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Abstract: The attenuated Japanese encephalitis virus (JEV) strain SA14-14-2 has been successfully
utilized to prevent JEV infection; however, the attenuation determinants have not been fully
elucidated. The envelope (E) protein of the attenuated JEV SA14-14-2 strain differs from that of
the virulent parental SA14 strain at eight amino acid positions (E107, E138, E176, E177, E264,
E279, E315, and E439). Here, we investigated the SA14-14-2-attenuation determinants by mutating
E107, E138, E176, E177, and E279 in SA14-14-2 to their status in the parental virulent strain and
tested the replication capacity, neurovirulence, neuroinvasiveness, and mortality associated with
the mutated viruses in mice, as compared with those of JEV SA14-14-2 and SA14. Our findings
indicated that revertant mutations at the E138 or E107 position significantly increased SA14-14-2
virulence, whereas other revertant mutations exhibited significant increases in neurovirulence only
when combined with E138, E107, and other mutations. Revertant mutations at all eight positions in
the E protein resulted in the highest degree of SA14-14-2 virulence, although this was still lower than
that observed in SA14. These results demonstrated the critical role of the viral E protein in controlling
JEV virulence and identified the amino acids at the E107 and E138 positions as the key determinants
of SA14-14-2 neurovirulence.

Keywords: attenuation mechanism; Japanese encephalitis virus; SA14-14-2; neuroinvasiveness;
neurovirulence

1. Introduction

The Japanese encephalitis virus (JEV) belongs to the Flavivirus genus and causes frequent endemic
and epidemic infections in Asia, with JEV infection leading to acute encephalitis in humans and
resulting in high mortality rates. The wild-type JEV SA14 strain was isolated from mosquitoes in
Xi’An, China in 1954, and the attenuated JEV SA14-14-2 strain was obtained by serial passages of the
JEV SA14 strain in mouse brain and primary hamster kidney (PHK) cells, followed by purification by
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plaque screening [1]. The purified SA14-14-2 strain was used to produce the attenuated live Japanese
encephalitis (JE) vaccine for humans, with >600 million doses of this vaccine being administered
in China and other countries in Southeast Asia, including Korea, Nepal, India, and Thailand, since
1989. The safety and efficacy of this vaccine have been well demonstrated by clinical data [2], and on
10 September 2013, it passed World Health Organization prequalification and was entered into the list
of vaccines available for international purchase. As with all attenuated live viral vaccines, its reversion
to virulent status remains a concern. This study explored the molecular mechanisms underpinning the
attenuated neurovirulence of the live JE vaccine (SA14-14-2) by reverting specific amino acids in the
SA14-14-2 envelope (E) protein to their counterparts in the parental virulent strain (SA14) and testing
the virulence of the revertant viruses.

Our findings indicated no neurovirulence observed in adult mice inoculated intracerebrally (i.c.)
with attenuated JEV SA14-14-2 at 106 plaque-forming units (PFUs), as compared with mice inoculated
with the parental strain, which caused 100% mortality in mice within 1 week. The marked virulence
attenuation of JEV SA14-14-2 is believed to result from specific substitutions at 24 amino acid positions,
including eight amino acid mutations in the E protein, throughout the viral genome [3–5], as well as
mutations in nonstructural proteins [6]. However, the specific mutations that determine the attenuated
SA14-14-2 phenotype remain unknown.

The attenuated yellow fever virus (YFV) 17D strain differs from its parental Asibi strain by
32 amino acid substitutions. Among these, 12 mutations are located in the E protein. Remarkably, as
few as one mutation (E303) in the E protein can change the attenuated phenotype of the Asibi strain [7].
The crucial role of amino acid mutations in the E protein, associated with attenuation, was reported
in other attenuated viral vaccines, including the chimeric yellow fever-dengue 1 vaccine virus [8].
That study hypothesized that the attenuated phenotype of the JEV SA14-14-2 strain might also be
attributed to specific mutations in the E protein. Here, we investigated the roles of five amino acid
residues (E107, E138, E176/177, and E279) in the E protein in the attenuated strains, as compared
with the virulent parental strain (Table 1), followed by an assessment of the neurovirulence and
neuroinvasiveness of these revertants in mice. Our results demonstrated that amino acids at the E138
and E107 positions played key roles in neurovirulence attenuation in the JEV SA14-14-2 strain.

Table 1. Amino acid differences in the viral E protein between Japanese encephalitis virus (JEV) strains
SA14, SA14-14-2, and SA14-5-3 [3,4].

Positions in
E Protein a

Virulent Strain Attenuated Strain

SA14/USA SA14/CDC SA14/JAP SA14-14-2/PHK SA14-14-2/PDK SA14-5-3

E107 L L L F F F
E138 E E E K K K
E176 I I I V V V
E177 T T T A T T
E264 Q Q Q H Q Q
E279 K K K M M M
E315 A V A V V V
E439 K R K R R R
a Amino acids that differ between the virulent JEV strain SA14 and the attenuated SA14-14-2 and SA14-5-3 strains
are highlighted in bold letters. E177 was studied along with E176 due to their close proximity.

2. Materials and Methods

2.1. Cells, Plasmids, and Viruses

BHK-21 cells (CCL-10; American Type Culture Collection, Manassas, VA, USA) were cultured
in an Eagle minimum essential medium (MEM; Gibco; Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 10% heat-inactivated fetal bovine serum. The multiple-cloning site of
the low-copy plasmid pACNR was modified to contain the restriction sites AscI, KasI, BglII, BspEI,
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BamHI, BclI, XbaI, and XhoI. The JEV SA14-14-2 strain was generated in PHK cells isolated from 9- to
10-day-old specific pathogen-free (SPF) hamsters at the Chengdu Institute of Biological Products Co.,
Ltd. (Chengdu, China).

2.2. DNA Cloning

The RNA of the JEV SA14-14-2 strain was extracted using a High Pure viral RNA kit (Roche,
Basel, Switzerland), and cDNA was synthesized by reverse transcription (RT) using SuperScript III
reverse transcriptase (Invitrogen, Carlsbad, CA, USA). Briefly, 20 ng RNA was mixed with 10 pmol
3′-terminal primers, heated for 5 min at 65 ◦C, cooled on ice for 1 min, and then incubated with
SuperScript III in the recommended buffer for 1 h at 55 ◦C, followed by heating to 70 ◦C for 15 min.
cDNA amplification was performed with the phusion polymerase (New England Biolabs, Ipswich,
MA, USA) using a touchdown polymerase chain reaction (PCR) program: one cycle at 98 ◦C for 1 min,
10 cycles at 98 ◦C for 15 s, 58.5 ◦C to 53.5 ◦C for 15 s, and 72 ◦C for 3 min, followed by 20 cycles at
an annealing temperature of 53.5 ◦C and elongation for 10 min at 72 ◦C. PCR products were purified
using a DNA purification kit (Qiagen, Hilden, Germany) and cloned into the pGEM-T easy vector
(Promega, Durham, NC, USA). The correct clones were identified by DNA sequencing.

All plasmids were constructed using two-plasmid systems as described previously [9,10].
One plasmid contained the 5′ terminal 3.4-kb cDNA and the other contained the 3′ terminal 7.6-kb
fragment of the SA14-14-2 strain. The first fragment (1–476 nt) contained AscI and KasI restriction
sites [11] and was cloned into the low-copy plasmid pACNR. The second fragment, from position
476 to 2654, and the third fragment, from position 2640 to 3446, were inserted into the KasI/BglII and
BglII/BspEI sites, respectively, to generate the plasmid pACNR-5′JEV (harboring the 5′ terminal 3.4-kb
fragment). The fourth fragment, from position 3444 to 5581; the fifth fragment, from position 5575 to
7092; the sixth fragment, from position 7086 to 9136; and the seventh fragment, from position 9130 to
10977, were cloned into the pACNR to create the plasmid pACNR-3′JEV (containing the 3′ terminal
7.6-kb fragment). This 7.6-kb fragment of JEV was then inserted into the plasmid pACNR-5′JEV to
create the plasmid pACNR-JEV containing the full-length cDNA of JEV SA14-14-2. Mutations in
the E protein gene were generated by PCR-based site-directed mutagenesis, and all plasmids were
sequenced to verify the engineered mutations.

2.3. In Vitro RNA Transcription, Transfection, and Viral Recovery

The pACNR-JEV plasmid was linearized by restriction digest using XhoI and used as a template for
in vitro transcription. The RNA used for transfection was synthesized using the RiboMAX large-scale
RNA production system Sp6 kit (Promega) in the presence of Ribo m7G cap analog (Promega). Reaction
products were treated with DNase I (RQ1 RNase-free DNase; Promega), followed by purification
with the RNeasy mini kit (Qiagen). BHK-21 cells were washed twice with cold phosphate-buffered
saline, then 4 × 106 cells in 200 µL were mixed with the synthesized RNA in vitro (1 µg) and pulsed
at 140 V for 25 ms using a Gene Pulser II apparatus (Bio-Rad, Hercules, CA, USA). Transfected
BHK-21 cells were cultivated at 37 ◦C in a 5% CO2 incubator, and the viruses were harvested at day 5
post-transfection upon observation of the cytopathic effect. The harvested viruses were passaged two
additional times in BHK-21 cells, titrated for the plaque assay, and stored at −80 ◦C until further use.

2.4. Nucleotide Sequencing of the Revertant Viruses

Briefly, viral RNA was extracted from the recovered viruses using the High Pure viral RNA kit
(Roche). cDNA from position 468 to 2667 containing the prM/E protein gene was synthesized by RT,
followed by the amplification of the prM/E fragment using the phusion polymerase (New England
Biolabs). The PCR products were purified using the QIAquick gel extraction kit (Qiagen) and sequenced
to determine the consensus sequence (Invitrogen).
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2.5. Growth Analysis of Revertants and Control Viruses

BHK-21 cells were infected with the revertants or control viruses at a multiplicity of infection
of 0.5. After 1 h of absorption at 37 ◦C, viral inocula were removed, and 20 mL MEM containing 2%
inactivated newborn calf serum was added. Culture supernatant (1 mL) was collected every 24-h
post-infection for 96 h. Titers of the collected viruses were determined as described for the plaque assay.

2.6. Mouse Experiments

To assess and compare neurovirulence, groups (n = 4) of 3-week-old SPF Kunming mice were
inoculated with 0.03 mL of 10-fold dilutions of the revertants or the control viruses by the i.c. route,
and inoculated mice were monitored for 14 days. All moribund mice were euthanized, and the median
lethal dose (LD50) was determined by the Reed and Muench calculation. Neurovirulence results
for each virus were recorded as LD50 (log10PFU; the viral dose capable of inducing 50% mortality).
Neuroinvasiveness was measured by inoculating 3-week-old SPF Kunming mice with 0.1 mL of 10-fold
dilutions of the revertants or the control viruses by the subcutaneous (s.c.) route, and the neuroinvasive
results were also recorded as LD50 (log10PFU). The average survival time (AST) was determined by
inoculating 0.03 mL of viruses containing equal plaque titers (5.18 log10PFU) in another group of mice
(n = 6) by the i.c. route. Mice in a moribund condition were euthanized and scored as deaths.

2.7. Statistical Analysis

Statistical analysis of the AST was performed using analysis of variance, and a p < 0.05 was
considered statistically significant. All analyses were performed using SPSS software version 17.0
(SPSS, Inc., Chicago, IL, USA).

2.8. Ethical Approval

The experimental protocols involving mice were approved by the Experimental Animal Welfare
and Ethical Committee of the National Institutes for Food and Drug Control, China.

3. Results

3.1. Construction of Infectious JEV Full-Length cDNA Clones Containing Specific Reverse Mutations in the
E Protein

All pACNR-JEV plasmids containing specific mutations were verified by sequencing, and the
viruses used for testing were amplified by three passages in the BHK-21 cells. The E protein-coding
region of each virus was sequenced an additional time, with the results confirming that the sequences
of all engineered plasmids and revertant viruses were correct and that no new mutations had
been introduced.

3.2. Growth Analysis of Revertants and Control Viruses

One mechanism of viral attenuation involves crippled viral replication [12]; therefore, the
effects of reverse mutations on JEV replication were measured by infecting BHK-21 cells, followed
by a determination of the production of revertants and control viruses at different time intervals
following infection. Growth-curve results showed that all viruses exhibited similar replication
capacities, although the SA14 virus replicated at a modestly faster rate, with 5.7 log10PFU/mL at 24-h
post-infection, which was higher than the other viruses tested. However, the peak SA14 titer was not
the highest among all viruses, which was likely due to the highest SA14 titer not being collected at the
denoted time points (Figure 1).

Additionally, analysis of the plaque sizes of all viruses revealed that those of SA14 (2–3 mm) were
larger than those of SA14-14-2 (1–2 mm) and the other viruses (1–2 mm). We observed no significant
difference in plaque size between SA14-14-2 and all the revertant viruses, except for that of rJEV4
(E279) (0.5–1 mm), which was significantly smaller than those of the other viruses (Figure 2).
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3.3. Mutation at Residue E138 in Combination with E107 Is Critical to the Attenuated Neurovirulence of
JEV SA14-14-2

To determine the amino acids in the E protein that attenuate JEV SA14-14-2 neurovirulence, we
measured the LD50 (log10PFU) values of all the revertant viruses (Table 2), with low LD50 (log10PFU)
values indicating high degrees of neurovirulence. Among revertants containing a single amino acid
substitution, rJEV1 (E107) and rJEV2 (E138) exhibited lower LD50 (log10PFU) values as compared
with that of the SA14-14-2 virus, whereas the revertant viruses rJEV3 (E176/E177) and rJEV4 (E279)
exhibited similar LD50 (log10PFU) values to that of SA14-14-2. Among these four revertants, rJEV2
(E138) exhibited the lowest LD50 (log10PFU) value, indicating the highest degree of neurovirulence,
followed by rJEV1 (E107). The reverse mutation of E138 in combination with E107 significantly
decreased the LD50 (log10PFU) value as compared with those of rJEV1 (E107) and rJEV2 (E138), and the
LD50 (log10PFU) value of rJEV10 (E107, E138, E176/177, and E279; 1.43) was slightly lower than that of
rJEV9 (E107, E138, and E176/177; 1.99). The rJEV11/SA14 virus, wherein the E protein of SA14-14-2
was replaced with the E protein of wild-type SA14, exhibited the lowest LD50 (log10PFU) value (0.66)
among all the revertants, although it was still higher than that of the virulent wild-type SA14 virus
(−0.92). These findings suggested, that among the five tested amino acid residues, E138 and E107
played the most important roles in the attenuation of SA14-14-2 neurovirulence.

Table 2. Neurovirulence of the mutated viruses in 3-week-old mice inoculated by the i.c. route.

Viruses LD50 (log10PFU) *

rJEV (SA14-14-2) ≥6.48
rJEV1 (E107) 3.97
rJEV2 (E138) 2.89

rJEV3 (E176/E177) ≥6.43
rJEV4 (E279) † ≥6.24

rJEV5 (E107/E138) 1.70
rJEV6 (E107/E176/E177) 5.69
rJEV7 (E138/E176/E177) 3.64

rJEV8 (E138/E279) 2.82
rJEV9 (E107/E138/E176/E177) 1.99

rJEV10 (E107/E138/E176/E177/E279) 1.43
rJEV11/SA14 0.66

SA14 −0.92

* LD50 (log10PFU) represents the plaque titers that cause death in 50% of tested mice; † Virus rJEV4 did not
cause neurovirulence.

3.4. Reverse Mutations in the E Protein Increased the Mortality and Decreased the AST of I.C.-Inoculated Mice

The virulence phenotype of the revertant viruses was further evaluated by determining the
mortality and AST of mice inoculated by the i.c. route with 5.18 log10PFU revertant virus (Table 3).
Mice inoculated with rJEV2, rJEV5, rJEV7, rJEV8, rJEV9, rJEV10, rJEV11, or SA14 exhibited 100%
mortality, whereas rJEV1 or rJEV3 inoculation resulted in 83.3% and 16.7% mortality, respectively,
and SA14-14-2 or rJEV4 (E279) inoculation resulted in 0% mortality. These results showed that
the E138 and E107 residues were more important than E279 and E176/177 at effecting SA14-14-2
virulence. The wild-type SA14 group exhibited the shortest AST (4 days), followed by the rJEV11
group (E107/E138/E176/177/E264/E279/E315/E439), with an AST of 5 days (p ≤ 0.05, compared
with SA14). The AST of mice inoculated with rJEV2 (E138) exhibited an AST of 6 days, and the
ASTs of the rJEV1 (E107) and the rJEV6 (E107/E176/177) groups were 6.6 and 9 days, respectively
(p ≤ 0.05, comparing rJEV1 to rJEV6). The rJEV3 group (E176/177) exhibited the longest AST of
11 days. These results demonstrated that the E138 residue was a greater determinant of attenuated
SA14-14-2 virulence, as compared with other residues in the E protein.
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Table 3. AST and mortality of mice inoculated with the viruses by the i.c. route.

Viruses No. of Dead Mice/
Total No. of Mice (%)

AST (day)
Mean ± SD

rJEV (SA14-14-2) 0/6 (0) -
rJEV1 (E107) 5/6 (83.3%) 6.6 ± 0.9 $

rJEV2 (E138) 6/6 (100%) 6 ± 0 #,$

rJEV3 (E176/E177) 1/6 (16.7%) 11 ± 0
rJEV4 (E279) 0/6 (0) -

rJEV5 (E107/E138) 6/6 (100%) 6 ± 0 #

rJEV6 (E107/E176/E177) 3/6 (50%) 9 ± 0
rJEV7 (E138/E176/E177) 6/6 (100%) 6 ± 0 #

rJEV8 (E138/E279) 6/6 (100%) 6 ± 0 #

rJEV9 (E107/E138/E176/E177) 6/6 (100%) 6 ± 0 #

rJEV10 (E107/E138/E176/E177/E279) 6/6 (100%) 6 ± 0 #

rJEV11/SA14 6/6 (100%) 5 ± 0 *
SA14 6/6 (100%) 4 ± 0 *

# p = 1, compared with each other; * p ≤ 0.05, compared with each other; $ p ≤ 0.05, compared with each other.

3.5. Effects of Specific Reverse Mutations on JEV SA14-14-2 Neuroinvasiveness

The neuroinvasiveness of all the revertants was tested using the same protocol as that used
to test neurovirulence, except that the mice were inoculated by the s.c. route (Table 4). The LD50

(log10PFU) values of all the revertants containing single amino acid substitutions were similar
to that of the attenuated SA14-14-2 strain, whereas the other revertants showed lower LD50

(log10PFU) values than that of SA14-14-2. The LD50 (log10PFU) values of the mice inoculated
with rJEV5 (E107 and E138), rJEV7 (E138 and E176/177), or rJEV8 (E138 and E279) were ≥6.54,
5.76, and 6.01, respectively, suggesting that the E107 revertant mutation combined with E138 did
not show the same synergistic effect as observed in the neurovirulence test. The LD50 (log10PFU)
value of mice inoculated with rJEV10 (E107/E138/E176/E177/E279) was slightly higher than that
of rJEV9 (E107/E138/E176/E177)-inoculated mice, and rJEV9 (E107/E138/E176/E177)-, rJEV10
(E107/E138/E176/E177/E279)-, and rJEV11/SA14-inoculated mice exhibited low LD50 (log10PFU)
values of 5.40, 5.53, and 3.17, respectively. Furthermore, the LD50 (Log10PFU) value of mice inoculated
with rJEV11 (rJEV11/SA14) was higher than that of mice infected with virulent SA14, indicating that
other regions in the JEV genome also contributed to the neuroinvasive phenotype.

Table 4. Neuroinvasiveness of the revertant viruses in 3-week-old mice inoculated by the s.c. route.

Inocula LD50 (log10PFU)

rJEV (SA14-14-2) ≥6.14
rJEV1 (E107) ≥7.32
rJEV2 (E138) ≥6.20

rJEV3 (E176/E177) ≥6.93
rJEV4 (E279) ≥6.74

rJEV5 (E107/E138) ≥6.54
rJEV6 (E107/E176/E177) ≥6.71
rJEV7 (E138/E176/E177) 5.76

rJEV8 (E138/E279) 6.01
rJEV9 (E107/E138/E176/E177) 5.40

rJEV10 (E107/E138/E176/E177/E279) 5.53
rJEV11/SA14 3.17

SA14 1.86



Viruses 2017, 9, 20 8 of 12

4. Discussion

Reverse genetics is a powerful tool for studying the replication, virulence attenuation, and gene
functions of positive-strand RNA viruses. The key step in this strategy involves constructing stable
cDNA clones containing the full-length viral sequence. However, constructing the full-length cDNA
clone of the JEV SA14-14-2 strain was hindered by the instability and toxicity of some gene products in
Escherichia coli [13–15]. Previous studies utilized two strategies to overcome these hurdles. One was
an in vitro ligation approach [16] and the second involved using low-copy plasmids, such as those
containing artificial bacterial chromosomes, to stabilize the full-length cDNA of JEV [17]. Here, a
different low-copy plasmid (pACNR) was employed to stably maintain the full-length cDNA of the
infectious JEV. To generate a marker in the recombinant viruses, a silent mutation was inserted at
nucleotide 473 (from A to C) that also created a new restriction site (KasI) for DNA cloning. This genetic
marker allowed confirmation that the recovered viruses were derived from the infectious cDNA.
Furthermore, this cDNA cloning system previously enabled the mechanistic study of the virulence
attenuation of Flaviviruses and the development of other Flavivirus vaccines [18].

Several studies reported nucleotide changes potentially underlying the attenuated phenotype of
the JEV SA14-14-2 strain through comparisons with its parental strain SA14 [3,4,19]. Major nucleotide
changes in Flavivirus E proteins responsible for viral neurovirulence were also revealed by
comparing the JEV AT31 strain with its attenuated derivative [20] and between YFV (the Asibi
train) and its attenuated 17D strain [21]. The results of mouse-infection studies showed that single
substitutions at amino acid positions E107, E138, E176/177, or E279 differentially modulated viral
virulence [22]. Our results showed that inoculation with the rJEV2 (E138) mutation increased SA14-14-2
neurovirulence to the highest level, followed by that of the rJEV1 (E107) mutation, whereas the single
revertant mutation of E279 had no effect on neurovirulence. A synergistic virulence effect was observed
when the E138 revertant mutation was combined with E107, but not E176/177 or E279, whereas
infection with rJEV5 (E138/E107) exhibited the lowest LD50 (log10PFU) value (1.70). These results
were consistent with observations that after five passages in the suckling mouse brain, the revertant
mutations at E138 and E107, from JEV SA14-14-2 to those of the parental SA14 strain, increased the
neurovirulence of the resulting virus [22].

Residue E107 is located within a highly-conserved hairpin motif spanning amino acids 98 to
111 in domain II [23]. This region contains a fusogenic peptide according to studies of the tick-borne
encephalitis virus, the Murray Valley encephalitis virus, and the dengue type 2 virus [24,25]. Mutations
in close proximity to this region alter the fusion properties of the E protein in cell culture and are
associated with changes in the neurovirulence of the dengue virus and the tick-borne encephalitis
virus [26,27]. Residue E138 is located in the ‘hinge’ region at the interface of domains I and II of the E
protein, and mutation at this position alters E protein conformation and function. Previous studies
of Flaviviruses indicated that mutations within this region modulate viral virulence in mice [28–32],
thereby supporting the results of this study.

The effect of the E176/177 cluster on viral neurovirulence is interesting. In contrast to other reverse
mutations that increased SA14-14-2 virulence, single substitutions in the E176/177 cluster elevated
viral virulence to a lesser extent than other substitutions; however, when combined with mutations at
E107 or E138, E176/177 mutations significantly decreased viral virulence. Additionally, the virulence
of rJEV6 (E107/E176/E177) was lower than that observed for rJEV1 (E107) (5.69 vs. 3.97), the virulence
of rJEV7 (E138/E176/E177) was lower than that observed for rJEV2 (E138) (3.64 vs. 2.89), and the
virulence of rJEV9 (E107/E138/E176/E177) was lower than that of rJEV5 (E107/E138) (1.99 vs. 1.77).
Therefore, we concluded that the E176/177 mutations significantly neutralized the function of E107
and E138.

Residue E279 is located in the hinge region of the E protein, suggesting a possible regulatory role
in E protein function, similar to that of E138. Previous studies showed that reverse mutation of residue
E279 from methionine to lysine significantly increased neurovirulence [33]. Additionally, mutations in
close proximity to E279 in the Murray Valley encephalitis virus impair hemagglutination and fusion
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properties of the E protein and reduce neuroinvasiveness in mice [28,34]. By contrast, reverse mutation
of E279 in this study did not affect SA14-14-2 neurovirulence. The neutral effect of the E279 mutation
might be explained by the decreased ability of the virus harboring the mutation to infect host cells,
given that inoculation with rJEV4 (E279) resulted in that formation of the smallest plaques among all
tested viruses, including SA14-14-2.

A previous study reported that the molecular determinants associated with the prM-E region
of the attenuated JE SA14-14-2 virus are insufficient to confer an attenuated phenotype upon the JE
Nakayama virus [6]. This suggested a role for determinants located in the 5′ untranslated region and/or
the capsid protein of the JE SA 14-14-2 viral genome in influencing the virulent properties of the JE
Nakayama virus in mouse models. Here, we observed that the revertant rJEV11 virus, having the same
eight amino acids in the E protein as the parental virulent SA14 strain, exhibited significantly lower
neurovirulence and neuroinvasiveness in mice as compared with JEV SA14 (Tables 2 and 4). These
data demonstrated that mutations in viral proteins (including nonstructural protein) other than the
E protein in JEV SA14-14-2 may also contribute to attenuated neurovirulence and neuroinvasiveness.

A previous report utilized a chimeric YFV/JEV SA14-14-2 virus to characterize the attenuation
mechanism [35]. This chimeric virus contained the backbone of YFV and the prM and E protein
sequences from the attenuated JEV SA14-14-2 strain. Consistent with our findings, Arroyo et al. [35]
reported the importance of the E138 amino acid together with amino acid residues at other positions in
neurovirulence attenuation; however, other results from that study differed from our findings. Arroyo
et al. [35] reported that inoculation with variants harboring single reverse mutations of E107, E138,
and E176/177 did not cause sickness or death in mice and that the single reverse mutation of E279
caused death in only 13% of mice. By contrast, we observed that inoculation with each of the three
single reverse mutations (E107, E138, and E176/177) resulted in sickness or death in some of the mice
and isolation of the revertant viruses in the brain. Additionally, the single reverse mutation of E279
did not cause sickness or death in mice. These discrepancies might be explained by the different
inoculation doses used between the two studies, given that our inoculated mice became sick or died
only when inoculated with >4.0 log10PFU of the revertants rJEV1 (E107), rJEV3 (E176/E177), and
rJEV6 (E107/E176/E177), whereas the previous study used inoculation doses via i.c. of <4.0 log10PFU
(10,000 PFU) [35]. Additionally, the results of that study did not suggest an important role for the single
mutation of E107 in JEV attenuation, whereas our results provided a more detailed account of the roles
of E176/177 and E279 in JEV attenuation, in combination with E138. Furthermore, Arroyo et al. [35]
reported that the single substitution at E176/177 greatly enhanced virulence in combination with other
mutations, whereas we observed decreased virulence associated with this mutation in combination
with others. One explanation for these discrepancies might be use of a chimeric virus with YFV as the
backbone in the previous study [35], whereas the JEV SA14 virus was used in this study to investigate
the attenuation mechanism.

Yun et al. [36] showed that the passage of the JEV SA14-14-2 strain in the mouse brain was selected
for mutations at the E244 position, which drastically altered the viral phenotype [36]. In this study, this
amino acid position was not tested because the E244 position in the SA14 viral population harbors two
different amino acids in the mouse brain (Figure 3), with glutamic acid at this position in wild-type
SA14/USA and glycine at this position in the SA14/CDC and SA14/JAP strains (Table 1 and Figure 3).

The mechanisms associated with viral attenuation are complicated and involve membrane
fusion [24,25], replication capacity [12], and heparin-binding activity [37]. In addition to the SA-14
E protein, our findings suggested that other regions of the viral genome likely also contribute to the
attenuated phenotype. This was supported by our results showing that the virulence of the revertant
rJEV11/SA14 strain remained lower than that of the parental SA14 strain, despite substitution with
the intact E protein from wild-type SA14.
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5. Conclusions

In summary, this study demonstrated that amino acids at positions E107, E138, E176/177, and
E279 differentially contributed to virulence attenuation in the SA14-14-2 virus. Our findings indicated
that the E138 position played the most important role in sustaining neurovirulence, but not the
attenuated neuroinvasive phenotype associated with JEV SA14-14-2. Additionally, the role of the E107
position in attenuating virulence was revealed by its synergistic effect with the E138 position, although
E107 alone also contributed to virulence attenuation. Compared with the E107 and E138 positions,
E176/177 and E279 exhibited relatively minor roles in virulence attenuation. These results identified
the key residues in the E protein involved in regulating attenuated JEV SA14-14-2 virulence, thereby
elucidating the molecular mechanisms of JEV attenuation. The data presented in this study supported
JEV vaccine guidelines stating that the stability of the E protein sequence should be used as the main
safety indicator for the attenuated live JE vaccine (SA14-14-2 strain).
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