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Abstract: The central nervous system (CNS) harbors highly differentiated cells, such as 

neurons that are essential to coordinate the functions of complex organisms. This organ is 

partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens 

carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing 

the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using 

axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to 

control early steps of viral infections. Deficiencies in the IFN pathway have been 

associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system 

provides an essential protection of the CNS against viral infections. Yet, basal activity of 

the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to 

this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to 

be relatively poor IFN producers and appear to keep some susceptibility to neurotropic 

viruses, even in the presence of IFN. This review addresses some trends and recent 

developments concerning the role of type I and type III IFNs in: i) preventing 

neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the 

CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic 

viruses that target the IFN pathway. 
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1. Antiviral IFN Responses 

Interferons (IFNs) were discovered about 50 years ago, as soluble factors produced by chicken cells 

of the chorio-allantoic membranes after contact with influenza virus, which interfered with subsequent 

viral infection. This review will focus on type I and type III IFNs, also known as IFNs- and IFN-, 

respectively and further referred to as IFNs in this review. These IFNs can be produced by many cell 

types and primarily act as antiviral cytokines, although they also exhibit cytostatic activities and help 

to activate and shape the adaptive immune response. In contrast, type II IFN (or IFN-is produced by 

cells of the immune system such as macrophages, T cells and natural killer cells. IFN- primarily acts 

as an immunomodulatory cytokine that notably contributes to T cell polarity and activates cellular 

immunity. It also displays direct antiviral activity and has been shown to be a critical mediator of 

neuron protection against Sindbis virus [1]. 

Cells can express two types of sensors, known as “pattern recognition receptors” (PRRs), that act to 

detect microbial or viral components present either in the cytoplasm or in the extracellular milieu, and 

activate a signal transduction pathway which culminates in the expression and the secretion of IFNs 

(Figure 1) (reviewed in [2]). Receptors of the RIG-I helicase family act to detect intracytoplasmic 

nucleic acids of viral origin and are thus expected to trigger IFN expression by infected cells. 

Receptors of the Toll-like receptor family (TLRs) are expressed at the cell surface or in the endosomal 

compartment and thus enable non-infected cells to sense viral components from the extracellular 

environment (Figure 1). TLRs can be expressed by many cell types but are usually more strongly 

expressed in antigen presenting cells such as dendritic cells or macrophages (See [3] for TLR 

expression in the CNS). 

After secretion, IFNs bind to their cognate receptor and induce the expression of hundreds of genes 

referred to as “interferon-stimulated genes” (ISGs). These genes encode proteins such as Mx, PKR, 

OAS, or IFIT1/2 that enhance the resistance of cells toward a potential viral infection. Importantly, 

some ISGs encode signaling molecules involved in the IFN production or response pathway. They thus 

create a positive feedback loop aimed to boost IFN responses as infection develops. 

2. Critical Importance of the IFN Response Against Neurotropic Virus Infection 

The critical importance of IFN to restrict viral infections became obvious after the generation of 

mice deficient for the IFNAR-I subunit of the type I IFN receptor [4]. These mice turned out to be 

remarkably susceptible to many viral infections, including viral infections of the CNS (Table 1).  

A noticeable case is that of Sindbis virus for which LD50 values were 10
6
-fold lower in IFNAR-I KO 

mice than in wild-type mice. This extreme susceptibility of KO mice correlated with increased viral 

load in the CNS [5]. Although IFN is mostly known to be protective against RNA virus infection, it  

was also shown to protect the CNS against DNA viruses. For instance, after ocular infection, growth of 

attenuated Herpes virus mutants in the eye and in trigeminal ganglia was increased by more than  
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1000-fold in IFNAR-KO mice [6]. More recently, the importance of the interferon response against 

neurotropic viral infection in humans was evidenced by the discovery that several cases of fatal herpes 

encephalitis in newborns were associated with genetic deficiencies in genes encoding signal 

transduction factors of the IFN pathway, such as TANK-binding kinase 1 (TBK-1), Toll-interleukin-1 

receptor domain-containing adaptor-inducing beta interferon (TRIF), TLR3, unc93b or tumor necrosis 

factor receptor-associated factor 3 (TRAF3) [7–11] (reviewed in [12]). 

Figure 1. Infected and non-infected cells can produce IFN, using distinct pattern 

recognition receptors. Most cells express RIG-like helicases (RIG-I or MDA-5) that sense 

nucleic acids of viral origin in the cytoplasm and thus trigger IFN production by infected 

cells. Some cells, and particularly phagocytic cells, express TLRs that sense extracellular 

danger and pathogen-associated molecular patterns from the extracellular milieu.  

TLRs thus enable non-infected cells to sense viral components released by  

neighboring cells. 
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Table 1. Infection of type I IFN receptor (IFNAR-I)-deficient mice. 

Virus Family Observation Ref 

Lassa fever virus Arenaviridae 
Increased viral load and morbidity,  

modified tropism 
 [13] 

Borna disease virus  Bornaviridae  Switch from transcription to replication  [14] 

Hantaan virus  Bunyaviridae  Increased neurovirulence  [15] 

Dugbe virus  Bunyaviridae  Increased neurovirulence  [16] 

Crimean–Congo 

hemorrhagic fever virus 
Bunyaviridae  

Increased viral load and neurovirulence, 

modified tropism 
 [17] 

La Crosse virus Bunyaviridae  Increased neurovirulence  [18] 

Schmallenberg virus Bunyaviridae  
Increased viral load and morbidity, modified 

tropism 
 [19] 

Mouse Hepatitis virus Coronaviridae 
Increased viral load and neurovirulence, 

modified tropism 
 [20] 

West Nile virus  Flaviviridae 
Increased viral load and neurovirulence, 

modified tropism 
 [21] 

Murray Valley 

encephalitis virus 
Flaviviridae Increased viral load and neurovirulence  [22] 

Dengue virus  Flaviviridae  No clear effect of type I IFN  [23] 

Herpes simplex virus 1  Herpesviridae  Increased viral load  [6] 

Influenza A virus  Orthomyxoviridae  Increased viral load in CNS  [24] 

Thogoto virus Orthomyxoviridae  Increased viral load in CNS, modified tropism  [25] 

Measles virus  Paramyxoviridae  Increased neurovirulence  [26] 

Hendra virus Paramyxoviridae  
Increased viral load and neurovirulence, 

modified tropism 
 [27] 

Nipah virus Paramyxoviridae  
Increased viral load and neurovirulence, 

modified tropism 
 [27] 

Poliomyelitis virus  Picornaviridae Increased neurovirulence, modified tropism  [28] 

Theiler’s virus  Picornaviridae Increased viral load and neurovirulence  [29,30] 

Reovirus Reoviridae 
Increased viral load and neurovirulence, 

modified tropism 
 [31] 

Vesicular stomatitis virus  Rhabdoviridae  Increased viral load and neurovirulence [4,32] 

Rabies virus Rhabdoviridae  Increased neurovirulence  [33] 

Sindbis virus  Togaviridae  
Increased viral load and neurovirulence, 

modified tropism 
 [5] 

Venezuelan equine 

encephalitis virus  
Togaviridae  Increased neurovirulence  [34] 

Chikungunya virus Togaviridae  
Increased viral load and neurovirulence, 

modified tropism 
 [35] 

Eastern equine 

encephalitis virus 
Togaviridae  Increased neurovirulence  [36] 

Semliki Forest virus Togaviridae  
Increased viral load and neurovirulence, 

modified tropism 
 [37,38]  
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3. Low Endogenous IFN Response in the CNS and IFN Neurotoxicity 

Early work showed that IFNs are constitutively expressed at low levels in mice and humans and 

may therefore exert homeostatic functions [39,40]. It was suggested that such constitutive IFNs 

maintain cells ready to switch on rapid and efficient IFN responses [41]. However, basal ISG mRNA 

levels detected in the CNS appear to be lower than those detected in peripheral tissues [28]. The low 

activation of ISGs in the CNS likely stems from the inability of IFNs produced in the periphery, 

notably in lymphoid or mucosal tissues, to cross the blood-brain barrier. The low basal IFN activity in 

the CNS has likely been evolutionary favored given the reported neurotoxicity of IFN.  

Indeed, neurological and neuropsychiatric adverse effects like depression, cognitive dysfunction and 

disorientation have been observed after high-dose IFN- treatment (reviewed in [42]). The particular 

sensitivity of the CNS to high IFN doses is particularly exemplified in the case of the  

Aicardi-Goutières syndrome, a progressive encephalopathy which develops in patients that 

overexpress endogenous IFN genes [43]. Mutations responsible for this disease have been found in 

genes coding for various enzymes such as exo- and endonucleases that are believed to control the 

intracellular pool of aberrant nucleic acid species (single-stranded DNA, dsRNA,  

triphosphorylated RNA...) known to activate RIG-like helicases and/or TLRs [44–46].  

High levels of IFN- can be measured in both the serum and the cerebro-spinal fluid of these patients, 

but the most dramatic manifestations of the disease appear in the CNS, underlining the particular 

sensitivity of this organ to IFN. 

4. Antiviral Activity of IFN- in the CNS 

Type III IFNs were discovered about 10 years ago by two independent groups [47,48]. The type III 

IFN family comprises three subtypes, IFN-1, IFN-2 and IFN-3, also named IL29, IL28A and 

IL28B respectively. In the mouse, IFN-1 is a pseudogene, whereas all 3 genes are expressed in 

humans [47–49]. Type III IFNs signal through a receptor distinct from that of type I IFNs [47,48,50] 

but trigger the same signal transduction pathway downstream of the receptor and upregulate the same 

group of ISGs [49,51–53]. Nevertheless, the range of cells that respond to type I and type III IFNs 

differs. While the type I IFN receptor can be expressed by most cell types, the type III IFN receptor 

appears to be preferentially expressed by epithelial cells [54]. 

In the CNS, type III IFNs seem to be less expressed than type I IFNs in response to viral infect ion. 

Upon infection with Mouse hepatitis virus (MHV) or Lactate dehydrogenase-elevating virus (LDV), 

both IFN-α and IFN-β mRNA were easily detected in the brain and liver of infected mice. In contrast, 

low levels of IFN-λ mRNA were detected in the brain of these mice, while expression of this IFN was 

readily detected in the liver [54]. Some IFN- expression was detected in primary neurons and in 

primary astrocytes after poly I:C stimulation [55]. These data suggest that neurons and astrocytes 

might express some levels of IFN-. However, more studies are required to confirm the relevance of 

this observation in vivo. 

Various cell types of the CNS, including oligodendrocytes, astrocytes and neurons, were reported to 

respond to IFN produced upon viral infection. However, very little is known about the specific 

responsiveness of CNS cells to IFN-. Quantitative RT-PCR data show an overall weak expression of 

the IL28R- subunit of the IFN- receptor in the CNS as compared to other tissues [54]. Sommereyns 
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et al. used in vivo expression of IFN-λ3 to identify the cells that can respond to circulating IFN 

produced by muscle cells in the periphery. In this experiment, the Mx1 protein, used as a marker of the 

IFN response, was detected only in the epithelial cells of choroid plexus and in few meningeal cells. 

These data are consistent with the epithelial specificity of the IFN- response. It is noteworthy that in 

this experiment, the access of IFN to the brain parenchyma was restricted by the BBB and only 

endothelial and choroid plexus cells were expected to be reached by circulating IFN. 

It was recently observed that IFN-λ can inhibit HSV-1 infection in primary human astrocytes [53]. 

Further experiments are thus required to address the identity of cells that respond to IFN- in vivo, 

after CNS infection and to get more insights about the relative contributions of IFN- and IFN- in 

the resistance against neurotropic viruses. Mx1-positive congenic mice that lack either the type I or the 

type III IFN receptor might provide adequate tools to tackle these questions [56]. However, given the 

high susceptibility of type I IFN receptor KO mice (which still have a type III IFN response) toward 

many neurotropic viruses (see Table 1) and the relatively low expression of the IFN- receptor in the 

CNS, we anticipate that the contribution of IFN- in the protection of the CNS against viral infection 

will be modest. 

5. IFN Producing Cells in the CNS 

In peripheral tissues, plasmacytoid dendritic cells (pDCs) are recognized as major IFN-producing 

cells in the context of a viral infection [57]. For instance, pDC-produced IFN was found to be 

instrumental in resistance against coronavirus infection [58]. However, other immune cells as well as 

resident cells may substantially contribute to IFN production as well. Under physiological conditions, 

the CNS fails to contain pDCs but microglial cells and perivascular dendritic cells are expected to 

serve as phagocytic cells that initiate immune responses. In vitro, the various CNS cell types can 

produce IFN, including neurons. The latter cells were reported to produce IFN in a TLR-3-dependent 

manner, after rabies or West-Nile virus infection [59,60]. 

Delhaye et al. used in situ hybridization and immunohistochemistry to characterize in vivo  

IFN-producing cells, after infection with two neurotropic viruses that infect mostly neurons: La Crosse 

virus (bunyaviridae) and the GDVII neurovirulent strain of Theiler's virus (picornaviridae) [61].  

These authors showed that: i) resident CNS cells rather than infiltrating inflammatory cells were 

mostly responsible for IFN production; ii) about 16% of IFN-producing cells corresponded to neurons. 

However, only 3% of infected neurons appeared to produce IFN which suggests that neurons produce 

IFN in a highly controlled fashion. 

A recent study by Kallfass et al. elegantly readdressed the question using reporter mice that allow 

both immunostaining and quantitative luciferase assays [62]. In these reporter mice, the luciferase ORF 

was substituted for the IFN- ORF and is thus transcriptionally dependent on the genuine IFN- 

promoter. Interestingly, a floxed "stop cassette" is inserted between the IFN- promoter and the 

luciferase gene so that IFN--dependent luciferase expression only occurs in specific cell types after 

crossing the reporter mice with mice expressing the CRE recombinase in the cells of interest  

(Figure 2) [63]. Using these mice and La Crosse virus infection, Kallfass et al. showed that astrocytes 

and microglial cells/macrophages accounted for 43% and 41% of luciferase (IFN-) expression 

respectively, although viral antigen-positive cells were mostly neurons. Viral antigen was present in 

few astrocytes but not in microglial cells. Interestingly, in mice infected with a mutant virus which 
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does not express the IFN-antagonist NSs protein [18], astrocytes accounted for more than 70% of 

luciferase activity and the contribution of macrophages became marginal (1.7%) [62]. Taken together, 

these experiments suggest that (Figure 2): i) resident cells and not specialized immune cells are indeed 

the main IFN producers in the CNS; ii) only few infected neurons do produce IFN; iii) infected 

astrocytes produce IFN but this IFN production can be antagonized by the NSs protein;  

iv) non-infected microglial cells produce IFN, likely by a TLR-dependent pathway. The contribution 

of microglial cells becomes much more important when IFN production is inhibited in infected cells by 

the non-structural protein NSs. 

Interferon-producing cells were also studied after infection of the CNS by the neurotropic Mouse 

hepatitis virus (MHV). IFN was mostly produced by macrophages and/or microglial cells. In this case 

however, IFN production was dependent on the cytoplasmic helicase MDA-5, suggesting that IFN was 

produced by infected cells [64]. 

As is the case in neurons, IFN production may be restricted in oligodendrocytes. A recent study 

showed that microglial but not oligodendroglial cells isolated from mice infected with MHV expressed 

detectable IFN- levels although both cell types were infected by the virus. Low basal expression of 

sensors and of signaling molecules in oligodendrocytes was proposed to limit the rapid responsiveness 

of these cells [65]. 

6. Control of Neuroinvasion by IFN 

Some neurotropic viruses access the central nervous system (CNS) via the olfactory pathway.  

They infect the olfactory sensory neurons present in the nasal mucosa and then reach the olfactory 

bulb. Using conditional knock-out mice deficient for IFNAR-I expression in neural tissues, Detje et al. 

showed that vesicular stomatitis virus (VSV) spread from the olfactory bulb to the entire CNS was 

efficiently controlled by a local IFN response occurring at the level of the glomerular layer of the 

olfactory bulb [32,66].  

Most neurotropic viruses, however, infect a peripheral site before they access the central nervous 

system. To cross the blood-brain barrier, viruses might either take advantage of local damages in this 

barrier or infect cells that form the barrier, i.e. endothelial cells or epithelial cells of the choroid plexus. 

Alternative options are to infect immune cells that infiltrate the CNS (“Trojan horse” strategy) or to 

circumvent the BBB by using axonal transport (Figure 3). 

Peripheral infection is expected to induce the secretion of IFN that may act in a systemic fashion to 

limit neuroinvasion. For example, poliovirus first infects the digestive tract before accessing the CNS. 

It has been shown that transgenic mice expressing the human poliovirus receptor but lacking the type I 

IFN receptor are much more susceptible to fatal CNS infection with poliovirus than IFN-competent 

mice [67]. Although poliovirus can use axonal transport, it is not known in this model, which pathway 

was followed by poliovirus to infect the CNS in the IFN receptor-deficient mice. IFN produced after 

intramuscular inoculation of mice with rabies virus was also shown to slow down CNS invasion and to 

delay mortality, even in conditional KO mice that were deficient for IFNAR-I only in cells of 

neuroepithelial origin [68]. 

IFN produced in the periphery does not cross the BBB efficiently [32]. However, cells that form the 

BBB do respond to circulating IFN: endothelial cells readily respond to circulating IFN- and 

epithelial cells of the choroid plexus respond more strongly to IFN-[54] (and unpublished 
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observations). This suggests that type I and type III IFNs concur to limit neuroinvasion via infection of 

cells that form the BBB. However, data are still lacking to circumstantiate this view. 

 

Figure 2. IFN- reporter mice and IFN- producing cells after LaCrosse virus infection. 

(A) Knock-in reporter mice. The IFN- ORF, followed by a polyadenylation signal is 

floxed (Lox sites are represented by red arrowheads). A firefly luciferase ORF present 

downstream of the floxed region can be transcribed by the IFN- promoter after  

CRE-mediated recombination. When these mice are crossed with mice that express CRE in 

a cell-specific fashion, luciferase expression, driven by the IFN- promoter, will be 

restricted to that specific cell type. The example of the neuron-specific synapsin promoter 

is shown (adapted from Lienenklaus et al., [63]). (B) IFN- expressing cells in La Crosse 

virus infected brains (adapted from Kallfass et al., [62]). A wild-type (WT) strain of La 

Crosse virus was used as well as the delNSs mutant, lacking the IFN antagonist non-

structural protein NSs. Although neurons were heavily infected, very few produced IFN- 

(luciferase), suggesting that IFN production by neurons is strictly regulated. In astrocytes, 

NSs expression appears to block IFN expression efficiently. Microglial cells are not 

infected but produce IFN, likely in a TLR-dependent way. 
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Figure 3. Expected effects of IFN on neuroinvasion pathways. Viruses can reach the 

CNS by the olfactory route (I), via the blood-brain barrier (II), by infecting infiltrating 

cells (Trojan horse strategy) (III), or by using axonal transport (IV). (I) In the olfactory 

pathway, IFN was found to limit viral spread of VSV from the glomerulae that connect 

olfactory neurons, mitral cells and some periglomerular cells [66]. (II) The blood-brain 

barrier is tightened by tight junctions formed by capillary endothelial cells and between 

adjacent epithelial cells of the choroid plexus. Epithelial cells of the choroid plexus 

strongly respond to circulating IFN- and endothelial cells respond to circulating IFN-. 

Type I and type III IFNs are thus believed to concur to protect BBB-forming cells [54].  

(III) Type I IFN produced in the periphery is expected to limit neuroinvasion via Trojan 

horses by controlling viral replication in the cells that might infiltrate the CNS. (IV) It is 

still unclear to what extent IFN can control axonal transport. It was reported that IFN acts 

to restrict the diversity of quasispecies during progression in the sciatic nerve [70]. 

 

IFN expressed in the periphery might also affect axonal transport. It was found that the 

neuroinvasion step represents a major bottleneck in the spread of the viral quasispecies formed by 

poliovirus. Vignuzzi et al. showed that heterogeneity of the viral population in the periphery was a 

prerequisite for neuroinvasion by poliovirus unless type I IFN response was compromised [69]. 

Lancaster et al. showed that more viral pools progressed from the lower to the upper segment of the 

sciatic nerve of poliovirus when the type I IFN receptor was lacking, suggesting that the interferon 
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response could modulate the efficiency of the axonal transport of viruses [70]. How IFN limits 

transport and/or quasispecies diversity is another open question that warrants future work. 

7. IFN Responding Cells 

In vivo, the various CNS cell types were reported to have the capacity to respond to IFN-I and 

therefore to express ISGs [61,71,72]. Neurons are again a particular case. For instance, their capacity 

to express MHC class-I molecules (inducible by both type I and type II IFNs) has been debated. It has 

been shown that class-I MHC molecules were expressed on neurons in a type I IFN-dependent fashion, 

after TMEV infection [71]. Moreover, neurons infected with borna disease virus were shown to be 

targeted efficiently by cytolytic T cells, suggesting that MHC class-I molecules can be functional on 

neurons [73]. However, Neumann et al. previously suggested that MHC class-I molecules expression 

of neurons, allowing killing of the cells, was restricted and only occurred after irreversible damage of 

the neurons [74], which fits with the view that non-cytolytic responses may be favored in  

neurons [75]. 

A possible explanation for the conflicting results obtained with neurons is that different neuronal 

populations might strongly differ in their responsiveness to IFN. Such a striking difference in 

responsiveness was observed in transgenic mice constitutively expressing IFN- in the CNS. 

Interestingly, these mice exhibited a strong Mx expression in CA1 and CA2, but not in CA3 neurons 

of the hippocampus [14]. Recently, it was also observed that dorsal root ganglionic neurons  

(although not from the CNS) poorly responded to type I IFN treatment and favored autophagy as a 

mechanism for clearance of herpes virus infection [76]. 

It can also be speculated that, in view of the low basal expression of IFN and ISGs in the CNS, 

some neuron populations express too low STAT-1 levels to mount an efficient antiviral response. 

As neurons, oligodendroglial cells were recently reported to be poorly reactive to interferon as 

compared to microglial cells. Oligodendrocytes isolated from mice were more susceptible than 

microglial cells and showed delayed ISG expression. Again, it is anticipated that the low levels of 

signal transduction molecules present in these cells in non-inflammatory conditions might hamper a 

prompt IFN response in these cells [65]. 

8. Interferon-Stimulated Genes 

Hundreds of ISGs have been identified in cells treated with type I or type III IFN or after viral 

infection of the CNS [77–80]. Until recently, the mode of action of a relatively limited set of ISGs 

displaying antiviral activity has been characterized (for review see [81,82]). Some of these ISGs 

exhibit specificity for their target virus. An example of such ISGs is the Mx family of proteins that 

mostly target RNA viruses and were named after they were discovered to confer resistance to 

myxoviruses “Mx” [83]. Other examples of ISGs that exhibit specificity for their target viruses include 

the APOBEC3G editing enzyme that was discovered as a restriction factor of human 

immunodeficiency virus [84] or the promyelocytic leukemia proteins (PML) which can target DNA 

and RNA viruses but display specificity according to the isoform that is expressed [85]. Other ISGs act 

against a broader range of viruses. These includes ISGs coding for RIG-like helicases which are 

involved in a positive feedback loop of IFN production and therefore enhance the expression of many 
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other ISGs. PKR also acts on a broad range of viruses as it is both an inducer and an effector of the 

IFN response [81]. Interestingly, two recent broad screens allowed the identification of a series of 

additional ISGs that interfere with viral replication when expressed ectopically [86,87].  

Together, these studies have underscored the specificity and the cumulative activity of ISGs. On one 

hand, the expression of a single ISG can impact the replication of a given range of viruses. On the 

other hand, multiple ISGs can impact the replication of a single virus. Therefore, it is expected that 

distinct ISG combinations are instrumental in the control of distinct viruses (Figure 4). 

Until now, little has been described about the potential histospecific activity of some ISGs. In that 

respect, Fensterl et al. recently demonstrated the importance of ifit2, but not of the related ifit1, against 

VSV infection of the CNS. Ifit-2 KO mice showed a dramatically increase in the viral load in the brain 

but not in other organs [88], suggesting that this ISG might specifically act in the context of the CNS. 

Additional CNS-specific ISGs might be discovered in the future, as targets of antagonist proteins 

produced by highly neurotropic viruses. 

Figure 4. ISGs act in combination. i) The antiviral activity of ISGs appears to be the 

combination of many individual contributions. ii) As many ISGs display some specificity 

in their antiviral action, each virus species is likely controlled by a unique combination of 

many ISGs. 

 

9. Antagonism of the IFN Response by Neurotropic Viruses 

Most neurotropic viruses encode one or more proteins aimed at interfering with the IFN pathway. 

These proteins are often multifunctional and sometimes interfere with different targets of the  

same pathway.  

As an example, rabies virus is a highly neurotropic virus responsible for a fatal disease in a wide 

range of animals and in humans. The P phosphoprotein is one of the five proteins encoded by the virus. 

Besides its involvement in viral RNA synthesis as a cofactor of the polymerase, the P protein of rabies 

virus is a paradigm of non-structural protein interfering with IFN induction, IFN signaling as well as 

IFN-induced antiviral effectors. 

The P phosphoprotein was shown to prevent the phosphorylation of IRF3 by TBK1 so that IRF3 

dimerization and transcriptional activation of IFN genes is inhibited in infected cells [89]. P was also 

shown to interfere with IFN signaling. It specifically interacts with tyrosine-phosphorylated STAT1 

and STAT2 and sequesters these proteins in the cytoplasm, thus preventing JAK-STAT signaling and 
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transcription of ISGs. Moreover, interaction of P with STATs also blocked STAT1 and ISGF3 binding 

to the promoter of IFN responsive genes [90–92]. Interestingly, mutant P proteins that lost either 

activity (IRF-3 activation or STAT1 inhibition) impaired rabies virus neurovirulence, suggesting 

additive activities of the various functions [93,94]. Finally, P protein physically interacts with 

promyelocytic leukemia proteins (PML) to counteract the activity of this family of IFN-inducible 

proteins [95–97] (Table 2).  

The phosphoprotein of rabies virus thus offers a typical example of multifunctional protein that 

evolved to interfere with the various steps of the IFN pathway: IFN production, IFN response, and 

effectors activity. It is noteworthy that the phosphoproteins of the distantly related neurotropic Nipah 

and Hendravirus (or the V and W proteins derived from the same gene by editing) also interfere with 

various steps of the IFN pathway, yet using additional mechanisms (Table 2). 

Table 2. Inhibition of the IFN pathway by rabies, Hendra and Nipah virus  

phosphoproteins products. 

Virus  Family Protein Mechanism References 

Rabies virus Rhabdoviridae P 
Inhibition of IRF3 phosphorylation 

by TBK1 
[89] 

   
Sequestration of STAT1/2 in the 

cytoplasm 
 [90,91] 

   
Inhibition of ISGF3 binding to 

promoter 
[92] 

   Interaction with PML  [95,96] 

     

Hendra and Nipah 

viruses 
Paramyxoviridae V Inhibition of MDA-5 

 [98] 

 [99] 

  V Lgp2 + RIG-I 
 

 [100] 

  W Inhibition of TLR3 signaling via TRIF 
 

 [101] 

  P, V, W Inhibition of STAT-1 phosphorylation  [102-105] 

Another striking example of multifunctional proteins that evolved to inhibit the IFN pathway is 

given by positive-stranded RNA virus- (and retrovirus-) encoded proteases. These enzymes primarily 

act to process polyproteins encoded by the virus. Yet, they evolved to cleave several host proteins 

involved in cell defences. For example, 2A and 3C proteases of poliovirus not only induce a shut-off of 

host protein synthesis by cleaving the eIF4G eukaryotic translation initiation factor but also cleave 

TRIF, RIG-I, and the p65 subunit of NF-B which participates to activate IFN gene transcription 

(Table 3). In evolutionary terms, it is interesting to note that other neurotropic picornaviruses like 

Theiler's murine encephalomyelitis virus (TMEV) or encephalomyocarditis virus (EMCV) evolved to 

encode a non-structural protein, L, that lacks protease activity but targets very similar functions as 

those targeted by polio or rhinovirus proteases [30,106–108]. 

In conclusion, neurotropic viruses acquired multiple mechanisms devoted to evade the IFN 

pathway, which confirms the critical importance of this pathway in the infection of the CNS. On the 

one hand, many viral proteins display multifunctionality and target several host defence pathways.  
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On the other hand, viruses often develop more than one antagonist to target a single pathway. This 

strategy likely limits the possibility of the host cell to control viral infection by developing new 

weapons in a war escalation attempt. Yet, viruses seldom provoke complete inhibition of the IFN 

pathway in vivo. By doing so, they limit the risk of becoming too virulent and thus to prevent virus 

transmission due to premature death of the host. 

It is worth noting that most activities that were uncovered in the case of neurotropic viruses do not 

point to pathways that would be specific for the CNS environment. It is unclear whether IFN 

antagonist proteins produced by neurotropic viruses are more important during the initial phase of the 

infection which often happens in the periphery or during the neuroinvasion phase. 

Table 3. Examples of proteases from neurotropic positive-stranded RNA viruses and from 

retroviruses that interfere with the IFN pathway. 

Virus  Family Protease Mechanism References 

Encephalo-

myocarditis virus  
Picornaviridae 3C Cleavage of RIG-I  [109] 

Coxsackievirus  Picornaviridae 3C Cleavage of MAVS and TRIF  [110] 

Poliovirus Picornaviridae 2A Cleavage of ISGs  [111] 

Poliovirus Picornaviridae 2A Cleavage of eIF4G  [112] 

Poliovirus Picornaviridae 3C Cleavage of RIG-I  [113] 

Poliovirus Picornaviridae 3C Cleavage of eIF5B  [114] 

Poliovirus Picornaviridae 3C 
Cleavage of p65-RelA subunit of 

NF-kB 
 [115] 

Enterovirus 71 Picornaviridae 2A Cleavage of IFNAR1  [116] 

Enterovirus 71 Picornaviridae 3C Sequestration of RIG-I  [117] 

Enterovirus 71 Picornaviridae 3C Cleavage of TRIF  [118] 

Dengue virus Flavivirus NS2B3 Cleavage of STING  [119,120] 

HIV Retroviridae Pro Cleavage of eIF4G  [121] 

HIV Retroviridae Pro Sequestration of RIG-I  [122] 

Mouse hepatitis virus  Coronaviridae nsp3 Deubiquitination of TBK1  [123] 

Human coronavirus 

(HCoV) 
Coronaviridae 

papain-like 

protease (PLP) 

Non-proteolytic disruption of 

STING-MAVS-TBK1/IKKε 

complexes 

 [124] 

10. Concluding Remarks 

There can be no doubt that IFN plays a critical role in the control of viral infections of the CNS, 

both in mice and humans. To this end, IFN can act at three levels: i) it can limit viral replication in the 

periphery, before neuroinvasion; ii) it can act at the neuroinvasion step, by protecting the blood-brain 

barrier or by delaying axonal transport of the virus; and iii) it can act to limit viral spread within the 

CNS. The involvement of IFN in the periphery has been well documented. In contrast, the role of IFN 

in axonal transport or in the protection of the BBB requires further studies and it is expected that tools 

like conditional KO mice lacking an IFN receptor chain in specific cells would be instrumental in such 

studies. The last step, viral spread within the CNS, has been the focus of some recent studies.  

The picture that emerges suggests that specific cells of the CNS, namely neurons and 

oligodendrocytes, have a restricted capacity to produce IFN and to respond to IFN [62,65].  
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An explanation could be a low basal expression of ISGs in these cells, likely owing to the reported 

neurotoxicity of IFN. Some ISGs, like RIG-like helicases or STAT-1, participate in a positive feedback 

loop linking IFN response and IFN production. Cells with low endogenous ISG levels, such as neurons 

or oligodendrocytes, would thus require a longer exposure to IFN to become IFN producers or to 

mount an efficient antiviral response.  

IFN- has been another focus of many recent studies. However, until now, available data do not 

suggest a major influence of this IFN type against viral spread within the CNS. IFN- was shown to 

trigger a strong response in epithelial cells of the choroid plexus and might therefore participate in the 

protection against viruses that would cross the BBB by infecting these cells [54]. 

Clearly, more studies are needed to answer the many questions that remain concerning the 

specificity of the IFN response in the CNS. Such studies are however hampered by the need for in vivo 

experiments since the complex relationship between the immune system and the nervous system 

cannot be assessed with available tools in vitro. 

Another topic that has much progressed recently is that of ISGs. Large-scale studies have identified 

a number of ISGs that contribute to the resistance against viruses [86,87]. It is becoming clear that 

resistance to a specific virus is provided by the combined action of many ISGs that each act on a given 

virus range.  A challenge for the future will be to unravel the mode of action of those ISGs and to 

understand the basis of their specificity. An open question remains as to whether some ISGs 

specifically act in CNS cells. 

Finally, a major recent progress has been the observation that various factors of the IFN pathway 

are critically important in humans, against herpes virus encephalitis. The rapid progress of human 

genetics is expected to fill the gap between the understanding of the IFN response in animal models 

and in humans. 
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