [99]. 
There are also Venezuelan equine encephalitis replicons expressing nucleocapsid [101], nanoparticles 
[102], and structural and non-structural deletion mutants of MERS-CoV [103]. 

Vaccination of camels is likely to be the most rapid, least expensive, and best intervention for 
preventing rare spillovers that then become amplified by humans in healthcare settings. Successes 
have been reported, but the approach is challenged by the problem that camels are naturally 
reinfectable with MERS-CoV, even in the presence of a high titre of neutralising antibodies 
[52,74,104]. To date, camel vaccines reduce viral load but do not prevent virus shedding [104,105]. 
Human vaccines could target the occupational at-risk groups, which include healthcare, farm, barn, 
market, and slaughterhouse workers [56,88,106]. More widespread application of a MERS vaccine at 
this time does not seem warranted. 

The rarity of seropositive donors, sometimes low antibody titres, and a lack of clinical evidence 
have made the use of convalescent sera from recovering MERS patients a possibility for treatment, 
but one with significant limitations [39]. Instead, human monoclonal antibodies targeting the RBD 
and polyclonal antibodies may provide treatment options for those at risk of severe outcomes [107–
110]. Clinical trials are awaited. 

Early control of viral replication is important and administration of interferon (IFN) β1b or a 
ribavirin and IFN α2b combination within hours initially showed promise. Their practical use in 
humans is challenging because, if not infected while in a healthcare setting, humans usually present 
for care with well advanced disease [111,112]. Combined treatments which reduce viral replication 
and the host immune response to it are likely to be valuable developments [16]. 

A wide range of repurposed or novel potential antivirals including polymerase, nucleotide 
synthesis and protease inhibitors, and fusion-inhibiting peptides [66,91,113–117] have been 
investigated [91,115]. Corticosteroid use is not recommended for acute respiratory distress syndrome 
[113]. Comparative studies and randomised controlled trials are mostly lacking [91]. 

8. Future Considerations 

Though much is already known, it remains important to clarify the routes of human infection, 
including the role of the eyes in contracting infection, among primary human cases. The development 
of rapid molecular POCT tests and alternatives to serology, such as CD8+ detection can help us 
understand MERS-CoV transmission, which can lead to reductions in outbreaks. The scale of mild 
and subclinical cases among non-hospitalised Arabian Peninsula communities is unknown, as is their 
role in transmission. Most knowledge of MERS comes from studies of hospital-based populations or 
linked community contacts. Future prospective long-term cohort studies of mild community 
respiratory illnesses using molecular methods would be useful. Children have so far been largely 
absent from the MERS case tally, but they may represent an important population for prospective 
study. Recent lessons from the Zika and Ebola viruses should also inform new studies seeking 
possible long-term sequelae and viral persistence and highlight the need to follow-up severe MERS 
patients. 

9. Conclusions 

In September 2017, MERS-CoV passed its fifth year since discovery. It remains a rare cause of 
disease in a geographically defined region of the world known for the concurrent presence of infected 
camel hosts. Much of what we know about MERS relates to severe disease. Travel-related cases 
continue to challenge the rest of the world’s surveillance and response capabilities, and we need more 
data to understand unexplained primary transmission. Signs of genetic change in MERS-CoV have 
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been recorded, but it remains unclear whether they change clinical disease. How camels came to carry 
the virus they live with today remains unknown, but it is academic for the control of MERS. To date, 
human-to-human transmission has been inefficient, but virus surveillance and characterisation will 
ensure any change to the status quo is identified. MERS-CoV is not currently a pandemic threat; it is 
spread with the aid of human habit and error. Nevertheless, a much needed therapeutic toolbox is 
being developed, and in this process we are learning more about how CoVs cause disease, how they 
confound our immune responses, where they come from, and how to prevent and treat their 
respiratory infections [90]. Focused research is needed to minimise the impact of MERS, basing 
control strategies on evidence gleaned from specifically addressing relevant unknowns. 
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