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Abstract: Kaposi’s sarcoma-associated herpesvirus is an oncogenic γ-herpesvirus that 

causes latent infection in humans. In cells, the viral genome adopts a highly organized 

chromatin structure, which is controlled by a wide variety of cellular and viral chromatin 

regulatory factors. In the past few years, interrogation of the chromatinized KSHV genome 

by whole genome-analyzing tools revealed that the complex chromatin landscape spanning 

the viral genome in infected cells has important regulatory roles during the viral life cycle. 

This review summarizes the most recent findings regarding the role of histone modifications, 

histone modifying enzymes, DNA methylation, microRNAs, non-coding RNAs and the 

nuclear organization of the KSHV epigenome in the regulation of latent and lytic viral gene 

expression programs as well as their connection to KSHV-associated pathogenesis. 
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1. Introduction 

It is estimated that 15% of human cancers are caused by viral infections. Among the seven 

currently known human oncogenic viruses, two of them belong to the herpesvirus family: Kaposi’s 

sarcoma-associated herpesvirus (KSHV or Human Herpesvirus 8, HHV-8) and Epstein-Barr virus 

(EBV or Human Herpesvirus 4, HHV-4). In 1994, KSHV was first discovered in Kaposi’s sarcoma 

patients, who commonly present with cutaneous, neoplastic lesions of endothelial cell origin. 

Subsequently, it was also linked to the development of two B cell lymphomas: primary effusion 

lymphoma (PEL) and Multicentric Castleman’s disease [1,2]. Like other herpesviruses, KSHV 

establishes persistent infection in humans and alternates between two different life cycle phases: 

latency and lytic reactivation. In immunocompetent individuals KSHV establishes latency in CD19
+
 B 

cells, where a highly restricted viral gene expression program is thought to be the primary means by 

which latently infected cells escape detection by the host immune system. On the other hand, immune 

suppression along with other environmental and physiological factors, including oxidative stress, 

inflammatory cytokines, hypoxia or infection by other pathogens, each can favorably contribute to the 

physiological conditions required for KSHV to transition from latency to viral reactivation and virus 

production [3–8]. 

The 160-175-kb KSHV genome is composed of a single, 140.5-kb long unique coding region 

(LUR), which is flanked by 20-35-kb long, GC-rich terminal repeats (TRs) [9]. The LUR encodes at 

least 86 protein-coding genes, 12 microRNAs and several non-coding and antisense RNAs. The 

majority of latent genes are located between ORF69 and K14 in the KSHV genome and their 

expression is driven by only a few promoters. On the other hand, lytic genes are spread across the 

entire KSHV genome and the expression of each is likely regulated by over 100 different promoters. 

Latent genes are constitutively expressed in KSHV-infected cells, regardless of whether the infection 

is in a latent or lytic phase. On the other hand, lytic gene expression is repressed during latency and is 

only activated upon lytic reactivation, during which the three classes of lytic genes, immediate early 

(IE), early (E) and late (L) are induced, respectively [10]. While a relatively clear picture of the life 

cycle-dependent gene expression patterns of KSHV has emerged, we still do not understand the 

mechanism(s) that allow latent genes to escape the transcriptional repression affecting the rest of the 

viral genes during latency and the regulatory processes that control the genome-wide repression and 

temporally-ordered transcription of lytic genes. The fact that lytic reactivation of KSHV can be 

induced by treating latently infected cells with chemicals that affect chromatin regulatory factors such 

as histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and histone acetyltransferases 

(HATs) argues that chromatin and chromatin-associated factors must be involved in the control of viral 

gene expression [11–13]. Indeed, whereas the KSHV genome is linear and histone-free in the viral 

capsid, after infection, the viral DNA becomes a closed circular episome that associates with cellular 

histones and persists in the nucleus as a non-integrated minichromosome [14,15]. Micrococcal 

nuclease mapping studies and chromatin immunoprecipitations of various histones and chromatin 

regulatory proteins have demonstrated that KSHV gene expression is controlled by the dynamic 

modulation of nucleosomal structure, a finding reminiscent of the regulation of cellular genes on the 

host chromosome (see below).  
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The fundamental building block of chromatin is the nucleosome, which consists of 147 bp of DNA, 

which is wrapped around a histone octamer composed of two of each of the histones: H2A, H2B, H3 

and H4 (Figure 1A). The N-terminal tail of histones protrudes from the nucleosomes and as such, is 

subject to various posttranslational modifications, including acetylation, methylation, phosphorylation 

and ubiquitination (Figure 1A). Depending on whether a gene is destined for activation or silencing, 

different histone modifying enzyme complexes are recruited to the gene promoter to generate specific 

posttranslational modifications on histones called histone marks, which function as key modulators of 

gene expression (Figure 1B) [16]. These histone marks can then be recognized by specific nuclear 

proteins that use histone mark recognizing modules [17]. These histone mark-readers can recruit 

additional transcription factors that either inhibit or activate transcription (Figure 1B). In addition to 

the histone marks, gene transcription can also be modulated by other structural features of chromatin, 

including the distribution of histone variants, the positioning of nucleosomes and the presence of 

cytosine 5-methylation of the CpG islands in the gene regulatory regions [18,19]. The nucleosome 

array of the DNA genome constitutes the primary structure of chromatin, which is further organized 

into a three-dimensional complex structure through expansive looping of the chromatinized DNA and 

large-scale compartmentalization in the nucleus [20]. This higher-order organization of the chromatin 

can influence genes within large chromosomal domains or co-regulate genes that are otherwise far 

from each other on the chromosome. 

Figure 1. Chromatin components and their effect on gene expression. (A) The basic unit of 

chromatin is the nucleosome, which consists of 147 bp DNA wrapped around histones 

H2A, H2B, H3 and H4. The N terminus of histones is subject to different posttranslational 

modifications; (B) The levels and types of histone marks are dynamically regulated by 

antagonistic histone modifying enzymes (writers and erasers). Histone marks are 

recognized and interpreted by specific nuclear proteins (readers), resulting in the 

recruitment of either repressor or activator transcription regulatory complexes onto the 

target promoters. Some examples of repressive and activating chromatin modifications are 

listed in the boxed text. 

A B 
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Chromatin immunoprecipitation combined with microarray technology (ChIP-on-chip), chromatin 

immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and chromatin 

conformation capture assays have proved to be powerful techniques for the genome-wide mapping of 

histone marks, transcription factors and chromatin regulatory factors on the cellular genome and have 

provided a large amount data about the structural elements of the chromatin and their functional 

consequence for transcription. More and more studies have been emerging that also apply whole 

genome-analyzing tools for the interrogation of the epigenetic regulation of the KSHV genome, 

revealing an unexpectedly complex picture about the chromatin landscape of the viral genome in 

infected cells. In this review, we will mainly focus on the most recent studies that have investigated the 

regulation of chromatin on KSHV, including the relevant cellular and viral chromatin regulatory 

factors. Also, we will highlight some unanswered questions that require further investigation to better 

understand the fundamental chromatin-regulatory pathways involved in the control of the different 

stages of the KSHV lifecycle.  

2. De Novo Infection and the Requirements for the Establishment of Latency 

KSHV can infect a variety of cell types, including endothelial, fibroblast and epithelial cells, and 

establishes predominantly latent infections in cultured cells. However, without continuous drug 

selection, KSHV episomes get lost from most proliferating cells and only a subpopulation of cells can 

stably maintain the viral genome. Grundhoff and Ganem showed that the establishment of latency in 

these cells is not due to genetic mutations in the host or viral genome, but presumably epigenetic 

changes on the viral episome [21]. Such epigenetic alterations could involve the nucleosome structure, 

DNA methylation or histone modifications depositing onto the KSHV genome in the nucleus. 

Although we are getting a more and more detailed picture of the chromatin architecture of the latent 

KSHV genome, we still do not understand the processes by which naïve, histone-free KSHV genomes 

get chromatinized following de novo infection (Figure 2A). 

Establishment of latency requires repression of lytic genes and continuous expression of latent 

genes after de novo infection. This picture became more complicated when it was shown that a limited 

number of lytic genes with immunomodulatory and antiapoptotic functions are temporarily expressed 

after infection, followed by a decline in their transcription as latent gene expression remains constant 

(Figure 2A) [22]. Interestingly, during this transient period of lytic gene expression, one of the lytic 

genes that is expressed is ORF50, which encodes an IE protein called Replication and Transcription 

Activator (RTA). RTA is a viral transcription factor that functions as the master switch between 

latency and the lytic gene expression programs and is both necessary and sufficient for the initiation of 

lytic replication as it can activate several lytic promoters and the replication of viral DNA (reviewed  

in [23]). In addition, RTA binds to several chromatin and transcription regulatory factors, including the 

histone acetyltransferase CBP, the chromatin remodeling factor SWI/SNF2 and the Mediator, all of 

which are involved in gene activation [24]. Interestingly, despite the induction of RTA during de novo 

infection, its expression does not lead to full-blown lytic replication in this setting, possibly due to the 

lack of sustained RTA expression. While the mechanisms responsible for the down-regulation of RTA 

are unknown, they likely involve the rapid inhibition of the RTA promoter as well as the lack of the 

activation of specific signaling pathways. In agreement with this, infection of telomerase-immortalized 
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retinal pigment epithelial cells with a recombinant KSHV clone that expresses RTA from the constitutively 

active cellular phosphoglycerate kinase promoter results in constitutive lytic replication [25]. Thus, it 

appears that the RTA promoter is inherently prone to become transcriptionally inactive following  

de novo infection, a process that likely involves certain RTA promoter elements that orchestrate the 

recruitment of transcription repressor complexes and heterochromatin-associated epigenetic marks 

such as DNA methylation and repressive histone modifications. Indeed, several repressive chromatin-

associated factors have been identified on the RTA promoter during latency (see details below) but the 

molecular events involved in their initial recruitment upon de novo infection are still not known. 

Figure 2. Chromatinization of the KSHV episome and the role of the latent KSHV protein, 

LANA. (A) The KSHV genome is linear and histone-free in the viral capsid and becomes a 

closed circular episome following de novo infection. Subsequently, the viral DNA is 

organized into a nucleosome structure and it persists in the nucleus as a non-integrated 

minichromosome; (B) LANA is a constitutively expressed gene that is encoded within the 

major latency-associated locus of the KSHV genome. LANA binds to terminal repeat (TR) 

region of the viral genome and tethers the viral genome to the host chromosome by 

interacting with histones or other components of the cellular chromatin such as Brd4, 

MeCP2…etc. LANA also binds to several sites within the viral genome and it is involved 

in the recruitment of the H3K9me1/2 histone demethylase JMJD1A and repression of lytic 

genes. The posttranslational modifications of LANA play a critical role in the association 

of LANA with the KSHV genome and also regulate its activity in transcription regulation. 

During latency, LANA in maintained in an arginine methylated state resulting in its 

binding to the KSHV genome. Upon HDAC inhibitor (HDACi) treatment, LANA gets 

acetylated, which leads to its dissociation from the KSHV genome and the concomitant 

induction of lytic genes. 

A B 

 

 

Since latent genes are rapidly induced after de novo infection and their expression persists during 

latency, it is plausible that latent proteins are involved in the repression of lytic genes. One of the latent 

proteins is the latency-associated nuclear antigen or LANA, which is a nuclear protein that binds to 

several sites on the KSHV genome, most notably the TR region (Figure 2B) [26–28]. It was shown 

that IE gene expression significantly increased in 293T cells following transfection of a LANA-

deletion mutant of KSHV, suggesting that LANA plays a role in the downregulation of lytic genes 
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during the establishment of latency [29]. Another group reported that HEK293 cells carrying a LANA-

deletion KSHV mutant show increased expression of lytic genes, demonstrating that LANA can 

contribute to latency by repressing the expression of lytic genes [30]. The transcription repression 

activity of LANA can be attributed to its cellular binding partners, several of which are transcription 

repressors, including the heterochromatin protein HP1α, methyl-CpG-binding protein MeCP2, the 

H3K9me3 histone methyltransferase SUV39H1, histone deacetylase co-repressor mSin3 complex and 

DNA methyltransferases (DNMTs) [31–36]. LANA also interacts with and inhibits the enzymatic 

activity of the histone acetyltransferase CBP, resulting in repression of CBP target genes [37]. The 

functional consequences of the interaction of LANA with these chromatin regulatory proteins have 

been studied mainly in transcription reporter assays and not in the context of KSHV-infected cells. 

Therefore, it is currently unclear which of these protein-protein interactions has a role in the regulation 

of the viral chromatin and in repression of lytic KSHV genes. 

Other important functions of LANA in the promotion of latency are the recruitment of cellular 

DNA replication factors onto TR and the tethering of the viral genome to the host chromosome during 

mitosis [14,38–40]. These LANA functions ensure that the replication of the KSHV genome occurs 

concurrently with that of the host genome and that viral episomes are disseminated to both daughter 

cells following mitosis. In accordance with this, a KSHV mutant lacking LANA was rapidly lost from 

cells after multiple cell divisions [41]. LANA interacts with histones H2A, H2B, H1 and cellular 

chromatin-associated factors such as Brd2, Brd4, MeCP2, DEK, nuclear mitotic apparatus protein 

(NuMA), centromeric protein F (CENP-F) and the kinetochore protein Bub1, all of which may be 

involved in the binding of LANA to the host chromosome [39,42–47]. Interestingly, LANA can 

associate with heterochromatin through binding to MeCP2 and this interaction might be involved in 

the downregulation of lytic genes during de novo infection, perhaps through tethering of the viral 

episome to a transcriptionally silenced host chromosomal regions [31,47]. Despite the ample number 

of cellular chromatin factors that bind to LANA, knowledge of the functional consequence of these 

interactions is limited, particularly in the setting of the LANA-mediated repression of lytic gene 

expression that occurs following de novo infection. 

Posttranslational modifications of LANA also influence its function in the repression of lytic genes 

during latency by modulating its binding to the viral episome (Figure 2B). One group showed that 

arginine methylation in the histone-binding domain of LANA by the Protein arginine 

methyltransferase 1 (PRMT1) is associated with strong binding of LANA to the KSHV genome and 

repression of lytic genes [27]. Another group reported that treatment of KSHV-infected cells with 

histone deacetylase inhibitors causes the acetylation of LANA, which in turn results in the dissociation 

of LANA from the RTA promoter and the upregulation of RTA transcription [29]. Phosphorylation of 

LANA by Pim-1 and Pim-3 kinases can also counteract the transcription repressor activity of LANA 

on lytic genes [48]. Similarly, the phosphorylation of the histone-binding domain of LANA by 

different kinases can modulate association of LANA with the cellular chromatin [49]. These studies 

clearly show that the posttranslational modifications of the latent protein, LANA, play a critical role in 

the LANA-mediated inhibition of lytic genes during viral latency and presumably in the establishment 

of latency following de novo infection as well.  
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3. Regulation of the Chromatin Structure of KSHV during Latency and Lytic Reactivation 

During latency the KSHV genome exists as a circular episome in the nucleus and has a nucleosome 

structure similar to the bulk cellular chromatin (Figure 2A) [12,15]. Since chromatin restricts the 

accessibility of transcription factors to promoters, modification of the chromatin architecture has a 

pivotal role in the control of gene expression. Histone modifying enzymes and ATP-dependent 

chromatin remodeling complexes each play a role in chromatin remodeling through the covalent 

modification of histones and the repositioning of nucleosomes, respectively. There is evidence that 

both classes of chromatin regulatory proteins are involved in the regulation of KSHV gene expression. 

However, only a few studies have investigated the effect of these chromatin regulatory factors on the 

entire KSHV genome. Most of what we know about the chromatin structure of KSHV is based on 

studies performed with PEL cells that carry KSHV in latency and can be readily reactivated upon 

stress stimuli. Here, we summarize the most recent results regarding the role of histone modifications, 

histone modifying enzymes, DNA methylation, miRNAs, non-coding RNAs and the nuclear 

organization of the KSHV epigenome in the regulation of latent and lyitc viral gene expression programs. 

3.1. Activating and Repressive Histone Modifications on the KSHV Genome 

Since lytic genes are repressed during latency it was presumed that they are associated with 

heterochromatin that is poised for rapid and ordered transition to a transcriptionally permissive state. 

The histone modifying enzyme complexes involved in the regulation of specific genes can be 

determined by the identification of their corresponding histone modifications associated with the 

genes. Two studies have used chromatin immunoprecipitation assays in conjunction with high-

resolution KSHV-specific tiling microarrays (ChIP-on-chip) to shed light on the nature of the 

chromatin that is associated with the KSHV episomes in infected cells [50,51]. Specifically, these 

techniques were used to analyze chromatin from a KSHV-infected B cell lymphoma cell line called 

BCBL1 and a latently infected adherent cell line called SLKp, providing the first genome-wide views 

of the KSHV epigenetic landscape, including the occupancy of total histone H3 and several of its 

modified forms: the activating marks, H3K4me3 and acetylated H3K9/K14 (acH3) as well as the 

repressive H3K9me3 and H3K27me3 histone modifications. While H3 turned out to be uniformly 

distributed, the histone modifications show distinct patterns along the KSHV genome (Figure 3A). 

Specifically, in certain regions of the KSHV genome, the genomic localization of H3K4me3 overlaps 

with acH3 and the majority of H3K27me3 co-localizes with H3K9me3 on the viral episome. In 

contrast, other regions of the genome showed mutually exclusive enrichment of activating and 

repressive histone marks. Latent genes have H3K4me3/acH3-rich chromatin during latency and 

reactivation, a finding that is consistent with the presence of transcriptionally active RNA polymerase 

II (RNAPII) on the latent promoters and their constitutively active transcription (Figure 3A) [50,52]. 

Interestingly, the chromatin of IE and the majority of E genes also displays high level of H3K4me3 

and acH3 during latency, despite the absence of IE and E gene expression. During latency, the 

promoter region of the IE genes, RTA and ORF48, shows a characteristic bivalent chromatin, defined 

by the concomitant presence of H3K4me3 and H3K27me3 [50,51]. Although bivalent chromatin is not 

permissive for gene expression, it is associated with genes that are in a poised state of transcription 



Viruses 2013, 5 1353 

 

 

activation, as is the case for IE and E genes. In contrast to the IE/E gene-rich genomic regions of 

KSHV, the parts of the viral genome that encode many of the late genes are mainly associated with the 

repressive H3K9me3 and H3K27me3 and these chromatin marks are presumably responsible for the 

inhibition of late gene expression during latency and also during the early phase of reactivation. High 

expression of late genes only occurs upon viral DNA replication and is accompanied by the 

dissociation of heterochromatin from the KSHV genome [50]. These observations imply that the 

activation of late gene expression may be triggered by the de-chromatinization of the KSHV genome 

upon viral DNA replication. In addition, recent studies with MHV68 showed that deletion of certain 

viral genes can abrogate the induction of late genes, without affecting viral DNA replication, 

suggesting that viral proteins with transcription regulatory activity are also involved in the regulation 

of late genes [53–55]. 

Figure 3. The chromatin landscape of KSHV during latency. (A) Schematic of the KSHV 

genome and the genome-wide distribution of different histone marks along the viral 

genome. There are distinct chromatin domains on the viral episome, which are 

characterized by different histone modification patterns indicating the targeted recruitment 

of specific cellular chromatin modifying enzyme complexes to different sites of the viral 

genome. The cellular chromatin modifying factors associated with each histone mark are 

listed to the right. The position of the latency locus and examples of an IE gene (RTA), 

some early genes (viral interferon regulatory factors or vIRFs and the OriLytL-K7 locus) 

and L genes (ORF25 and ORF64) are indicated at the top; (B) The PRC2 complex  

co-localizes with H3K27me3-rich chromatin domains, while the binding of the H3K9me3 

histone demethylase JMJD2A overlaps with the H3K4me3/acH3-enriched chromatin 

regions that have a low level of H3K9me3. PRC2 is involved in the inhibition of ORF50 

(RTA) expression during latency. 

 

Strikingly, while H3K9me3 is restricted to two loci that encode mainly late genes, H3K27me3 is 

widespread across the entire KSHV genome, with the exception of the latency locus (Figure 3A) [50,51]. 

In addition, lytic reactivation leads to the decline of H3K27me3 on lytic genes, while the level of 

H3K9me3 remains constant [50]. In keeping with this, the H3K27me3 histone methyltransferase of 

Polycomb repressive complex 2 (PRC2), called EZH2, binds to the KSHV genome and colocalizes 

with H3K27me3 during latency. Upon reactivation, EZH2 dissociation from the KSHV genome is 

initiated and correlates with the concomitant decline of H3K27me3, increase of H3K4me3/acH3, and 

induction of IE and E gene expression [50]. A number of additional experiments were used to examine 

how viral gene expression is affected by the presence of EZH2 and its corresponding histone mark, 
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H3K27me3 on the KSHV episome. The inhibition of EZH2 expression with either shRNA knockdown 

or the chemical compound, DZNep triggered the induction of lytic genes in latently infected PEL  

cells [50]. Conversely, the transient expression of enzymatically active H3K27me3 demethylases, such 

as UTX or JMJD3, could induce lytic genes in latently infected cells, while the H3K9me3 demethylase 

JMJD2A failed to do so [50,51]. These data suggest that the PRC2 complex maintains a H3K27me3-

enriched heterochromatin on lytic genes to repress their expression during latency (Figure 3B). 

Moreover, viral reactivation triggers the dissociation of PRC2 from the KSHV genome and the 

concomitant deposition of activating histone modifications and RNAPII on viral promoters, resulting 

in the induction of the IE and E genes [50–52]. 

3.2. The Polycomb Connections 

Polycomb group (PcG) proteins are cellular transcription repressors, which form two enzymatically 

distinct complexes called PRC2 and PRC1, both of which have been shown to inhibit transcription [56]. 

A number of different transcriptional silencing mechanisms contribute to PcG-mediated inhibition of 

transcription, including induction of chromatin condensation, inhibition of transcription initiation, 

blocking transcription elongation and recruitment of H3K4me3 histone demethylases to the target 

promoters [57–60]. PcG proteins are required for the inhibition of number of genes involved in 

development, cell proliferation and differentiation [56]. Importantly, there are several examples of 

human cancers in which increased expression of PcG proteins, specific point mutations or 

translocations of PcG gene loci have been observed [61]. Increased expression of specific PcG proteins 

have been shown to contribute transformation, indicating that PcG proteins can have oncogenic 

properties [62]. The PRC2 complex includes several subunits: EED, SUZ12, RbAp46/48, as well as 

EZH2, which catalyzes the di- and trimethylation of H3K27. In Drosophila, PRC2 has been shown to 

bind to target promoters through polycomb responsive DNA elements (PREs) [56]. In mammals, on 

the other hand, the recruitment of PRC2 to its target sites appears to be mediated mainly by various 

non-coding RNAs and distinct transcription factors [56]. The association of PRC2 with the chromatin 

is often extended beyond the target promoters in mammalian cells and overlaps with the distribution of 

H3K27me3 along the target genes. This was explained by the finding that PRC2 could be recruited to 

H3K27me3 via EED, a PRC2 subunit that can recognize and bind to this histone mark [63,64]. 

Similarly, the localization of the PRC2 components, EZH2 and SUZ12, on the KSHV episome is not 

restricted to specific sites but spread across the entire genome [50]. While we have a clear picture of 

PRC2 occupancy during the latent and early lytic phases of the KSHV lifecycle, the events that enable 

the initial recruitment of PRC2 to the KSHV genome following de novo infection and its maintenance 

on the latent genome are still not understood. 

It has been shown that most polycomb target genes are repressed by both PRC2 and PRC1 

complexes. Recently, a comprehensive proteomic and genomic analysis revealed that there are six 

major PRC1 complexes comprising a distinct set of proteins [65]. However, all six of these PRC1 

complexes harbor a common subunit called RING1A/B, which are E3 mono-ubiquitin ligases that 

generate H2AK119ub. In most cases the binding of PRC1 to target genes depends on the activity of 

PRC2 and the presence of its corresponding histone mark, H3K27me3, a histone modification that is 

recognized by PRC1 and used for its recruitment. Nevertheless, it should be noted that PRC1 can also 
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be recruited to number of target sites that lack H3K27me3 [66]. Indeed, the subunit composition of the 

individual PRC1 complexes affects their genomic localizations, indicating that different recruitment 

mechanisms exist for each PRC1 complex [65]. Specific components of both PRC2 and PRC1 have 

been found to interact with lytic promoters of Herpes simplex virus type 1 (HSV-1) during latency, 

suggesting that not only PRC2, but also PRC1 might be involved in the control the heterochromatin of 

KSHV [67,68]. However, whether PRC1 also binds to the KSHV genome and plays a role in the 

repression of lytic genes has not yet been addressed.  

Another interesting aspect of KSHV epigenetic regulation is the process by which PcG protein-

mediated repression of lytic gene expression is reversed during reactivation. Importantly, the lysine 27 

residue on histone H3 (H3K27) can either be acetylated (H3K27ac) or mono-, di-, or trimethylated. 

H3K27ac is associated with the activation of genes and is catalyzed by the histone acetyltransferases 

CBP/p300 in mammals [69]. The induction of lytic genes upon the overexpression of H3K27me3 

demethylases UTX and JMJD3 in latently infected cells suggests that the modulation of posttranslational 

modifications of H3K27 must be critical for the regulation of lytic genes [50,51]. RTA, which binds to 

and activates number of lytic promoters during reactivation, has been shown to interact with CBP [24]. 

Furthermore, several RTA responsive promoters can be found in the viral genomic regions where 

H3K27me3 declines during reactivation, suggesting that RTA may recruit CBP to these sites, resulting 

in a transition from H3K27me3 to H3K27ac. In addition, the mixed-lineage leukemia (MLL) protein-

containing MLL/Set1 complexes mediate H3K4me3 and, like RTA, increase at the same sites where 

H3K27me3 declines on the KSHV genome during lytic reactivation [50]. Moreover, MLL/Set1 

complexes have been shown to interact with CBP as well as the H3K27me3 demethylase, UTX [70–72]. 

Therefore, it is possible that the H3K27me3 decline on IE and E genes during reactivation is the 

consequence of the recruitment of protein complexes to the viral promoters that can catalyze both 

demethylation and acetylation of H3K27 to induce lytic gene expression. In fact, a recent study 

showed that, a highly abundant KSHV non-coding RNA called polyadenylated nuclear (PAN) RNA 

can interact with the RTA promoter and recruit the H3K27me3 demethylases, JMJD3 and UTX, as 

well as the H3K4me3 histone methyltransferase, MLL2 [73]. Since PAN RNA expression is dependent 

on IE genes, especially RTA, these data suggest that PAN RNA-mediated recruitment of chromatin 

factors to the RTA promoter may be part of a positive feedback regulatory mechanism that perpetuates 

RTA expression during later stages of reactivation. However, given that the expression of RTA is 

induced prior to that of PAN RNA (RTA is an IE gene and PAN RNA is an E gene), PAN RNA is not 

likely to be involved in the initial de-repression of PRC2-mediated inhibition of the RTA promoter 

during physiologically relevant reactivation conditions, i.e., in the absence of exogenous PAN RNA 

expression. Thus, the means by which repressive histone marks are initially removed from the RTA 

promoter is still not understood. 

The treatment of latently infected cells with histone deacetylase (HDAC) inhibitors can also trigger 

the induction of RTA and leads to the dissociation of EZH2 and the decline of H3K27me3 on the RTA 

promoter [74]. Several HDACs have been implicated in the repression of PcG target genes and may 

play a role in deacetylation of H3K27ac, allowing its trimethylation [75,76]. In fact, EED was found to 

interact with HDAC1, 2 and 3 in a yeast two-hybrid screen, suggesting a possible connection between 

PRC2 and HDACs [76]. Importantly, the HDAC inhibitor, trichostatin A (TSA), can induce the 

activation of PcG-silenced genes, including the expression of KSHV lytic genes [12,76]. Thus, 
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HDACs can also be involved in the maintenance of PRC2-mediated lytic gene repression by 

promoting H3K27 deacetylation, thereby allowing PRC2 to catalyze the trimethylation of H3K27. 

Further experiments are required to see whether there are any specific HDACs that have a role in the 

regulation of PRC2-maintained KSHV latency. 

3.3. Regulation of the Heterochromatin Mark H3K9me3 on the KSHV Genome 

H3K9me3 occupies two specific regions of the KSHV genome, both of which encode primarily late 

genes (Figure 3A) [50,51,77]. Although H3K9me3 does not seem to be a major repressive histone 

mark for lytic genes, several studies found that H3K9me3 and its associated chromatin regulatory 

factors have important regulatory roles during the KSHV life cycle. Several histone methyltransferases 

(HMTs) can catalyze the methylation of H3K9, including G9a, SUV39H1 and SETDB1 [78]. 

SUV39H1 and the H3K9me3-binding protein HP1 have been shown to interact with LANA, resulting 

in their recruitment to the TR and some lytic promoters of KSHV, where they are involved in 

heterochromatinization during latency [33]. Since LANA ChIP-seq and ChIP-on-chip experiments 

revealed a number of LANA-binding sites on the KSHV genome, it would be important to know 

whether SUV39H1 can also be recruited to these LANA-binding sites and thereby facilitate  

H3K9me3 [26,27]. In addition, other H3K9me3 HMTs can also be recruited to the KSHV episome by 

cellular factors. Indeed, Hsing-Jien Kung’s group has found that the cellular transcription repressor, 

KAP-1, is a novel regulator for KSHV latency, which is known to interact with SETDB1, a H3K9me3 

HMT [79]. KAP-1 was found to be associated with a significant number of lytic promoters during 

latency, which becomes dissociated upon reactivation. Interestingly, KAP-1 is a substrate of the viral 

kinase encoded by ORF36 and the binding of KAP-1 to the KSHV genome is modulated by 

ORF36-dependent phosphorylation [79]. The phosphorylation of KAP-1 causes the decline of its 

sumoylation, which decreases the ability of KAP-1 to bind to chromatin and repress genes. Importantly, 

the knockdown of KAP-1 by shRNA resulted in a 5-fold increase of RTA-mediated reactivation. Thus, 

KAP-1 could be one of the cellular transcription factors responsible for the recruitment of a H3K9me3 

methyltransferase onto the KSHV genome, which is also involved in the inhibition of lytic genes 

during latency [79]. 

Two elegant studies have recently reported the genome-wide binding and functions of the H3K9 

histone demethylases, JMJD2A and KDM3A/JMJD1A, on the latent KSHV genome, shedding light on 

the reasons behind the restricted localization pattern of H3K9me3 on the KSHV genome (Figures 2B 

and 3B) [77,80]. One of the studies showed that shRNA knockdown of JMJD2A resulted in attenuated 

lytic reactivation, while overexpression of an enzymatically active form of JMJD2A facilitated the 

induction of lytic genes [77]. Strikingly, the binding sites of JMJD2A on the viral episome inversely 

correlate with the presence of H3K9me3 and overlap with the H3K4me3/acH3-enriched genomic 

regions [77]. These results indicate that binding of JMJD2A to the IE and E genes during latency may 

be involved in preventing H3K9me3-marked heterochromatin formation on their promoters, thereby 

facilitating H3K9 acetylation and priming of the IE and E genes for robust induction upon reactivation. 

Based on the survey of several viral proteins, an IE/E protein called K-bZIP (K8) was found to interact 

with JMJD2A [77]. In vitro demethylase assays revealed that K-bZIP can inhibit the demethylase 

activity of JMJD2A. Moreover, it was shown that K-bZIP can recognize the H3K9me3 moiety and 
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thereby interfere with the binding of JMJD2A with H3K9me3. Furthermore, K-bZIP could also block 

the demethylation of H3K9me3 caused by overexpressed JMJD2A in 293T cells. Despite of the robust 

expression of K-bZIP H3K9me3 level does not change significantly on the KSHV chromatin during 

reactivation. Thus, the effect of K-bZIP on H3K9me3 must be limited to a subset of K-bZIP target 

genes in infected cells. In fact, K-bZIP expression in KSHV-negative cells causes a global repression 

of host genes and increased H3K9me3-marked heterochromatin formation on cellular genes, including 

host immune-related genes [77,81]. 

Izumiya’s group has recently reported that LANA forms a complex with KDM3A/JMJD1A, a 

cellular H3K9me1/2 histone demethylase, in KSHV infected cells [80]. The genome-wide occupancy 

of LANA and JMJD1A on the KSHV genome showed a high degree of overlap and was inversely 

correlated with the level of H3K9me2. Furthermore, depletion of LANA expression or overexpression 

of a JMJD1A-binding deficient LANA mutant in cells decreased the binding of JMJD1A to the viral 

episome, indicating that LANA recruits JMJD1A to the KSHV genome during latency. In vitro histone 

H3 peptide pull-down assays using purified LANA showed that LANA can interact with H3, 

H3K9me1 or H3K9me3 but not H3K9me2. Finally, the shRNA knockdown of JMJD1A resulted in 

decreased lytic reactivation, suggesting that JMJD1A is involved in the maintenance of H3K9 

methylation-free chromatin on latent and a specific subset of lytic genes [80]. These studies altogether 

have shown that the regulation of H3K9me3 on the KSHV genome is indeed important for the proper 

induction of the lytic gene expression program [77,79,80]. 

3.4. H3K4me3 and the MLL/Set1 Family 

Enrichment of H3K4me3 is typically present at the 5' end of transcriptionally induced genes. The 

first histone methyltransferase complex that can catalyze mono-, di- and trimethylation of H3K4 was 

identified in yeast and is called COMPASS (complex of proteins associated with Set1) [82,83]. The 

enzymatic subunit of COMPASS is Set1, which has at least 6 homologs in human, Set1A, Set1B, 

MLL1, MLL2, MLL3 and MLL4, all of which form different complexes and have distinct genomic 

localization [84]. In addition to their shared common subunits (Ash2, RbpBp5, Wdr5 and Dpy30), they 

differ in their enzymatic subunits and also have unique components. For instance, the tumor suppressor 

protein, Menin can only be found in complex with MLL1 or MLL2, while UTX, the Pax 

transactivation domain-interacting protein (PTIP), PTIP-associated protein 1 and nuclear receptor 

coactivator NCOA6 are exclusive components of the MLL3 and MLL4 complexes. In addition, Wdr82 

is restricted to Set1A/Set1B complexes [84]. Whereas the Set1A/B complexes are the major H3K4 

methylases responsible for the bulk H3K4me3 in mammalian cells, MLL1-4 play an important 

regulatory role for specific subsets of genes [85,86]. Mutations and random translocations of MLL 

genes are frequent occurrences in hematological malignancies like acute myeloid and lymphoid 

leukemia [87]. 

Regulation of H3K4me3 levels is important for controlling gene expression, particularly during 

lytic reactivation of KSHV, when lytic gene expression is rapidly induced. H3K4me3 is present on 

certain viral promoters during latency and is increased following reactivation (Figure 3) [50,51]. 

However, further studies are needed to identify the cellular factors that modulate H3K4me3 levels 

during the KSHV life cycle. It has been reported that while the binding of the core subunits of 
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MLL/Set1 complexes, Ash2 and Wdr5, can increase on lytic promoters following reactivation, this 

was not observed on the latent LANA promoter [88]. Also, recruitment of Set1A could be detected on 

lytic promoters during reactivation but whether it is the sole H3K4me3 methylase responsible for the 

increase of H3K4me3 on lytic promoters has yet to be determined [88]. In addition, another group 

showed that MLL2 can interact with the RTA promoter through the viral non-coding PAN RNA, 

which raises the question whether distinct MLL/Set1 complexes can be targeted to different viral 

promoters [73]. Future studies using MLL/Set1 component-specific shRNAs as well as applying ChIP 

assays to test which of the unique subunits of MLL/Set1 complexes bind onto the KSHV episome will 

help to identify which of the MLL/Set1 complexes is responsible for the regulation of H3K4me3 on 

the KSHV genome during latency and following lytic reactivation. 

There are a number of examples known of crosstalk between different histone modifications. For 

instance, H2B monoubiquitination at lysine 120 by the RAD6/BRE1 ubiquitin ligase complex is 

required for the methylation of H3K4 in human cells [89]. Furthermore, it was shown that the RNA 

polymerase II-associated factor (PAF) complex mediates the recruitment of RAD/BRE1 to the 

transcription machinery, where the monoubiquitination of H2B promotes Set1-mediated methylation 

of H3K4 in human cells [89]. Thus, it would be interesting to determine whether differential regulation 

of H2B ubiquitination is involved in the regulation of H3K4me3 levels on the KSHV episome.  

3.5. Histone Acetylation and Deacetylation on the KSHV Genome 

Acetylation and deacetylation of lysine residues of histone tails have antagonistic effect on gene 

transcription. While acetylation of histones by histone acetyltransferases (HATs) unravels chromatin 

and activates transcription, histone deacetylases (HDACs) induce chromatin condensation and gene 

silencing [90,91]. Shortly after the discovery of KSHV, it was found that lytic genes of KSHV can be 

induced from latency by treating latently infected cells with various HDAC inhibitors, highlighting the 

importance of histone acetylation in the regulation of lytic gene expression. Histone acetylation can 

occur at more than 20 different lysine residues positioned within histones. To date, 19 different HATs 

are known and each one is part of distinct transcription activator complexes. The majority of HATs can 

acetylate histones at multiple positions and likewise, the same lysine residue can be acetylated by 

various HATs. This redundancy makes it difficult to pinpoint the HAT(s) involved in a given histone 

acetylation on the KSHV chromatin (Figure 3A). Two ChIP-on-chip studies revealed that H3K9/K14ac 

are enriched on several lytic promoters during latency and are further increased upon lytic  

reactivation [50,51]. Using luciferase reporter assays, several cellular transcription factors that interact 

with HATs or HDACs (e.g., C/EBPα, AP1, Oct-1, STAT3 and RBP-Jκ) have been implicated in the 

regulation of specific lytic promoters such as RTA [23,92,93]. Nevertheless, comprehensive studies of 

histone acetylation on the KSHV epigenome during latency and reactivation are needed in order to 

provide more detailed insight into the role of histone acetylation and ultimately pave the way toward 

the identification of the HATs involved in viral gene regulation during the KSHV life cycle. 

The interplay between HATs and HDACs in the regulation of RTA transcription was examined in 

detail. Lieberman’s group analyzed the chromatin structure of the core promoter of RTA in the 

presence or absence of the HDAC inhibitors (HDACi) such as sodium butyrate (NaB) and trichostatin 

A (TSA) [12]. They found that the RTA promoter is highly inducible by these HDACs and a NaB 
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responsive element was mapped to a short GC-box DNA sequence that binds Sp1 and Sp3. 

Micrococcal nuclease (MNase) mapping and restriction endonuclease accessibility assays revealed that 

there is a stably positioned nucleosome at the transcriptional initiation site of RTA during latency, 

which rapidly changes upon NaB treatment [12]. Furthermore, it was also observed that HDAC1, 5 

and 7 bound to the RTA promoter, resulting in hypoacetylation of the viral chromatin during latency, 

while reactivation resulted in the hyperacetylation of histones H3 and H4 concomitantly with the 

recruitment of components of the SWI/SNF2 ATP-dependent chromatin-remodeling complex onto the 

RTA promoter (Figure 4). Ectopic expression of the CREB-binding HAT, CBP, resulted in 10-fold 

induction of the RTA promoter as determined by luciferase reporter assay, whereas expression of other 

HATs such as p300, PCAF, GCN5 and TIP60 had no such effect. The CBP-mediated promoter 

stimulation depends on the Sp1/3-binding site, suggesting that CBP can be recruited to the RTA 

promoter via interaction with Sp1/3 during reactivation, resulting in the acetylation of both H3 and  

H4 [12]. In agreement with this, others also showed that NaB treatment could induce an Sp1-binding 

site-dependent recruitment of CBP and p300 onto the RTA promoter. Moreover, the increased  

Sp1-binding on the viral promoter is transient during reactivation [94]. The role of CBP and SWI/SNF2 

in the regulation of the RTA promoter was further detailed by Gwack and his co-workers [24]. They 

showed that the C-terminal activation domain of RTA forms a complex with the Mediator, SWI/SNF2 

and CBP in cells. During reactivation RTA recruits these cellular factors onto the RTA promoter and 

other RTA-responsive lytic promoters resulting in their transcriptional activation [24]. These studies 

altogether show that reactivation of lytic genes requires the recruitment of HATs by cellular and viral 

transcription factors to the viral promoters, resulting in the remodeling of the chromatin structure of 

the virus (Figure 4).  

Histone acetylation and nucleosome positioning also play a critical role in the regulation of the 

chromatin structure of the origin of latent replication (Ori-P), which is embedded in the GC-rich TR 

region of the KSHV genome. Ori-P contains two LANA-binding sites, where LANA binds and recruits 

the cellular DNA replication proteins, ORC2 and MCM, to facilitate the replication of the viral 

genome concomitantly with the replication of the host genome during mitosis [38,40]. It was shown 

that Ori-P is enriched with hyperacetylated histones H3 and H4 and that this enrichment is due to the 

activity of LANA, which recruits HATs such as HBO1 or CBP, to the Ori-P (Figure 2B) [40]. In 

addition, the bromodomain-containing cellular protein, Brd2, which binds to acetylated histones and is 

a known LANA-binding protein, is also recruited to the Ori-P, and may also be involved in the 

maintenance of the hyperacetylation of histones in Ori-P. Nucleosome mapping assays revealed a highly 

ordered nucleosome array in Ori-P that becomes disorganized in a cell cycle-dependent manner [40]. 

The current model is that the maintenance of a hyperacetylated chromatin in Ori-P facilitates the 

assembly of the DNA replication complex. 
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Figure 4. Regulation of the RTA promoter during latency and reactivation. The 

H3K27me3 histone methyltransferase complex PRC2 as well as specific histone 

deacetylases (HDAC1, 5 and 7) are critical transcriptional repressors that are present on the 

RTA promoter during latency. The bivalent chromatin of the RTA promoter is indicated by 

the presence of both activating (H3K4me3 and acH3) and repressive (H3K27me3) histone 

marks. After reactivation RTA binds to its own promoter via CBF-1 (also called RBP-Jκ) 

and recruits several cellular transcription factors such as the Mediator, the ATP-dependent 

chromatin remodeling complex SWI/SNF2 and the histone acetyltransferase CBP. The 

induction of transcription is accompanied by the rapid recruitment of RNA polymerase II 

(RNAPII) and increased binding of Sp1 to the promoter. The KSHV non-coding PAN 

RNA can also interact with the RTA promoter and recruit the H3K4me3 histone 

methyltransferase MLL2 as well as the H3K27me3 histone demthylases UTX and JMJD3. 

The Sp1/3-binding sites play an important role in the HDAC inhibitor-mediated 

reactivation of the RTA promoter. While these sites contribute to the LANA-mediated 

repression of the RTA promoter during latency, they are also involved in recruitment of CBP, 

which can catalyze the hyperacetylation of histones on the viral promoter during reactivation. 

 

3.6. DNA Methylation of the KSHV Genome  

In mammalian cells, DNA methylation occurs mainly on cytidine residues in the context of CpG 

dinucleotides. Methylated CpGs are often found in clusters called CpG islands [95]. Hypermethylated 

CpG islands in the 5' regulatory regions of genes are associated with gene silencing. Methylation of 

DNA inhibits gene expression either by impeding the binding of transcription factors to the promoter 

or by the action of methyl-CpG-binding proteins (e.g., MeCP2), which bind to methylated CpG islands 

and recruit HDACs and other transcription repressors to the gene to turn off its expression [96]. The 

maintenance of DNA methylation during cell division is mediated by DNA methyltransferase 1 

(DNMT1), which copies the DNA methylation pattern to the daughter strands during DNA replication, 

while DNMT3a and DNMT3b are de novo DNA methyltransferases [97]. 

It has been shown that the treatment of PEL cells with the DNA methyltransferase inhibitor 5-AzaC 

can induce lytic reactivation of KSHV, suggesting that DNA methylation of lytic promoters is 

involved in the suppression of lytic genes during latency [11]. Recently, the global DNA methylation 
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pattern of KSHV was determined in different latently infected cell lines by using immunoprecipitation 

of methylated DNA (MeDIP) in conjunction with KSHV specific high-resolution tiling microarray [51]. 

These experiments showed that KSHV is subject to extensive DNA methylation during latency. Like 

the H3K27me3 pattern on the latent KSHV genome, DNA methylation was excluded from the 

transcriptionally active latency-associated locus, while most of the lytic genes were associated with 

DNA hypermethylation. Surprisingly, the RTA promoter was not methylated in most of the cell lines, 

suggesting that DNA methylation is unlikely to be involved in the inhibition of RTA expression during 

latency [51]. In addition, while the latency-specific histone modification patterns were rapidly 

deposited on the viral episome following de novo infection, DNA methylation patterns were 

established comparatively slower, indicating that DNA methylation does not play a role in 

establishment of latency. On the other hand, DNA methylation may reinforce the inhibition of lytic 

genes at late timepoints of infection [51].  

3.7. Nuclear Organization of the KSHV Genome 

It is known that the KSHV episome is tethered to the cellular chromosome by LANA, which 

interacts with histones and several components of the cellular chromatin. One question that remains is 

whether tethering of the KSHV genome is random or prone to localize on specific regions of the host 

chromosome. Infected cells harbor approximately 30–80 copies of the KSHV genome and ChIP-seq 

analysis has revealed at least 256 LANA-binding sites on the cellular genome, suggesting that not all 

LANA proteins may be involved in tethering the viral genome [26]. An interesting hypothesis is that 

the viral genome could be tethered to heterochromatin-enriched nuclear regions during latency and 

may relocate to a transcriptionally favorable nuclear compartment upon reactivation. Microscope 

analysis of the nuclear distribution of LANA in latently infected B cells showed that LANA 

preferentially associates with the border of heterochromatin, inviting speculation that close proximity 

to heterochromatin-rich regions of the host cell may be critical for the formation and maintenance of 

heterochromatin on the KSHV genome [98]. 

The structural organization of chromatin domains in the cellular genome plays an important role in 

the regulation cellular gene expression. Similarly, the chromatinized KSHV episome is also 

compartmentalized into different chromatin domains, which can interact with each other by a looping 

mechanism mediated by cellular factors that bind to the KSHV genome [99]. The maintenance of viral 

latency requires the separation of the latent genes from the lytic genes-encoding part of the KSHV 

genome so that the latent genes can be continuously expressed, while the lytic genes are repressed 

during latency. Lieberman’s group found that CTCF and the cohesion complex, which are known 

chromatin boundary factors separating active and inactive chromatin domains, bound to several sites of 

the KSHV genome and they are involved in the transcription regulation of both latent and IE genes 

during latency [100,101]. One of the CTCF-binding sites (CBS) can be found in the intron of the latent 

gene, LANA. Deletion of CBS disrupted cohesin binding to the KSHV genome and caused viral 

episome instability and increased expression of lytic genes [100]. In addition, chromatin conformation 

capture (3C) assays provided evidence for the first time that the latent LANA promoter physically 

interacts with the lytic RTA promoter during latency, which is mediated by the CTCF/cohesin complex 

in the intron of LANA [99]. In agreement with this, CBS mutation, siRNA depletion of CTCF or the 
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cohesin complex component RAD21 diminished the interaction between these latent and lytic 

promoters and deregulated the latent gene expression program. This viral chromosome looping was 

also disrupted during lytic reactivation suggesting that the CTCF/cohesin-mediated looping in the viral 

genome is dynamic and involved in the regulation of latent and lytic gene expression [99]. The 

CTCF/cohesin complex in the intron of LANA also plays a critical role in the regulation of 

transcription elongation and nucleosome organization in the latency locus [102,103]. 

Every KSHV infected cell carries multiple copies of KSHV genomes, which raises the question 

whether they all have the same nucleosome structure during latency, which change simultaneously 

during reactivation or they show diversity. To answer this question a recent study used single-molecule 

footprinting assays called MAPit (Methyltransferase Accessibility Protocol for individual templates), 

which allows the detection of multiple chromatin states at selected loci within a cell population [104]. 

The chromatin architecture of the promoter of the constitutively expressed latent gene, LANA, the 

promoter of the IE gene, RTA and the promoter of the early gene, K2 was investigated. Their analysis 

showed diverse chromatin at each of these promoters, which ranged from closed to open 

conformations. Interestingly, the induction of lytic gene expression program resulted in the remodeling 

of the viral chromatin only on a fraction of the viral episomes. These results indicate that KSHV 

genomes possess diverse chromatin conformations in infected cells during both latency and 

reactivation. Furthermore, local chromatin condensations caused by epigenetic drift can restrict the 

expression of any viral genes irrespectively of what gene expression classes (IE, E, L or latent) they 

belong to [104]. 

4. Reprogramming of the Host Transcriptome during KSHV Infection 

In vitro experiments have shown that KSHV infection of endothelial cells results in transcriptional 

reprogramming such that infected lymphatic endothelial cells are driven toward a blood vessel 

endothelial cell phenotype and vice versa [105,106]. In addition, KSHV infection can also induce the 

transcriptional reprogramming of lymphatic endothelial cells to mesenchymal cells [107]. These 

observations imply that viral factors may be involved by either deregulating the expression of cell 

type-specific transcription factors or modulating their functions, which results in altered cellular gene 

expression profile. Both LANA and viral miRNAs, for example, have been implicated to play a role in 

changing the expression of specific cellular genes encoding master transcription factors [106,108]. 

These viral factors can use different ways to regulate cellular genes. For example, LANA recruits 

DNA methyltransferases to specific cellular promoters such as that of H-cadherin and TGF-β type II 

receptor, resulting in hypermethylation and transcriptional repression of these promoters [32,109]. 

Because LANA has been shown to interact with a wide variety of chromatin-associated regulatory 

proteins, it can affect large number of cellular genes. Recent ChIP-seq analysis revealed 256 LANA-

binding sites on the cellular genome, several of which are linked to p53-, TNF- or IFN-γ regulated 

genes [26]. 

KSHV encodes 12 miRNA genes that produce 25 mature miRNAs. These are small non-coding 

gene regulatory RNAs that can bind to mRNAs resulting in translational block or their degradation to 

repress genes [110]. A recent study showed that the KSHV miRNA miR-K12-11 shares significant 

sequence homology with the cellular miRNA called miR-155, which is often overexpressed in human 



Viruses 2013, 5 1363 

 

 

tumors [111]. Strikingly, when miR-K12-11 was expressed in bone marrow cells, it caused the 

downregulation of Jarid2, a component of the PRC2 complex [111]. Thus, this viral miRNA can 

potentially deregulate the expression of PRC2 target genes such as that are involved in cell cycle 

control, for example, which can contribute to the development of KSHV-associated malignancies. 

Another KSHV miRNA, miR-K12-4-5p targets the retinoblastoma-like protein 2 (Rbl2), which is a 

repressor of the de novo DNA methyltransefarses DNMT3a and DNMT3b genes [112]. Expression of 

miR-K12-4-5p reduces Rbl2 expression resulting in the increased expression of DNMTs that can 

globally affect cellular gene expression in infected cells. PAN RNA of KSHV that is abundantly 

expressed in the nucleus during reactivation has been reported to downregulate the expression of many 

immunomodulatory genes [113]. PAN RNA can bind to gene promoters and recruit different histone 

modifying enzymes, which can be involved in the PAN RNA-mediated cellular gene regulation 

observed in infected cells [73,113].  

Viral proteins often targets cellular histone modifying enzymes to relocate them on the cellular 

genome, modulate their enzymatic activity or their expression, which can affect the expression of a 

large number of cellular genes, all of which serve the needs of the virus for efficient infection of the 

host. Several KSHV proteins such as LANA, K8 and vIRF1 can bind to the histone acetyltransferase 

CBP/p300 and inhibit CBP/p300-mediated cellular transcription [37,114,115]. In contrast, RTA can 

use CBP to robustly activate gene transcription but it is still unclear how widely RTA uses CBP in 

activation of cellular genes [24]. K8 also interacts with the H3K9me3 histone demethylase JMJD2A 

and blocks its activity, which could play a role in the observed K8-mediated global cellular gene 

repression [77]. LANA forms a complex with the H3K9me1/2 histone demethylase JMJD1A in 

infected cells, which raises the question whether LANA uses JMJD1A to activate any of its cellular 

target genes [80]. 

EZH2, the H3K27me3 histone methyltransferase of the PRC2 complex has been shown to be 

overexpressed in KSHV-infected cells in Kaposi’s sarcoma (KS), suggesting that KSHV could be 

involved in EZH2 upregulation [116]. Indeed, KSHV infection of endothelial cells in vitro can induce 

the expression of EZH2, and this is mainly mediated by the KSHV latent proteins LANA and vFLIP 

via the upregulation of the NF-κB pathway [116]. Importantly, the increased expression of EZH2 

turned out to be essential for KSHV-induced angiogenesis in KSHV-infected cells [116]. 

KSHV infection of B cells in human can lead to the development of the KSHV-associated primary 

effusion lymphoma (PEL), which is characterized by the disruption of the B-cell specific transcriptional 

program. Protein expression of several transcription factors that are essential for B-cell development is 

significantly altered in PEL cells compared to uninfected B-cells [117]. While PEL cells constitutively 

express IRF4, the protein level of other B-cell transcription factors such as Pax5, Oct-2, PU.1 and 

IRF-8 was completely abolished [117]. The viral factors involved in the reprogramming of the 

B-cell-specific transcription factor network have not yet been identified. 

5. Outlook 

ChIP-on-chip analysis of the KSHV episome revealed distinct chromatin domains on the viral 

genome, which are characterized by different histone modification and DNA methylation patterns 

indicative of targeted recruitment of specific cellular chromatin modifying enzyme complexes (Figure 3). 
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The benefit of such compartmentalization of the KSHV genome might be the use of common 

transcription regulatory mechanisms for expression of genes that have related functions during the 

lifecycle of the virus. Strikingly, the IE and most of E genes are marked by activating histone marks 

while the majority of late genes, which are transcribed only following viral DNA replication, are 

associated with heterochromatin that remains unaltered during the early phase of reactivation [50,51]. 

These observations suggest that the type of chromatin structure associated with each viral gene can 

play a role in the regulation of their expression. Two recent papers have reported that H2AX, an 

isoform of the canonical histone H2A and the phosphorylation of histone H3 at serine 10 residue are 

also components of the viral chromatin landscape and regulate the persistence of viral episome in 

infected cells as well as the reactivation of the lytic gene expression program, respectively [118,119]. 

These studies also demonstrate that we only see the tip of the iceberg regarding to the components and 

the organization of the KSHV chromatin in infected cells. 

Currently, at least 130 different posttranslational modification sites have been identified on histones 

and there are at least 150 histone-modifying enzymes known [120]. Because of the unique DNA 

sequence elements, the close proximity of genes and overlapping gene regulatory regions in the KSHV 

genome, KSHV may utilize unique mechanisms to regulate its genome. Also, the modulation of the 

function of cellular chromatin modifying enzymes by viral proteins allows the reprogramming of the 

cellular transcriptome in a way that becomes beneficial for persistent infection as well as the 

development of KSHV-associated malignancies. It has been demonstrated that drugs targeting of 

histone modifying enzymes is a viable strategy for controlling HSV-1 and Human cytomegalovirus 

(HCMV) infections [121–123]. Therefore, identifying the relevant cellular and viral factors involved in 

the chromatin control of KSHV infection may bring new opportunities for pharmacological control of 

KSHV infection and KSHV-associated diseases. 
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