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Abstract: Great apes are extremely sensitive to infections with human respiratory viruses. 

In this study, we retrospectively analyzed sera from captive chimpanzees, gorillas and 

orang-utans. More than 1000 sera (403 chimpanzee, 77 gorilla, and 535 orang-utan sera) 

were analyzed for antibodies to the human respiratory viruses RSV (respiratory syncytial 

virus, hMPV (human metapneumovirus), H1N1 and H3N2 influenza A viruses, and 

influenza B virus. In all ape species high seroprevalences were found for RSV, hMPV, and 

influenza B virus. A high percentage of captive chimpanzees also showed evidence of 

influenza A H1N1 infections, and had low levels of H3N2 antibodies, while in sera from 

gorillas and orang-utans antibody levels to influenza A and B viruses were much lower or 

practically absent. Transmission of respiratory viruses was examined in longitudinal sera of 

young chimpanzees, and in chimpanzee sera taken during health checks. In young animals 

isolated cases of influenza infections were monitored, but evidence was found for single 

introductions followed by a rapid dissemination of RSV and hMPV within the group. 

Implementation of strict guidelines for handling and housing of nonhuman primates was 

shown to be an efficient method to reduce the introduction of respiratory infections in 

colonies of captive animals. RSV seroprevalence rates of chimpanzees remained high, 

probably due to circulating virus in the chimpanzee colony. 
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1. Introduction 

The transfer of nonhuman primate viruses to humans in the past and present has been extensively 

documented [1,2]. Most notable is the transmission of simian immunodeficiency virus from 

chimpanzees, gorillas, and sooty mangabeys that started the AIDS pandemic, but other widely known 

human viruses, like dengue virus, Chikungunya virus and human T-cell lymphotropic virus (HTLV), 

also have their origin in nonhuman primates [3–7]. Additionally, infections of humans with nonhuman 

primate viruses, like herpes B virus, Ebola virus, monkey poxvirus, and foamy viruses have also been 

described [8–11].  

Conversely, nonhuman primates also run the risk of anthroponotic, i.e., from human to nonhuman 

primate, infections. Measles virus and herpesviruses, such as herpes simplex virus 1 (HSV-1) and 

varicella zoster virus, are examples of viruses that are able to jump the species barrier, and cause 

outbreaks in colonies of captive animals [12–14]. Particularly, great apes are extremely vulnerable to 

several human viral diseases. In recent years, several reports have been published detailing human 

respiratory viruses infecting wild African apes. Viruses like human metapneumovirus (hMPV), 

respiratory syncytial virus (RSV), or influenza viruses have repeatedly caused outbreaks of flu-like 

disease with high morbidity, and deaths amongst chimpanzees and gorillas have been attributed to 

infections with these pathogens [15]. 

Obviously, groups of captive great apes are equally vulnerable to these human viruses, and due to 

the regular and close contacts with animal caretakers or veterinary staff, one would expect infections to 

occur more commonly. However, publications on this topic are quite rare. Kilbourn et al. [16] 

performed a survey amongst 84 free-ranging and 60 semi-captive orangutans for evidence of infection 

with 47 different viruses, including RSV and influenza A and B viruses. They found serological 

evidence for RSV infections in two animals (1.4%), but did not detect antibodies to the other 

respiratory viruses. Recently, Kooriyama et al. [17] investigated sera from 14 captive chimpanzees for 

evidence of infection with 63 pathogens, including respiratory viruses. RSV and hMPV antibodies 

were detected in all animals, influenza A H3N2 was identified in one animal, while H1N1 and 

influenza B virus infections were absent. Finally, Unwin et al. [18] reported an acute outbreak of RSV 

in a group of 30 captive chimpanzees. 

To extend our knowledge on the prevalence and transfer of human respiratory viruses to captive 

apes, we investigated three species of great apes for antibodies to four common respiratory viruses: 

hMPV, RSV, influenza A virus, and influenza B virus. The animals had different backgrounds: the 

chimpanzee sera were obtained from the former colony of Western common chimpanzees that was 

housed at the Biomedical Primate Research Centre (BPRC) in Rijswijk, the Netherlands; the gorilla 

sera had been sampled from animals living in various zoos; and all orangutan sera were collected from 

apes that were housed at the Wanariset Orangutan Rehabilitation Centre in East Kalimantan, Indonesia. 
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2. Results  

2.1. Sera  

The sera tested in this study were obtained from different sources. We analyzed 403 serum samples 

from 203 individual chimpanzees that were housed at the Biomedical Primate Research Centre (BPRC) 

in Rijswijk, the Netherlands. Additional sera were obtained at the regular health examinations from a 

group of young animals. The gorilla sera (n = 77) were all derived from zoo animals. The orangutan 

sera (535 sera from 179 individuals) had been sampled from animals that were housed at the Wanariset 

Rehabilitation Orang-utan Centre in East Kalimantan, Indonesia, in the period from 1994 to 1998.  

2.2. Serological Survey of Respiratory Infections in Great Ape Species 

Sera were analyzed by using an in-house developed magnetic bead-based multiplex assay for the 

presence of antibodies to RSV, hMPV, influenza A virus, and influenza B virus. Antibodies which 

were reactive to the influenza A virus strain H3N2 Texas 1/77 and the pandemic H1N1 influenza strain 

California/7/2009 were measured separately. Results were confirmed with Western blot using the same 

purified viral antigens and infected cell-lysates. A stringent cut-off rate equal to four times the average 

background signal was used to avoid false-positive results due to the variable quality of the sera. The 

seroprevalence rates of specific respiratory virus infections are given in Table 1.  

Table 1. Seroprevalence of respiratory viral infections in great apes. 

Virus 
gorillas orangutans chimpanzees 

n = 77 n = 179 n = 305 

RSV 79.3 # (61) 72.1 (129) 96.4 (294) 

hMPV 46.8 (36) 10.1 (18) 42.6 (130) 

inf A H3N2 3.9 (3) 5.6 (10) 11.2 (34) 

inf A H1N1 3.9 (3) 19.0 (34) 71.5 (218) 

infl B 58.4 (45) 75.4 (135) 26.2 (80) 
# Seroprevalence in percentages. Absolute numbers are given between brackets. 

 

RSV was the most commonly found infection in the three ape species, with high frequencies  

of 72.1%, 79.3%, and 96.4% in orangutans, gorillas and chimpanzees, respectively. Other relatively 

common infections found in the apes were influenza B virus and human metapneumovirus infections. 

Orangutans presented the highest seroprevalence rate to influenza B virus (75.4%), while 58.4% of the 

gorilla sera contained antibodies against influenza B. In contrast, only 26.2% of the chimpanzee  

colony animals had antibodies to influenza B. A different infection pattern was seen for hMPV. 

Metapneumovirus infections were common in gorillas (46.8%) and the chimpanzee colony (42.6%), 

but the number of hMPV-seropositive orangutans was low (18 of 179 animals; 10.1%). Of the 

respiratory virus infections investigated in this study, antibodies to influenza A virus H3N2 were much 

less frequently detected in the various ape species. The highest seroprevalence (11.2%) was detected in 

sera from the chimpanzee colony, while very low numbers of seropositive sera were found in the 

gorillas (3.9%) and orangutans (5.6%). Equally low was the percentage of gorilla sera that reacted to 
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the pandemic influenza H1N1 antigens, while 19% of the orangutan sera contained antibodies to 

H1N1. The latter figures differed considerably with those found in chimpanzee sera: more than 70% of 

the chimpanzee sera that were tested reacted positive to the H1N1 antigens.  

2.3. Respiratory Virus Infections in a Closed-Colony of Chimpanzees 

The abovementioned figures for chimpanzees are based on the cumulative data from sera sampled 

during health checks spaced several years apart (1986, 1992, 1998, and 2000). Analysis of the data 

obtained from these four time points reveals remarkable changes in infection rates for the respiratory 

viruses (Table 2). Seroprevalence rates for RSV were high and relatively stable throughout the 

sampling period (84.6%, 100%, 98.1%, and 79.7%), but the rates for hMPV and the three influenza 

viruses declined between 1986 and 2000. Between 1986 and 1992, the number of seropositive animals 

to hMPV and influenza B virus started to decline. The percentage of animals with antibodies to hMPV 

decreased from 67.3% in 1986 to 42.5% in 1992, and further decreased to 21.2% and 21.7% in the 

subsequent sampling years. Influenza B virus infections decreased from 51% to 15%, and this more or 

less stabilized on this level in the following years (7.7% and 15.9%). 

The percentage of chimpanzees with antibodies to influenza A virus H3N2 or H1N1 started to 

decrease between 1992 and 1998. For influenza A virus H3N2 percentages decreased from 17.5% in 

1992, to 1.9% and 4.9% in 1998 and 2000, respectively. For the H1N1 virus, percentages decreased 

from 90% in 1992 to around 50% in the years 1998 and 2000. From 87 H1N1-seropositive animals, 

sera could be analyzed from multiple time-points. From 55 chimpanzees the median fluorescence 

intensity (MFI) signal decreased in time, including 23 animals that became negative for H1N1 

antibodies at later time-points. Only two animals seroconverted between 1986 and 2000. RSV 

longitudinal analysis of sera revealed that between 1986 and 1992 the MFI increased in 89.3% of 

seropositive animals (25 out of 28 animals), between 1992 and 1998 in 46.7% (14/30), and in the 

period between 1998 and 2000 this figure was 36.1% (13/36). 

Table 2. Longitudinal analysis of respiratory virus infections in a chimpanzee colony. 

Virus 
1986 1992 1998 2000 

n = 104 n = 80 n = 52 n = 69 

RSV 84.6 (88) 100 (80) 98.1 (51) 79.7 (55) 

hMPV 67.3 (70) 42.5 (34) 21.2 (11) 21.7 (15) 

inf A H3N2 15.4 (16) 17.5 (14) 1.9 (1) 4.3 (3) 

inf A H1N1 81.7 (85) 90.0 (72) 46.2 (24) 53.6 (37) 

inf B 51.0 (53) 15.0 (12) 7.7 (4) 15.9 (11) 

2.4. Introduction of Respiratory Viruses in a Group of Juvenile Chimpanzees 

We furthermore investigated longitudinal sera of 11 young chimpanzees. According to the at that 

time current husbandry guidelines, babies were left with their mothers in a family group until they 

were at least 2 years old. Then, they were moved to a peer group of animals of the same age category, 

which was housed in a separate building. The eleven chimpanzees were followed for a period  

spanning 8 years. Antibodies to influenza A H3N2 virus were absent in the longitudinal sera, and low 
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sero-reactivity was detected at irregular time-points in the sera of the young animals against influenza 

B virus and influenza A H1N1 virus antigens (data not shown). The antibody responses against RSV 

and hMPV are depicted in Figure 1. In the RSV assay, antibody titers to viral antigens were found in 

six animals early in infection, with signals varying to very low (#10 and #11), low (#8), to strong  

(#1, #3 and #4). The two animals with a clear antibody peak at the first sampling time-point, #1 and 

#4, were then 6 months and 1 month old, respectively. This makes it plausible that this early antibody 

peak was due to remaining maternal antibodies in the blood of these babies. Sera from animal #3  

(15 months old at start of the observation period) contained significant levels of RSV antibodies during 

the whole observation period from 1996 to 2004, suggesting one or more newly acquired RSV 

infections in this animal. In nine animals, including chimpanzee #3, an antibody peak was seen in the 

sera collected in 2001, which points towards an introduction and spread of a RSV infection in the 

group of youngsters. The most clear-cut signals were obtained against hMPV. Antibody responses to 

this virus were completely absent in the animals until 2001. In that year responses suddenly peaked in 

all chimpanzees and were followed by a gradual decline in the subsequent years, indicating that hMPV 

was also introduced in the group in the one-year period between the 2000 and 2001 health checks.  

Figure 1. Serological screening of longitudinal serum samples from 11 juvenile 

chimpanzees using antigen-coated beads. On the horizontal axis the sampling date (in 

years) is indicated. On the vertical axis the median fluorescence intensity (MFI) is given 

for each serum sample assayed against respiratory syncytial virus (RSV) or human 

metapneumovirus (hMPV) antigens. 
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Interestingly, in the period a few months prior to the 2001 health check, the records kept by the 

animal caretakers twice mentioned an episode in which all animals showed symptoms of severe 

cold-like disease, including loss of appetite. Records also indicate that the animals were given cough 

medicine in their drinks. 

3. Discussion  

In free-ranging gorillas, chimpanzees, and bonobos, human metapneumovirus and flu-like viruses 

have been associated with morbidity and mortality in populations of these highly endangered ape 

species [19–25]. Inevitably, apes that are kept in (semi)captivity run an even greater risk of anthroponotic 

infections with pathogens from personnel working in primate-keeping institutes and, in case of zoos, 

from visitors. Viruses that can be transmitted via aerosolized droplets particularly pose a risk, as they 

do not rely on direct contact between individuals, and can travel considerable distances by air.  

We found serological evidence for infections with the human respiratory viruses in all three 

investigated ape species. In spite of the fact that we used a quite rigorous cut-off, we discovered high 

seroprevalence rates of selected human respiratory viruses in groups of (semi-) captive great apes, 

implying that the actual infection rates may be even higher in these animals. We also detected 

significant variations in seroprevalence rates between the different groups. This could point 

species-specific variations in susceptibility, but this may also be a consequence of differences in 

husbandry, housing conditions, or even the geographical location of the primate-keeping facility.  

Publications concerning anthroponotic infections of captive apes with respiratory viruses are scarce. 

The small group of 14 chimpanzees investigated by Kooriyama et al. [17] is comparable to the 

chimpanzees we investigated as they both have a laboratory background. The most striking 

discrepancy between groups is the high seropositivity to influenza A virus H1N1 found in the BPRC 

colony animals, while this infection is completely absent in the Kooriyama group. Beginning in 1990, 

BPRC implemented stricter guidelines to avoid anthroponotic and zoonotic infections, such as wearing 

facemasks, protective clothing, etc. This eventually led to a strong decrease in infection rates for most 

respiratory viruses (Table 2). Influenza A H1N1 seropositivity in 2000 was still significant (53.6%), 

but the analysis of longitudinal sera did reveal decreasing MFI signals in the majority of seropositive 

animals, suggesting a slow decrease in antibody titers. Possibly, the chimpanzees from the Japanese 

primate institute were kept under relatively more isolated conditions than the BPRC animals that were 

housed in outdoor enclosures.  

Chimpanzees are highly susceptible to infection with RSV. In fact, RSV was first isolated from a 

chimpanzee with coryza before this virus was recognized as a human pathogen [26]. Longitudinal 

analysis of sera from 36 animals showed that the number of new RSV infections was decreasing, but 

that nonetheless in the sera of 13 chimpanzees an increasing MFI signal was measured between 1998 

and 2000. Additionally, new RSV infections were detected in several young chimpanzees (Figure 1). 

These findings suggest that RSV continued to circulate in the colony despite the stricter handling 

procedures. Novel anthroponotic RSV introductions cannot be fully excluded, but RSV circulating 

within a group of captive chimpanzees has been reported, and is thus another possible source of new 

infections [18].  
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Our analysis of longitudinal sera from young chimpanzees revealed that the different respiratory 

viruses do not display similar infection patterns. Over the 8-years observation period, influenza A and 

B viruses caused no, or sporadic infections in this group, and these scarce infections did not lead to a 

further circulation of the infection in the group. RSV and hMPV, on the other hand, both caused 

infections that rapidly spread in the whole group (hMPV), or to a majority of the animals (RSV). Why 

RSV and hMPV are more easily transmissible among chimpanzees than the influenza viruses remains 

obscure. Influenza A and B viruses use the same α2-6-linked sialic acid for binding to the cell surface, 

while the ubiquitous nucleolin molecule has been proposed as receptor for RSV [27,28]. The 

functional receptor for hMPV has not been conclusively characterized yet, but αvβ1 integrin and 

heparan sulfate have been suggested as candidates [29,30]. Receptor usage may explain the differences 

between influenza viruses and RSV/hMPV infection in chimpanzees, but does not clarify the high 

H1N1 seropositivity and the much lower rates for H3N2 and influenza B viruses in this great ape. In 

the latter case, amino acid sequence variations in the receptor-binding domain (RBD) of 

haemagglutinin may have influenced viral entry and the consequent infection. This domain, stretching 

from residue 63 to 286 [31] varies significantly. The RBD amino acid identities of the strains used in 

our antibody assay varied from 37% between H1 and H3, to 17% between the haemaglutinins of the 

influenza B strain and both influenza A strains. 

Different infection patterns were also evident between the three ape species that cannot simply be 

explained by varying husbandry practices. Clearly, as the majority of orangutans have been confiscated 

after being illegally kept as pets, one can envision that they have been in close contact with humans 

and their pathogens. Yet, the seroprevalence for influenza A viruses and hMPV is relatively low, in 

contrast to the influenza B virus and RSV prevalences. During the annual influenza season influenza A 

and influenza B virus strains circulate alongside in the human population. Indeed, between 1992 and 

1997 this was the situation in Europe and Asia: influenza A H3N2 and influenza B strains were the 

most prevalent in Europe and Asia, except for the 1995–1996 influenza season when influenza A 

H1N1 was dominant in Europe, and influenza A H3N2 was the most common influenza found in Asia 

(Weekly Epidemiological Records, World Health Organization). Consequently, the high number of 

influenza B virus infections in orangutans cannot be simply linked to prevailing influenza B viruses, as 

H3N2 strains were equally prevalent. Similarly, in the gorillas, that all originate from European zoos, 

influenza B virus was the second most common infection, after RSV, while influenza A virus 

reactivity was very low (3.9% for both H1N1 and H3N2).  

The above reasoning for respiratory viral infections in chimpanzees also applies for variations that 

were detected between species, but is not sufficient to explain why certain viruses predominate in one 

species. One can hypothesize that the different ape species are genetically predisposed to be more 

susceptible to specific viruses. Differences in expression levels of receptor molecules in airway 

epithelial cells in humans and great apes have been associated with the lesser sensitivity of 

chimpanzees to experimental infection with influenza A virus [32]. Moreover, several host cell factors 

can restrict virus replication after its binding to the cell receptor. Retrovirus replication can be 

restricted by APOBEC and TRIM5α host-cell proteins, and interferon responses can inhibit influenza 

A virus replication, and are often strain-specific [33].  

Clearly, many questions regarding the inter- and intraspecies variations in infection patterns of 

respiratory viruses in great apes remain that warrant further research. 
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4. Experimental Section  

4.1. Animals and Sera 

Chimpanzee sera were obtained from the former colony of Western common chimpanzees 

(Pan troglodytes verus) that was housed until 2003 at the BPRC in Rijswijk, the Netherlands. 

Chimpanzees were housed in family groups in separate cages. Physical contact between animals from 

different cages was not possible, but because of the close proximity of the cages airborne transmission 

of viruses, or transmission via excreta or urine was conceivable. Sera were collected during the yearly 

routine health check of the colony animals. No animal was purposely bled for this study. All sera from 

Western lowland gorillas (Gorilla gorilla gorilla) had been sent to the BPRC for serology testing, and 

were used in this study. The sera from Bornean orangutans (Pongo pygmaeus) were collected for 

health purposes of routine health checks at Wanariset Orang-utan Rehabilitation Centre in East 

Kalimantan, Indonesia. 

4.2. Multiplex Serology Testing 

Immunoglobulin G class antibodies (IgG) targeted to human metapneumovirus (hMPV), respiratory 

syncytial virus (RSV), influenza A H3N2 virus (infA H3N2), pandemic influenza A H1N1 virus (infA 

H1N1), and influenza B virus (infB) were detected using an in-house developed magnetic bead-based 

multiplex assay.  

Virus preparations were obtained from different suppliers. An inactivated clarified cell lysate from 

hMPV was obtained from AbD Serotec (Düsseldorf, Germany). Inactivated influenza B virus (strain 

Hong Kong 5/72), influenza A H1N1 (strain California/7/2009), and influenza A H3N2 (strain Texas 

1/77) were purchased from MyBioSource, Inc. (Emelca Bioscience, Breda, The Netherlands). RSV 

antigen (strain A2) was obtained from Advanced Biotechnologies Inc. (Tebu-bio BV, Heerhugowaard, 

The Netherlands). 

Viral antigens were coupled to Bio-Plex Pro™ Magnetic COOH beads using the Bio-Plex Amine 

Coupling Kit (Bio-Rad Laboratories BV, Veenendaal, the Netherlands) according to the manufacturer’s 

instructions, but using 60 μg of protein per 1.25 × 10
6
 beads. A multiplex assay was set up and 

performed essentially as described by Kuller et al. [34], but optimized for use of magnetic beads.  

For a test, 2 × 10
3
 beads of each batch of coupled beads were mixed, and brought to a volume 

of 90 μL using StabilGuard
®

 BSA-free Immunoassay Stabilizer (Surmodics, Corporation, Eden 

Prairie, MN, USA). Then, 10 μL of serum was added (diluted 10 times in StabilGuard
®

), and incubated 

for 2 h at room temperature (RT) in the dark. Next, the beads were washed with PBS, mixed with  

100 μL of biotinylated protein G (1:750 diluted in PBS) (Pierce Biotechnology, Rockford, IL, USA), 

and incubated 30 min in the dark at RT. After washing with PBS, 100 μL of 1:1000 diluted (in PBS) 

streptavidin-PE (Life Technologies Europe BV, Bleiswijk, The Netherlands) was added to the beads, 

followed by 10 min incubation at RT in the dark. Finally, the beads were washed 4 times with PBS,  

re-suspended in 125 μL PBS, and fluorescence was measured using a Bio-Plex
®

 200 system (Bio-Rad 

Laboratories BV, Veenendaal, The Netherlands). The assay was established using human sera that 

were mono-specific to the respiratory viruses investigated in this study. Aliquots of each batch of 

coupled beads were mixed and incubated with each serum, and with a pool of the sera. Clear-cut 
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signals were obtained when testing the right antigen-serum combination, while the background signal 

with other antigens remained below the signal obtained with a negative control serum. Performance of 

the bead-based assay was evaluated using Western blot as the gold standard. Blots were made with the 

virus preparations used for coupling to the magnetic beads. As set of twenty chimpanzee sera was used 

to validate the assay. The overall sensitivity of the assay was 94% (37/43), and the specificity was 86% 

(63/67). For the individual viruses, sensitivity and specificity for RSV, infA H3N2 and hMPV was 

very high. For RSV sensitivity and specificity were 94% (16/7) and 100% (4/4), for infA H3N2 100% 

(11/11) and 100% (9/9), and for hMPV 94% (15/16) and 100% (5/5). For the infA H1N1 and infB 

viruses the sensitivities and specificities were somewhat less; both assays showed three false-positive 

outcomes in the bead-based assay, and one false-negative result. The percentages sensitivity and 

specificity were 91% (10/11) and 77% (10/13) for infA H1N1, and for inf B 92% (11/12) and 75% 

(9/12). 

4.3. Data Analysis 

The sera were assayed in a 96-well format that included 88 test sera, two positive human control 

sera, two PBS controls, and four negative control sera obtained from chimpanzees. The positive 

control sera and the negative sera had been screened in a hospital diagnostic laboratory for presence or 

absence of antibodies to the viruses used in this study. All sera were tested in duplicate. The median 

fluorescence intensity (MFI) was determined from a minimum of 50 counted events per batch of 

antigen-coupled beads. Sera were considered positive when the MFI signal was higher than four times 

the average background signal. The background signal was the average MFI of duplicate analysis of 

the four negative sera. 

5. Conclusions 

In this study we have confirmed the sensitivity of great ape species to human respiratory viruses. 

Our findings thus support the measures taken to reduce the threat of disease transmission from tourists 

and researchers to the highly endangered Virunga mountain gorillas. The prohibition for tourists and 

researchers to stay at least seven meters away from the gorillas and to wear surgical masks has led to a 

decrease in the incidence of respiratory viral diseases [35].  

Respiratory viruses can cause clinical symptoms in captive chimpanzees, like coughing, sneezing 

and loss of appetite, and infections can spread rapidly in colonies of captive animals. In contrast to the 

reported mortalities amongst wild apes, respiratory virus infections in captive apes generally seem to 

have a relatively mild disease course. This was seen in the group of juvenile chimpanzees described in 

this study, but also reported by Kooriyama et al. [17]. For captive apes, the implementation of strict 

guidelines for handling and housing of nonhuman primates has shown to be efficient in the reduction 

of novel infections on colonies of captive animals.  
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