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Abstract: Viral hemorrhagic fevers (VHFs) caused by arenaviruses are acute diseases 

characterized by fever, headache, general malaise, impaired cellular immunity, eventual 

neurologic involvement, and hemostatic alterations that may ultimately lead to shock and 

death. The causes of the bleeding are still poorly understood. However, it is generally 

accepted that these causes are associated to some degree with impaired hemostasis, 

endothelial cell dysfunction and low platelet counts or function. In this article, we present 

the current knowledge about the hematological alterations present in VHF induced by 

arenaviruses, including new aspects on the underlying pathogenic mechanisms.  
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1. Introduction 

 

The Arenaviridae family, whose prototype is lymphocytic choriomeningitis virus (LCMV), contains 

more than 20 members with diverse geographical distributions [1]. The arenaviruses are essentially 

rodent-borne viruses. LCMV infects Mus musculus, the common mouse, which explains why this virus 

is the only arenavirus with a worldwide distribution. In contrast, the other arenaviruses infect different 

types of rodents with circumscribed geographical distribution patterns that relate to the distribution of 

the associated viruses. In the rodent, arenaviruses usually establish a persistent chronic infection with 

few symptoms [1]. However, arenaviruses may occasionally be transmitted to humans through 

material contaminated with an infected rodent’s excreta. Historically, five types of arenavirus have 

been associated with hemorrhagic fever (HF): Junin virus (JUNV), the etiologic agent of HF in 

Argentina (AHF); Machupo virus (MACV), the etiologic agent of HF in Bolivia, Guanarito virus 

(GTOV), the etiologic agent of HF in Venezuela; Sabia virus (SABV), the etiologic agent of HF in 

Brazil (HFB); and Lassa virus (LASV), the etiologic agent of HF in west Africa (Lassa fever) [1]. 

More recently, new arenaviruses have been associated with HF, such as Chapare virus in Bolivia [2] or 

Lujo virus (LUJV) in Southern Africa [3]. In this regard, arenaviruses are etiologic agents of emerging 

diseases as a result of environmental modifications by humans, through the creation of new ecological 

environments either for agricultural production or for places to live that favor contact with wild rodents 

[4]. 

In addition to other chapters in this volume, many reviews have been published in recent years 

about arenaviruses and their pathogenesis [1,5-9]. In this chapter, we will review the data regarding the 

pathogenesis of arenaviral hemorrhagic fevers (AVHF), with a particular emphasis on the very recent 

data involving new mechanisms involved in hematological alterations.  

 

2. Hemostasis 

 

The hemorrhagic complications of the South American HF are almost identical regardless of the 

virus responsible for the disease and consist mainly of petechiae, conjunctival hemorrhages, and 

mucosal and gastrointestinal bleeding with melena that usually start after 5 days of illness [10]. 

Although the number of reported cases of AHF has dramatically declined after the introduction of the 

attenuated vaccine Candid #1 [11], still remains as the best HF characterized of the South American 

cases. Therefore, most of the available data presented here are related to this disease.  

Different studies in patients with AHF have shown that regardless of the severity of the clinical 

form of the disease (mild, moderate or severe), the profiles of the coagulation factors during the course 

of the disease are similar in all patients, indicating that there is no correlation between the severity of 

the disease and an impairment of coagulation. In addition to thrombocytopenia, the patients present 

with several alterations in both the blood coagulation and the fibrinolytic systems, but disseminated 

intravascular coagulation (DIC) has not been demonstrated. The most consistent alterations of the 

hemostatic system observed in AHF patients during the early stages include a prolongation of partial 

thromboplastin with low levels of factors VIII, IX and XI but enhanced activity of factor V. The factor 

VIII procoagulant activity (F VIII:C) and the F VIII:C antigen are low in the early stages of the disease 
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but increase progressively in the later days. In contrast, the levels of von Willebrand factor (vWF) 

(VIII related antigen) remain high throughout disease progression and return to normal values during 

the convalescence period. Thrombin/antithrombin complexes (AT) and prothrombin fragment F1 + 2 

levels were also increased in patients at admission, indicating the generation of FXa and thrombin. 

Neither fibrin monomers nor fibrinogen degradation products were detected, indicating that the 

hemostatic abnormalities in AHF are not associated with DIC. Moreover, the activation of coagulation 

in AHF appears to be a limited phenomenon because natural inhibitors, such as antithrombin III, 

protein C and total and free protein S, have been shown to be normal or slightly decreased in these 

patients [12-14] (Table 1 and Figure 1). 

 
Table 1.  Hemostatic and vascular alterations in Argentine hemorrhagic fever (AHF). 

 
       

Coagulation/Fibrinolysis           Platelets  

Factor VIII ⇩   
Factor IX ⇩ Count (in vivo and in 

vitro) 
⇩ 

Factor XI ⇩    Function  (in vivo)       Not determined
Factor V ⇧   

vWF ⇧   
Thr/AT complexes ⇧ Endothelium  

Prothrombin fragment 1+2 ⇧ Viral replication Yes 
FDPs Not detected Vascular lesions No 
AT III = or slightly ⇩ Cell adhesión molecules ⇧ 

Protein C = or slightly ⇩ NO ⇧ 
Free protein S = or slightly ⇩ PGI2 ⇧ 

t-PA ⇧ vWF ⇩ 
PAI-1 ⇧   

D-dimer ⇧   

 

The fibrinolytic system is also altered in AHF as the tissue plasminogen activator (t-PA) and D-

dimer levels are reported to be high, while PAI-1 has been shown to be considerably increased in 

severe cases. The plasminogen antigen level and functional activity were found to be reduced in the 

moderate and severe groups. Functional and antigen 2-antiplasmin, 2-macroglobulin and 1-

antitrypsin have been shown to be normal or slightly above the normal range [15]. Overall, these data 

indicate that a low-level but persistent process of blood coagulation and fibrinolysis activation occurs 

in this viral hemorrhagic disease (Table 1 and Figure 1).  

Lassa fever is classified as a HF, but clinical diagnosis is difficult because obvious bleeding is often 

absent, even late in the course of the illness. Hemorrhagic manifestations, largely limited to the 

mucosal surfaces, only occur in 1/3 of the patients and are associated with death [16,17]. There is no 

data showing evidence of DIC in severe Lassa, as coagulation markers are almost always within the 

normal range.  
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Figure 1.   Hemostasis in AHF. The picture represents the in vivo and in vitro cellular and 

plasmatic alterations described in the AHF. Endothelial cells are susceptible to Junin virus 

(JUNV) infection and become activated after virus replication. Cell adhesion molecules 

(ICAM-1 and VCAM-1) NO, PGI2, t-PA  and PAI-1 production are enhanced. The level of 

most of the coagulation factors is decreased, with the exception of Factor V and vWF. 

However, the Thr/AT complexes and prothrombin fragment 1+2 are augmented, together 

with high levels of relevant components of the fibrinolytic cascade. Natural inhibitors, such 

as antithrombin III, protein C and total and free protein S, have been shown to be normal 

or slightly decreased in AHF patients. Thrombocytopenia is one of the most relevant 

clinical features in AHF patients and platelet function may probably be inhibited by a 

plasmatic inhibitor not yet characterized and/or NO and PGI2. 

 

LUJV was identified in 2008 after an outbreak of severe HF in Southern Africa. Although limited 

data available, it was reported that LUJV-infected patients presented thrombocytopenia and 

coagulopathy [3]. Interestingly, it was recently demonstrated that after the infection with LUJV, Strain 

13/N guinea pigs develop a HF syndrome similar to the disease observed in human patients including 
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pan-leukopenia, thrombocytopenia and profound anemia. Although coagulation studies were not 

performed, observation of fibrin deposition and hemorrhages in multiple organs together with a 

marked reduction in platelet counts and tissue damage suggested that DIC was present in LUJV-

infected guinea pigs. Moreover, it was suggested that LUJV infection in guinea pigs appears to cause a 

more severe disease than JUNV or Lassa infection; however, direct comparison studies are required to 

confirm this hypothesis [18]. 

 

3. Endothelium  

 

Clinical and experimental data indicate that the vascular endothelium is directly or indirectly 

involved in the pathogenesis of AVHF (reviewed in [9,19]). Although hemorrhages are not a salient 

feature of Lassa fever, perturbation of vascular function is likely central to Lassa fever pathology; 

studies in human patients and non-human primates revealed endothelial cell function failure with an 

impairment of the regulation of vascular permeability preceding the onset of shock and death [20]. 

Similar findings were shown in a experimental hamster model infected with the new world arenavirus 

Pichinde (PICV) [21]. However, no specific vascular lesions were observed in a post-mortem 

examination of fatal human cases of Lassa fever or in non-human primates experimentally infected 

with LASV [22,23] or in AHF or experimentally JUNV-infected animals (reviewed in [7]). These 

discrepancies could be related to the fact that despite an estimated 3,000 fatal cases of LF per year in 

West Africa, there have been relatively few postmortem histologic or immunohistochemical studies. 

The receptors for arenaviruses α-dystroglycan and transferrin receptor 1, and the recently described 

endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family are highly expressed on 

vascular endothelial cells (EC) [24,25], and productive infection of LASV and JUNV have been 

observed in vitro in this cell type [26,27]. Moreover, as with other arenaviruses, JUNV and LASV 

have a non-lytic cell cycle and cause no overt cytopathic effects in cultured vascular EC suggesting 

that major signs of the associated pathology are mostly attributed to the host response rather than to a 

direct virus-induced structural damage. [27,28]. 

A productive infection of EC in culture with JUNV induces the expression of ICAM-1 and, to a 

lesser extent, VCAM-1 [28]. This up-regulation of the cell adhesion molecules involved in EC 

activation strictly depended on viral replication, as no effect was observed with a UV-inactivated virus.  

Because the expression of cell adhesion molecules on the endothelium is a key event in the recruitment 

of inflammatory leukocytes, it could be possible that the adhesion of activated leukocytes to the 

endothelium contribute to the increase in vascular permeability in JUNV- and LASSA- infected 

patients. 

In vitro, the infection of EC with JUNV resulted in reduced expression and secretion of coagulation 

factors, such as the prothrombotic vWF. This finding seems to be in contrast to clinical data showing 

increased vWF in the sera of AHF patients [14]. These differences could be explained if serum 

samples had been collected at successive post-infection times and/or if the source of raised vWF serum 

levels was not only the EC but also megakaryocyte or platelet population. In addition, the infection of 

EC with a virulent strain of JUNV, but not a non-virulent isolate, markedly induced the production of 

the vasoactive mediator nitric oxide (NO) and prostacyclin (PGI2) [28], providing a possible link 

between viral infection and the increased vascular permeability observed in fatal AHF cases. 



Viruses 2013, 5                            

 

 

345

Interestingly, PICV induces microvascular endothelial cell permeability through the production of NO 

[29], giving further support to the important role of NO in the pathogenesis of the endothelium 

dysfunction present in AVHF (Table 1 and Figure 1).  

The mechanisms by which LASV affects EC biology, including the putative role of NO, are 

unknown. A perturbation of the endothelium may include direct effects of the virus involving virus 

infection and gene expression and/or may occur in an indirect manner by a virus-induced release of 

host-derived factors that affect endothelial function. In this sense, it has been suggested that a 

deregulated and ineffective cytokine response, leading to high levels of the virus and pro-inflammatory 

cytokines in the late stage of the disease, is important in the pathogenesis of hemorrhage and shock in 

Lassa fever [30]. However, the detection of pro-inflammatory cytokines in the sera of patients with 

fatal Lassa fever has revealed little evidence for a “cytokine storm” associated with lethal diseases 

[31]. The molecular mechanisms underlying the cytokine deregulation are not yet elucidated but it is 

suggested that viral infection leads to disruption of early host defenses and contributes to arenavirus 

pathogenesis. In this context, it has been recently reported that the nucleoprotein encoded by 

representative members of both, Old and New World arenaviruses interferes with NF-κB activation, 

possible contributing to the multiple mechanisms by which arenaviruses counteract the host initial 

innate defenses and subsequent adaptive immune responses [32]. In this sense it has been shown that in 

the absence of cell damage, a LASV infection in HUVEC resulted in reduced levels of interleukin 

(IL)-8, a cytokine synthetized through a NF-κB-dependent pathway [27].  

Currently, the extent of the infection of the vascular EC by LASV and the consequent effects 

remain largely unknown.  

 

4. Platelets  

 

Thrombocytopenia, a condition in which the blood has a lower than normal number of platelets, is 

one of the most consistent findings among human patients and experimental animal models of AVHF; 

thrombocytopenia is used as a major diagnostic feature in patients with AVHF [33,34]. In Venezuelan 

HF, for example, most patients showed thrombocytopenia, and although the clinical courses of these 

patients varied, the gross and histopathological necropsy findings were remarkably similar and 

generally showed evidence of bleeding [35,36]. In contrast to Lassa fever, the bleeding that occurs 

with severe thrombocytopenia is more common in Argentine and Bolivian HFs [37,38]. 

The causes of the thrombocytopenia associated with AVHF remain poorly understood. In this 

regard, DIC could explain platelet consumption; nevertheless, the occurrence of DIC in AVHF 

infections is inconclusive, at least for the arenaviridae family [34]. Furthermore, the occurrence of 

thrombocytopenia before the appearance of antibody or complement activation does not support 

immunologically mediated mechanisms of platelet destruction [39]. Therefore, a high level of splenic 

sequestration or impaired megakaryo/thrombopoiesis could be the major physiopathogenic 

mechanisms responsible for the low platelet count.  

Conflicting data were obtained from AHF patients in the 1970s. While Gallardo et al. found 

hypocellularity in bone marrow samples of AHF patients, particularly in the erythroid and 

megakaryocytic lineages [40], Ponzinibbio et al. could not show any megakaryocytic anomalies [41]. 

However, infected megakaryocytes has been observed in JUNV-infected guinea pigs [42].  
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Recent findings show that JUNV not only replicates in human megakaryocytes and their precursor 

CD34+ cells but also that viral infection selectively impairs thrombopoiesis by decreasing in vitro 

proplatelet formation and platelet release [43]. The decrease in platelet release was shown to be TfR1-

dependent and mimicked by poly(I:C); additionally, type I interferon (IFN I) was implicated as a key 

paracrine mediator. Although the molecular basis governing the IFN I-mediated reduction of in vitro 

platelet production is still unknown, a low content of NF-E2 (a transcription factor that plays a major 

role in terminal differentiation of megakaryocytes and platelet release) was found in megakaryocytes 

treated with IFN I. Moreover, an ultrastructural analysis revealed that in the IFN I-treated 

megakaryocytes, the distinctive demarcation membrane system was almost absent and lacked 

organization and platelet territories [43]. Interestingly, a correlation between high levels of circulating 

IFN α and both virulence and prognosis has been described in clinical [44] and experimental [45] 

AHF. Overall, these data support an emerging role for IFN I as a pathogenic factor for the 

thrombocytopenia observed in VHF patients and maybe in other diseases associated with increased 

bone marrow IFN I levels [43].  

In addition to a low platelet number, platelet dysfunction might also be a major contributor to the 

hemorrhagic phenotype observed in AVHF patients. Platelet dysfunction has several potential causes, 

including circulating fibrin degradation products, activated platelets (exhausted platelets syndrome), or 

specific inhibitors. In the case of inhibitors, a plasma inhibitor of platelet function was found in 80% of 

Lassa fever patients with a hemorrhage but in only 16% of those without a hemorrhage and was 

significantly associated with disease severity [46]. Furthermore, a continuous rise in the inhibitory 

activity correlated with clinical deterioration, whereas a decline corresponded to clinical improvement. 

A similar inhibitor of platelet function has been demonstrated in patients with AHF [47]. This inhibitor 

has in vitro effects similar to those observed in patients with Lassa fever; however, it appears to be 

more thermolabile, and the inhibitory activity was not neutralized by convalescent plasma containing a 

high titer of protective antibodies against JUNV [48]. Although the presence of a platelet inhibitor 

could account for the bleeding diathesis, there has been no report describing abnormalities of platelet 

function in AVHF infected patients, perhaps related to the absence of on-site adequate equipped 

laboratories of hemostasis (Table 1 and Figure 1). 

In 2008, two major advances using experimental mouse models contributed to the current 

knowledge regarding the role of platelets in AVHF. First, it was demonstrated that mice rendered 

thrombocytopenic only suffered localized hemorrhages at the sites undergoing non-infectious 

inflammatory processes and that low numbers of circulating platelets were able to prevent these 

inflammation-induced hemorrhages [49]. Second, Iannacone et al. reported that platelet-depleted mice 

infected with LCMV (Armstrong strain) developed a syndrome characterized by mucocutaneous 

bleeding, vascular leakage, anemia, uncontrolled viral replication, suboptimal immune responses, and 

subsequent death. Remarkably, a lethal hemorrhage was less associated with thrombocytopenia and 

instead was more closely associated with the platelet dysfunction mediated by high IFN I levels [50]. 

Interestingly, as neither Interferon- nor  inhibited platelet responses in-vitro, the authors suggested 

that IFN I could directly affect megakaryocytes rather than platelets. The recent description of the 

functional IFN I receptor in human megakaryocytes further strengthens this hypothesis [51].  

Another major issue of the Iannacone et al. study was the observation that in addition to having life-

threatening hemorrhagic anemia, the platelet-depleted mice failed to mount an efficient cytotoxic T 
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lymphocyte (CTL) response and were unable to clear the LCMV. Transfusion of functional platelets 

into these animals reduced the hemorrhage, prevented death and restored the CTL-induced viral 

clearance in a manner partially dependent on the CD40 ligand (CD40L). These results indicate that, 

upon activation, the platelets expressing integrin 3 and CD40L are required to protect the host against 

the induction of an IFN I-dependent lethal hemorrhagic diathesis and for clearing the LCMV infection 

through CTLs. In the same line of evidence, Loria et al. recently showed that mice profoundly depleted 

of platelets (>95% depletion) and infected with the Armstrong LCMV strain developed hemorrhagic 

spots in several organs along with high viral titers, generalized splenic necrosis, and increased 

mortality. Interestingly, the authors also found that the presence of the remaining 15% of the platelets 

was sufficient to prevent vascular damage but not viral replication, necrotic destruction of innate and 

adaptive immune splenocytes, or CTL exhaustion [52]. These observations not only confirm the novel 

notion that platelets are necessary to protect vascular integrity and are critical mediators of viral 

clearance but also underscore an underappreciated relationship between platelet mediated-hemostasis, 

viral infection, and immunosuppression. Furthermore, the authors perceptively suggested that the 

higher circulating platelet levels in mice compared to other species may explain why mice are not 

susceptible to AVHF and offered a simple alternative model to study the pathophysiology of AVHF 

[52]. This new experimental strategy, together with other recently described models of genetically 

modified mice, will help to clarify the issues regarding the pathogenesis of AVHF [53-56]. 
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