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Abstract: The Poxviridae family is comprised of double-stranded DNA viruses belonging to
nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest
known host range, which is likely observed because this viral family has been more heavily
investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is
variable, where certain viruses can infect a large range of hosts, while others are restricted to only
one host species. It has been suggested that the variability in host spectrum among poxviruses is
linked with the presence or absence of some host range genes. Would it be possible to extrapolate the
restriction of viral replication in a specific cell lineage to an animal, a far more complex organism?
In this study, we compare and discuss the relationship between the host range of poxvirus species
and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously
identified and putative homologs of poxvirus host range genes, and updated these data with
deposited sequences of new poxvirus genomes. Overall, the term host range genes might not
be the most appropriate for these genes, since no correlation between them and the viruses’ host
spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed
the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer
(HGT) for certain elements, as previously suggested. Considering the data presented in this study,
it is not possible to associate the diversity of host range factors with the amount of hosts of known
poxviruses, and this traditional nomenclature creates misunderstandings.
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1. Introduction

Poxviruses are among the best known and most feared viruses. The Poxviridae family is currently
divided in two subfamilies, named Entomopoxvirinae (insect-infecting viruses) and Chordopoxvirinae
(vertebrate-infecting viruses), wherein the first is composed of three genera, and the latter contains
10 genera, in addition to two viral species that have yet to be classified into each subfamily [1].
While the entomopoxviruses have been poorly investigated over the years, the chordopoxviruses are
among the most studied groups in virology, due to the medical and veterinary relevance of many
of their members. Among the chordopoxviruses, the Variola virus (VARV_abbreviations are shown
in Supplementary Table S1) is one of the most well-known species. VARV is the agent of smallpox,
a disease that has plagued humanity for centuries, until it was considered eradicated by the World
Health Organization in 1980 after a successful global vaccination and surveillance campaign [2–4].
Other chordopoxviruses, such as vaccinia virus (VACV), cowpox virus (CPXV) and monkeypox virus
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(MPXV), are responsible for several outbreaks of exantematic diseases around the world, both in
humans and other animals (e.g., bovines and equids), and are considered emergent zoonotic viral
diseases [5,6]. Furthermore, studies with poxviruses have been pivotal for the advancement of other
areas of knowledge, especially in cell biology, vaccinology, and virotherapy, where it was possible to
elucidate many important metabolic pathways for immune response and the development of different
strategies of immunization against infectious diseases [7–10].

The Poxviridae family consists of large double-stranded DNA viruses, which replicate entirely
in the cytoplasm of host cells [11]. The poxviruses have a complex structure and an extensive
linear genome ranging from 128 to 365 kbp (Genera Parapoxvirus and Avipoxvirus, respectively),
which code for over 200 genes [12–14]. Chordopoxvirinae is divided in two clusters that are well-resolved
phylogenetically. The first of the two clusters corresponds to the Orthopoxvirus (OPV) genus.
The second cluster formed by the genera Yatapoxvirus, Leporipoxvirus, Capripoxvirus, Cervidpoxvirus,
and Suipoxvirus forms a sister clade to orthopoxviruses, and the former can be classified as “clade II”
poxviruses [15,16]. The origin and evolution of poxviruses are still blurred. Although there is some
strong evidence suggesting that these viruses emerged thousands of years ago, their genome has
evolved through the gain and loss of genes, especially through gene duplication and horizontal
gene transfer (HGT) [15–17]. Many of the genes present in the poxvirus genome are not essential to
viral replication in cell culture, but are important to the modulation of the host antiviral response,
and thus are considered virulence genes [18,19]. Some of these genes impact viral replication only
in a set of cell lineages that originated on different tissues or host species. These genes act on
poxvirus-specific differences in tropism and host range, and have been referred to as host range
genes [18–20]. All poxviruses are predicted to encode a unique collection of host range genes;
however, only the genera Orthopoxvirus and Leporipoxvirus have been observed in many of the
biological studies so far [13]. Known poxvirus host range genes are currently grouped into 12 distinct
classes, some of which have only one gene (e.g., K3L, E3L, K1L, others), and others exhibiting many
members (e.g., serpins, C7L family, TNFRII family, others), which likely result from lineage duplication
events [20]. Some of these factors were functionally characterized using in vitro models and gene
knockout analysis, which is associated mostly with the manipulation of diverse cellular targets,
including cellular kinases and phosphatases, apoptosis, and many antiviral pathways [19,21]. In the
absence of these genes, viruses lose the ability to infect certain cell lineages, whereas infection is
efficiently established in the presence of the genes. Several in vivo investigations showed that some
factors impact viral pathogenicity, although the model animals were still infected [22–24].

Historically, these genes have been referred to as host range genes when considering only the cells
as hosts, i.e., not considering the animals that are actually infected by the viruses [18–20]. Would it be
possible to extrapolate the restriction of viral replication in a specific cell lineage in an animal, which is
a far more complex organism? Some works have suggested a direct association between the diversity
of host range factors and the amount of host species for different poxviruses, but this association is still
under debate [18,19]. In view of these intriguing questions, we sought to establish the natural hosts
for the poxviruses officially assigned to viral species and recognized by the International Committee
on Taxonomy of Viruses (ICTV) [1]. Based on the available data so far, we performed an extensive
search for different host range genes according to those that were described previously [20], reviewing
the main features of each class of host range factors. In light of the data presented here, we could
not associate a diversity of host range factors with the amount of hosts, which lead us to discuss the
assertiveness of the term “host range genes”. Finally, we analyzed the evolutionary history of these
genes, reaffirming the occurrence of HGT for some elements, as previously suggested [16,17,20].

Among the nucleocytoplasmic large DNA viruses (NCLDV), the poxviruses are those with
the widest host range, which are able to infect different groups of insects and vertebrates [25].
However, when we look specifically at each member of the Poxviridae family, the host spectrum
is variable, wherein some viruses can infect a large range of hosts [25–27], while others are restricted to
only one host species [3,28,29]. To have a clear view of the host range of poxviruses, we performed an
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extensive search to define the natural hosts for each member of the Poxviridae family, and we presented
this relationship in a network graph. In this analysis, we searched only the hosts for viruses that are
currently classified into viral species by the ICTV, since it presents the most up-to-date dataset of known
viral species, and gathers and reflects the diversity of the circulating viruses in nature. We defined
hosts as those organisms in which consistent evidence was available related to viral detection in a
given species by isolation, serology, and molecular detection. In this view, we seek to associate hosts at
the lowest possible taxonomical level.

The ICTV currently recognizes a total of 71 species of poxvirus, with 30 belonging to the
Entomopoxvirinae subfamily, and 41 to the Chordopoxvirinae subfamily (Supplementary Table S2).
The known entomopoxviruses infect Pterygota subclass members (winged insects) from the orders
Diptera, Coleoptera, and Hymenoptera, but mainly Lepidoptera and Orthoptera (Figure 1).
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Figure 1. Poxvirus host network. The poxvirus species and their hosts (taxonomic level of genus
or higher) are depicted in the graph. The network layout was generated by applying a force-based
algorithm, followed by manual rearrangement of the nodes. The full names of the viral species are
listed in Supplementary Table S1.

For most of the viral species of this group, it was not possible to determine the virus hosts
beyond the order taxonomic level. For the remaining viral species, we determined the hosts at the
genus or species level. Corroborating the previous descriptions in the literature, entomopoxviruses
tend to exhibit a fairly narrow host range, but the species of Betaentomopoxvirus genus can infect
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distant hosts, which suggests that large host shifts can occur. This view of entomopoxvirus
hosts is likely a consequence of the lack of host range studies that have been performed on these
viruses [30,31]. Recently, a study showed that genes involved in lateral gene transfer (LGT) events
among entomopoxviruses species conferred a possible adaptation to both specific and distantly related
hosts [32]. It is possible that with the advancement of metaviromic approaches, we will be able to move
forward in our comprehension of the diversity and host range of entomopoxviruses, uncover new
viruses in different and unexplored hosts, and therefore improve the network presented here [33].

In contrast, the chordopoxviruses are the targets of intense investigation because of the clinical
relevance of many of its members to humans and domesticated animals of economic importance [34–38].
The known chordopoxviruses infect mammals (29 viral species), birds (10 viral species), and reptiles
(one viral species), and viruses do not cross this host barrier, i.e., viruses infecting mammals do
not infect birds, and vice versa (Figure 1). Interestingly, an avipoxvirus was isolated once from a
terminally ill rhinoceros in 1969 and characterized as an atypical fowlpox virus, thus raising questions
about the host restriction of avipoxviruses [39]. However, since it was an isolated case and there
are no other descriptions of an avipoxvirus infecting a non-avian host, it is still uncertain whether
these viruses can efficiently cross the host barrier. Differently from entomopoxviruses, there were
only four chordopoxviruses for which we could not define the hosts at the genus or species level
(4/40 = 10%). One of these viruses is the yokapox virus (YOKV), a poxvirus isolated from a mosquito
pool over 40 years ago whose natural host is probably a mammal. However, further investigation
is required to better understand the biology of this virus [40]. Similar to YOKV, it is possible that
other hosts are associated with known chordopoxviruses, but these relationships need to be further
investigated. Most of the chordopoxviruses are associated with only one host genus (25/40 = 62.5%),
which suggests a restricted host range for these viruses (Figure 1). Interestingly, there is a trend among
large DNA viruses to exhibit a narrow host range, but some viruses can infect a broader range of hosts,
such as VACV and MPXV, which have been associated with outbreaks involving humans and cattle.
For these viruses, it is likely that rodents act as reservoir hosts of these viruses [41–43]. The CPXV is
the most prominent member in the group, since it presents by far the widest host spectrum among the
poxviruses, being able to infect at least 27 different groups of hosts, including humans, cattle, equids,
and felines (Figure 1). Recent data suggests that Cowpox virus is comprised of at least five different
viral species [44]. Assuming this, it is likely that the hosts defined here of what we now consider as
Cowpox virus are actually a host compilation of hosts for at least five distinct viral species.

After the eradication of smallpox in 1980, several poxvirus outbreaks have been reported around
the world that are related to different viruses, driving a huge effort to identify these viruses and their
possible natural and reservoir hosts [45–48]. At least 11 poxvirus species have been known to cause
human infections to date: CPXV, VACV, MPXV, VARV, Molluscum contagiosum virus (MOCV), Orf virus
(ORFV), Camelpox virus (CMLV), Yaba monkey tumor virus (YMTV), Tanapox virus (TPV), Bovine papular
stomatitis virus (BPSV), and Pseudocowpox virus (PCPV) [49,50] (Figure 1). Among them, only VARV
and MOCV have humans as the sole host, while the other poxviruses are emerging zoonoses that affect
different groups of animals, such as cattle, rodents, primates, and others (Figure 1) [3,28]. The main
clinical feature of poxvirus infection is skin lesions, which can vary from small pearly papules in
MOCV infection to large crusts and generalized pustules in VARV infection. However, other symptoms
are common, including fever, headache, and rash. Similar clinical signals are verified in other animals
infected by these viruses. Cases of human infections by some poxviruses, such as VACV, CPXV,
and MPXV, have been constantly reported [3,26,28,35,51]. Differently, skin lesions related to CMLV
have only been observed during the last few years, which opens important questions regarding the
expanding host range of this virus [52]. The Parapoxvirus genus comprises four viral species that are
distributed worldwide and mainly infect domestic ruminants and a broader host range, which includes
camels, seals, deer species, and humans [53]. In this context, it is possible that other known poxviruses
might affect humans. An example of this is the isolation of a strain of Ectromelia virus (ECTV) from
the throat swabs of an affected man in China during an outbreak of erythromelalgia [54]. It is still
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uncertain whether this virus is a true human pathogen, since ECTV has only been found in Mus sp.
(Figure 1), causing mousepox disease [55]. If this association is confirmed, it will be another example
of host range expansion in poxviruses. Furthermore, one must have in mind that a virus can infect a
host without causing any disease. Although the majority of poxviruses isolation reports are related
to any clinical manifestation in a given host, some viruses have already been identified in known
hosts without presenting any clinical manifestation, such as the group 1 of Brazilian VACV strains [41].
Moreover, there are descriptions of poxvirus detection in cattle, but the hosts had no clinical signals [56].
There is also a description of the isolation of a parapoxvirus from an apparently healthy red deer in the
Bavarian Alps [57], which reinforces that poxviruses are related to hosts exhibiting no disease. In this
context, we might expect that the network presented here is likely more interconnected, but more
recurrent data regarding poxvirus’ detection in healthy organisms will be needed.

Based on currently available data, it appears that certain poxviruses have a broad host range,
such as VACV, MPXV, and CPXV. However, these viruses are the most studied within the Poxviridae
family, which is the reason why we recognize more host species for them compared with other viruses,
and especially compared with entomopoxviruses. In contrast, other viruses that are also the targets of
intense research exhibit a very restricted host range, as is the case with VARV and MOCV (both infect
only humans). The reason for such a difference is still a mystery, but some studies have suggested
that the answer might lie in the genetic diversity between those viruses, namely, the diversity and
abundance of the referred host range genes [18,19].

2. Diversity and Abundance of Host Range Factors Are Not Proportional to the Diversity of Hosts
in Poxviridae

Host range genes are virulence genes of poxviruses, which code for factors that influence the virus’
tropism for certain cell lineages [18]. Historically, the first of these genes to be described belonged to the
serpin superfamily (serine protease inhibitors), which was initially found in the rabbitpox virus over
60 years ago, where it was verified in “white pock” mutants observed in the chorioallantoic membrane.
It was associated with the viral loss of the ability to replicate in some cell lineages, and posteriorly
mapped to the SPI-1 gene [58–62]. Thereafter, other genes that impacted the replication of poxviruses
in some cell types were described, reiterating the definition of “host range genes” [21].

There are currently 12 groups of known host range factors. These factors are made up
of a few dozen genes that are heterogeneously distributed within the Poxviridae family, and no
single viral host range ortholog common to all poxvirus genomes has been identified [19–21].
Traditionally, the discovery of these genes has been the result of in vitro analysis, with targeted
knockout genes in which mutant viruses exhibited deficiencies in replication in a subset of cells that
are permissive to parental viruses [63,64]. In contrast, in vivo assays have shown that the absence
of these genes does not impair viral infection in the animal model, but does affect the degree of
pathogenicity of the virus, even though in vivo assays are lacking for the majority of the host range
genes [65,66]. With the advancement of molecular techniques, some genes in different poxviruses have
been suggested as host range genes due to their homology compared with other previously described
genes, i.e., K3L, C7L and m63r, E3L, M11L/F1L, ANK-F-box CP77, and T5, but the function of the
putative genes lacks experimental validation [20].

The function of some host range genes is already known, but some functions remain obscure.
Generally speaking, the products of these genes interact with antiviral and/or anti-inflammatory host
pathways, including the interferon (IFN), apoptosis, and inflammasome pathways [21]. Among the
known and predicted host range genes found in poxviruses, the most studied are the E3L and K3L
VACV genes. E3L encodes a protein that contains a C-terminal double-stranded RNA-binding domain,
which acts as an inhibitor of protein kinase R (PKR) and 2′-5′ oligoadenylate synthase, likely by
preventing activation by dsRNA and induction by IFN [67–70]. Similar to E3L, the K3L protein
also acts by inhibiting the PKR activity, since it is homologous to the S1 domain of the α subunit of
eukaryotic translation initiation factor 2 (eIF2), therefore acting as a pseudosubstrate and competitive
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inhibitor of the kinase protein [71–75]. Another well-known host range gene is SPI-1, but it is possible
that other serpins also contribute to poxvirus host range genes, including Orthopoxvirus SPI-2/CrmA
and SPI-3, three serpins in the Leporipoxvirus genus, and five serpins in the Avipoxvirus genus [76].
The serpins in the poxvirus counteract the host response to viral infection, acting on different targets
of inflammation, coagulation, and complement activation pathways [76]. Some poxviruses also
present genes coding for proteins containing short complement-like repeats (SCRs)—the B5R/VCP
family—which interacts with a yet to be identified cellular surface molecule that leads to the activation
of Src kinase, prompting actin polymerization and the enhancement of cell-to-cell virus spread [77,78].

Poxviruses have many proteins with ankyrin repeat domains (ANK), most of which contain an
F-box domain at their carboxy-terminal region. A poxvirus ANK protein has been identified as a
host range factor, named CP77 or CHOhr, since its absence in VACV led to a restriction of replication
in a Chinese hamster ovary cell line [79]. At the molecular level, CP77 inhibits nuclear factor KB
(NF-KB) activation, likely by the interaction with the ANK repeats in the p65 subunit of NF-KB and
the F-box of the cellular SCF ligase complex [80]. Other ANK proteins might have similar functions,
but further evidence is required. Similar to these, other genes/families of genes have already been
identified as host range genes, but their molecular mechanism is not fully elucidated, such as p28/N1R,
and the C7 family. The C7 family contains C7L and C4L, which were initially identified in the VACV
genome, and other three C7L-related genes that were found in leporipoxviruses, M062R, M063R,
and M064R [20,81].

Classes of host range genes were initially identified in leporipoxviruses, and their presence was
further described in other poxviruses [21]. The T2 gene found in Myxoma virus (MYXV) is a homolog
of tumor necrosis factor receptor II (TNFRII), in which the resulting protein acts by neutralizing the
host TNF, thus impairing the inflammation response [82,83]. Homologs of T2 are found in some
orthopoxviruses, in which they are called cytokine response modifiers (crm) [20,84], and comprise
the TNFRII family of host range genes. The T4 and M11L/F1L are families of genes that inhibit
apoptosis and were initially described in MYXV and VACV, but the precise molecular mechanism is
not completely clear [20,85]. Finally, the M13L gene found in MYXV contains an N-terminal pyrin
domain, while the M1 in MYXV was shown to inhibit caspase-1 activation and thus the processing of
mature IL-1β and IL-18 in human THP-1 cells, impairing the inflammatory response [86].

We reviewed the complete genomic sequences available at the National Center for Biotechnology
Information database (https://www.ncbi.nlm.nih.gov) for 38 identified and putative homologs of
poxvirus host range genes, and updated this gene data with new deposited poxvirus sequences.
The searches for poxvirus host range gene homologs were performed using Basic Local Alignments
Search Tools—Protein (BLASTP, https://blast.ncbi.nlm.nih.gov/Blast.cgi). Protein sequences of
previously identified host range genes were used as reference sequences for BLASTP analyses
(Supplementary Table S3). For the analysis, putative homologs were considered inside of a fixed
cutoff threshold for all genes (E-value ≤ 0.0001; Ident ≥ 30%; Coverage ≥ 40%). Using the obtained
data, a circle plot was created (Figure 2), indicating the presence of homologous genes in different
species and samples of poxviruses.

Analyzed homologs are found in the genera Orthopoxvirus (28), Leporipoxvirus (14), Cervidpoxvirus
(13), Suipoxvirus (12), Capripoxvirus (11), Centapoxvirus (11), Yatapoxvirus (9), Avipoxvirus (3)—including
Shearwater poxvirus (ShWPV) and Penguin poxvirus (PNGV)—in the unassigned species Pteropox
virus (1), and in the unassigned samples NY_014 poxvirus (NY_014) (26), Murmansk poxvirus (MMPV)
(17), Cotia virus (COTV) (13), Yaba-like disease virus (YLDV) (8), BeAn58058 (BeAn) (5) and Eptesipox
virus (ETPV) (3). Within the estimated cut-offs, homologs were not found in the Crocodylidpoxvirus,
Molluscipoxvirus, or Parapoxvirus, nor all of the entomopoxviruses genera. It is noteworthy that the
CPXV species has up to 27 host range gene homologs; however, when we analyze the different isolates
as separate clades, groups A (27), B (26), D (25), and E (25) have very close numbers of homologs,
while group C (14) presented considerably fewer homologs. On the other hand, phylogenetic analyses
of various host range genes show that different clades of CPXV are sometimes grouped with another
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OPV species rather than each other. These data are in accordance with the current hypotheses about
diversity within CPXV species (Figures 3–5, Supplementary Figures S1 and S2) [44]. The genes that
have homologs with the highest range of species are E3L, C7L, and m62r (C7L Family) with 25, 24,
and 19 viral species, respectively (Figure 2). One Ank-box homolog and the F1L are unique to the
genus Orthopoxvirus (Figure 2). M11L and m63r (C7L Family) were found only in Leporipoxvirus. M11L
and F1L-encoded proteins were related to the cellular, prosurvival Bcl-2 family, but there was not
any primary sequence similarity in our searches and previous works [20]. Our data corroborates
with the previously described literature concerning the distribution of host range families in poxvirus
genera, since orthopoxviruses and clade II poxviruses contain the majority of homologs (Figure 3;
Supplementary Figures S1 and S2) [17,20,21]. One factor that could influence this is the concentration
of studies in the OPV and clade II viruses. Thus, the distantly related poxviruses likely contain different
genes that are important for their host range, but have not yet been identified.
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Figure 3. Presence of Ank-box host range gene projected onto a tree showing the phylogenetic
relationships of representative poxvirus strains. The tree was generated from a multiple protein
sequence alignment of the indicated sequences using the maximum likelihood method. A bootstrap of
1000 was used, and support >50 is indicated above the branches.

Another important point to be addressed is that no clear correlation was observed in the host
range size versus the host range gene homologs’ diversity and quantity. For instance, Parapoxvirus
(ORFV, PCPV, BPSV, Parapoxvirus of red deer in New Zealand—PRDV) is associated with a host range
that is equal to or larger than other poxvirus groups, which have a wide range of host gene homologs
(Figures 1 and 2). However, parapoxviruses have a strict range of permissive cells, including primary
ovine and bovine fibroblasts [18]. Two other viruses that clearly show the absence of direct correlation
between the host range and host range genes are MOCV and VARV. Both viruses have the narrowest
tropism of any poxvirus, and use humans as exclusive natural hosts [18]. The MOCV genome lacks
more than 80 genes common to most orthopoxviruses, including VARV [87]. These genes have a
functional role in the suppression of the host response to viral infection, and their absence may
be related to MOCV’s restricted replication in basal keratinocytes of the human epidermis [21,87].
In contrast, VARV’s replication range includes most mammalian cells [18]. Although the VARV host
range is remarkably different from other OPVs—such as CPXV, VACV, and MPXV—in terms of their
reservoir or zoonotic hosts, in tissue culture cells, these differences disappear, and the host range
genes influence this homogeneity within the genus. Although MOCV and VARV only infect humans,
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the presence or absence of different host range genes may be related to different means of evolution,
and culminate in different pathogenesis, tropism, and immune regulation between both viruses.
Ecological aspects of virus–host relationships such as host abundance, environmental influences on
the transmission cycle, geographical distribution, and overlapping areas of species may be essential
for the dynamics of the host spectrum of a virus. Take for example the globalized geographical aspect
of myxomatosis in Australian rabbits, whereby a South American virus infects a European host in a
new continent for both species, i.e., virus and host. Taking these aspects into account, the current view
of the poxviruses’ host range can be highly complex and could contain some biased points. There are
plenty of unanswered questions relative to the host range genes and the host spectrum of poxviruses,
and ecological and evolutionary perspectives may provide important insights about this.

3. Host Range Genes: An Evolutionary Perspective

The evolution of virulence genes for a certain host is probably influenced by the effectiveness
and route of virus transmission, the immune status of the host species, the availability of additional
reservoir hosts, intra- and inter-species competition with other viruses, and positive selection for
hosts that are more resistant to virus infection [19,88]. The origin of viruses, or at least certain viral
groups, is still a mystery. It is possible that some viral groups have a degree of monophyleticism.
The NCLDV group, which includes the family Poxviridae as well as other large dsDNA viruses that
infect eukaryotes, is a candidate for monophyly [89,90]. In phylogenetic analyses, there is evidence
of an ancient origin provided by a topology in which all of the poxvirus homologs cluster together,
apart from those of cellular organisms [16,91]. Certain viral-specific genes may be involved in poxvirus
evolutionary processes, including some host range genes.

In this study, we review this evidence in three aspects of host range genes in poxvirus evolutionary
biology: (1) the phylogeny of previously identified poxvirus host range genes; (2) possible lateral
transfer of host range genes; and (3) evolutionary correlations with other viral groups. We used
sequence alignments containing the homologous protein sequences of 38 identified host range genes.
A total of 396 completely sequenced poxvirus genomes available in public databases were used to
perform phylogenetic analyses. These sequences belong to genera Avipoxvirus (8), Capripoxvirus (15),
Centapoxvirus (3), Cervidpoxvirus (2), Crocodylidpoxvirus (1), Leporipoxvirus (64), Molluscipoxvirus (5),
Orthopoxvirus (262), Parapoxvirus (17), Suipoxvirus (1), Yatapoxvirus (4), entomopoxviruses (7), and also
unassigned species and isolates (7). Most of the chordopoxviruses genomes are concentrated in
the genera Orthopoxvirus and Leporipoxvirus, although at least one genome is available by genus.
The sequence alignment was performed using ClustalW [92] to infer a maximum likelihood
phylogenetic tree. In our phylogenetic analyses, the E3L, C7L, and Ank-Box host range genes
supported the evolutionary correlation between OPV and clade II poxviruses (Figure 3; Supplementary
Figures S1 and S2). Murmansk poxvirus and NY 014 poxvirus samples were closely related to YOKV,
which are likely unclassified centapoxviruses [93]. The Cotia virus is grouped within poxvirus Clade
II, as described above, and the unknown samples BeAn58058 follow this trend. In addition, ANK
repeat proteins were highly abundant in various poxvirus genera. The OPV ANK-box homologs
have similarities with those found in YOKV, NY 014 poxvirus, Murmansk poxvirus, and Cotia virus.
Clade II Ank-box homologs are present in Leporipoxvirus (2 homologs), Cervidpoxvirus (4 homologs),
Suipoxvirus (4 homologs), Capripoxvirus (4 homologs), Yatapoxvirus (2 homolog), Yaba-like disease virus
(2) and Cotia virus (1) (Figure 3).

Between the 14 ANK/F-box homolog genes analyzed, none were similar to ANK, which was
described in the literature for avipoxvirus and parapoxvirus. This indicated a distant correlation
between these homologs and those of other poxviruses [20]. ANK/F-Box genes probably originated
from multiple duplications in all poxviruses groups, and our data suggested that these duplications
occurred after the radiation of orthopoxviruses and clade II poxviruses of another family of viruses [20].

The p28/N1R RING zinc finger protein is the most abundant gene family in poxviruses, and has
also been identified in other NCLDVs, such as iridoviruses and mimiviruses [94,95]. In our analysis,
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p28-like protein homologs are found in most members of the Chordopoxvirinae subfamily and in
acanthamoeba polyphaga mimivirus (Mimiviridae), as previously described [96]. This fact may reinforce
the common ancestry hypothesis between both families. The recently discovered chordopoxvirus
Salmon gill poxvirus (SGPV), appears to be a distant chordopoxvirus [97]. The p28-like protein
homologs of Cotia virus and BeAn58058 form a high bootstrap clade (Figure 4). Despite Eptesipox
virus forming a well-supported clade with Pteropox virus, both viruses were isolated from bats,
which could suggest an adaptation of p28 to the host [98,99]. However, p28-like protein homologs of
entomopoxvirus and mimivirus formed an external clade (Figure 4). Even considering the ancestry of
these groups, the sharing of such genes across distinct viral groups might in turn be explained by LGT
events [97].
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LGT is an important process in viral evolution, and in pathogenic viruses, this process can often
increase their virulence and fitness [16,17,96,100–103]. Poxviruses also express proteins homologous
to the vertebrate immune system signaling molecules or receptors, which are encoded by genes
that were probably incorporated from the host [91]. Among the host range genes, the serpin family
members are potential candidates to LGT, as identified by PSI–BLAST search [15,104]. In addition,
the B5R-related genes express CD46-like proteins (30–40% similar with mammal hosts) to control the
host complement system [105,106]. Our analyses showed that the B5R-related genes are closely related
with the homologs of several mammalian orders (Figure 5).
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Previous studies indicated that the ancestral B5R/C3L genes faced a duplication event early in
orthopoxvirus evolution [20]. Indeed, the B5R gene retained the transmembrane domain, keeping the
protein trapped in the external enveloped virion membrane, while the other homologs—VCP and
C3L—are secreted, which is an example of neofunctionalization as a different virulence factor by
inhibiting the host complement factors [78,107,108].

4. Future Directions

The poxviruses are one of the most intensively studied groups among the virosphere,
especially because of their medicinal importance for humans and a large range of domesticated animals.
These viruses have been isolated and identified in different groups of animals, both vertebrates and



Viruses 2017, 9, 331 12 of 17

invertebrates, and it has been tempting to correlate this host spectrum to the amount and diversity
of the so-called host range genes [18–20]. Although some host range genes were described in viruses
with numerous hosts, such as CPXV, no apparent correlations between the host organisms and the
number and diversity of host range genes have been found. Furthermore, the high number of these
genes described in VACV, CPXV, and MPXV may be directly related to the large number of studies
about these viruses. In addition, viruses with the same host range, such as VARV and MOCV, do not
share the same host range genes. On the other hand, the presence of host range genes is better viewed
and characterized when referring to the range of cells permissive to viral replication, thus having little
effect (if any) on the capacity of a virus to infect an animal host.

The evolutionary origins of poxviruses’ host range gene families are likely diverse. Some genes
are ancient, and remain conserved in several groups of NCLDVs, while others probably evolved due
to lineage-specific duplications. LGT events are also possible between different viruses and between
viruses and their hosts. The description of new poxvirus samples, especially in previously unrelated
hosts, such as those recently discovered in bats and fish, can bring new aspects of poxvirus biology
and new host range genes. Other genes in these families are likely to possess host range functions
that might impact the host spectrum of viruses at the organism level. These analyses will also provide
valuable insights about the risk assessment for poxvirus emergence. In light of the data presented here,
great effort must be taken to better elucidate the poxvirus host network, especially concerning the
entomopoxviruses. Furthermore, it seems that the term ‘host range genes’ is not the most appropriate
for these virulence genes, since there is no direct correlation between their presence and the host
range of poxviruses, at least when considering animals as hosts, rather than cells. More in-depth
investigation regarding the diversity of the poxvirus and their hosts, associated with in silico, in vitro,
and in vivo assays about these virulence genes, will certainly bring more insights into this intriguing
field of virus–host coevolution.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/9/11/331/s1,
Figure S1: Phylogenetic relationship of C7L gene. The tree was generated from a multiple protein sequence
alignment of the indicated sequences using the maximum likelihood method. A bootstrap of 1000 was used,
and support >50 is indicated above the branches. Branches in red represent the OPV clade, and branches in
green represent clade II poxviruses; Figure S2: Phylogenetic relationship of E3L gene. The tree was generated
from a multiple protein sequence alignment of the indicated sequences using the maximum likelihood method.
A bootstrap of 1000 was used, and support >50 is indicated above the branches. Branches in red represent the OPV
clade, and branches in green represent clade II poxviruses; Table S1: Names and abbreviations of the International
Committee on Taxonomy of Viruses (ICTV) poxviruses species; Table S2: Poxvirus species and the associated
hosts; Table S3: Protein sequences used as references for the BLASTP analyses.
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