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Abstract: Countering aerosolized filovirus infection is a major priority of biodefense 
research.  Aerosol models of filovirus infection have been developed in knock-out mice, 
guinea pigs and non-human primates; however, filovirus infection of immunocompetent 
mice by the aerosol route has not been reported.  A murine model of aerosolized filovirus 
infection in mice should be useful for screening vaccine candidates and therapies.  In this 
study, various strains of wild-type and immunocompromised mice were exposed to 
aerosolized wild-type (WT) or mouse-adapted (MA) Ebola virus (EBOV).   
Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6), and DBA/2 (D2) mice 
were unaffected, but 100% of severe combined immunodeficiency (SCID) and 90% of 
signal transducers and activators of transcription (Stat1) knock-out (KO) mice became 
moribund between 7–9 days post-exposure (dpe).  Exposure to MA-EBOV caused 15% 
body weight loss in BALB/c, but all mice recovered.  In contrast, 10–30% lethality was 
observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 
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KO, interferon (IFN)-γ KO and Perforin KO mice became moribund  
between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure 
to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2) 
recombinant inbred (RI) and advanced RI (ARI) mouse strains were exposed to aerosolized 
MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity 
was observed. All BXD strains lost weight but many recovered. However, infection was 
uniformly lethal within 7 to 12 days post-exposure in five BXD strains.  Aerosol exposure 
of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% 
in two strains to 90–100% lethality in two strains.  Analysis of post-mortem tissue from 
BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, 
showed liver damage in all mice as well as lung lesions in two of the three strains.   
The two BXD strains that exhibited 90–100% mortality, even at a low dose of airborne 
MA-EBOV will be useful mouse models for testing vaccines and therapies.  
Additionally, since disease susceptibility is affected by complex genetic traits, a systems 
genetics approach was used to identify preliminary gene loci modulating disease severity 
among the panel BXD strains. Preliminary quantitative trait loci (QTLs) were identified 
that are likely to harbor genes involved in modulating differential susceptibility to  
Ebola infection.  

Keywords: Ebola; ebolavirus; filovirus; aerosol; mouse; BXD; recombinant inbred  
 

1. Introduction 

The family Filoviridae includes two genera, Ebolavirus and Marburgvirus and a third putative 
genus Ceuvavirus [1]. Filoviruses have caused extremely lethal sporadic human outbreaks, primarily in 
central Africa, and are classified as Category A Bioterrorism Agents by the United States Centers for 
Disease Control and Prevention. The primary threat of filoviruses, as weapons of bioterrorism, is 
thought to be as aerosols [2]. Appropriate animal models are therefore needed for discovery and testing 
of filovirus countermeasures and for gaining a better understanding of the pathogenesis of airborne 
filovirus infection. Aerosol models have been developed in non-human primates (NHPs) for Sudan 
virus (SUDV), Ebola virus (EBOV) and Marburg virus (MARV) [3–5]. Filovirus infection of NHPs 
may provide the best representation of the disease process in humans [6]. However, a small animal 
model, such as the mouse, would best facilitate screening novel countermeasures.  
Importantly, a mouse model may also help to reveal host factors involved in susceptibility or resistance 
to aerosolized filovirus infection; information that could lead to new targets for drug development. 

Wild-type (WT) filoviruses are likely unable to suppress the type I interferon response of mice, a 
feature necessary for productive filovirus infection and the reason that mice are resistant to wild-type 
filovirus infection [7,8]. Lethal filovirus infection of mice has thus only been achieved with WT virus 
in immunocompromised mice; or, in WT mice through the use of virus adapted to mice by serial 
passage [7,9]. A mouse model of airborne filovirus infection was recently developed using IFN-α/β 
KO knock-out mice, and can be used to study infection with WT strains of EBOV and MARV [10]. 
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Infection of immunocompetent mice with MA-EBOV has been thoroughly studied using the  
intra-peritoneal (IP) route of viral challenge; however, an aerosol route of delivery has not been 
reported [9,11,12].  

One goal of this study was to identify WT, immunocompetent mouse strains that are susceptible to 
aerosol infection with either WT or MA-EBOV, and that most closely match the disease resulting from 
aerosol exposure of NHPs to EBOV. Because BALB/c mice were previously found to be susceptible to 
IP infection with MA-EBOV [9,11,12], these mice were exposed to WT-EBOV or MA-EBOV by the 
aerosol route. SCID, IFN receptor KO, and Stat1 KO mice have been lethally infected with EBOV by 
the IP route [7,9], and were therefore tested as likely positive controls for susceptibility to EBOV and 
MA-EBOV by the aerosol route. Subcutaneous (SC) injection of MA-EBOV typically does not result 
in infection of WT mice, however, it has been shown that Perforin KO mice can be productively 
infected with MA-EBOV by the SC route [13]. As such, Perforin KO mice were also evaluated as a 
likely positive control for susceptibility to airborne EBOV and MA-EBOV infection 

To identify wild-type mouse strains susceptible to airborne filovirus infection, a panel of 
recombinant inbred BXD mouse strains were exposed and screened. Additionally, the genetically 
diverse BXD panel is a powerful tool for systems genetics approaches that allow unbiased discovery of 
QTLs associated with various phenotypes and diseases [14–20]. In the case of infectious diseases, 
BXD panels have been used to identify genetic loci for differential susceptibility to streptococcal 
sepsis and H5N1 influenza A virus [18,19,21,22]. The BXD panel of RI and ARI mouse strains were 
generated by a special scheme of crossing of B6 and D2 mice and their progeny leading to 
accumulation of recombinations in the genome of each strain [17,23]. These strains exhibit a wide 
spectrum of phenotypes, based on the overall genetic context of each strain. In addition, the ancestral 
parental strains are fully sequenced and BXD panel strains are densely genotyped with microsatellite 
markers and single nucleotide polymorphisms (SNPs) [24–26].  

Five BXD mouse strains had uniform lethality upon exposure to aerosolized MA-EBOV. The BXD 
strain(s) most susceptible to aerosol filovirus infection identified in this report can be used as the basis 
for the airborne MA-EBOV infection model in mice. 

To gain a greater understanding of the disease mechanism and identify therapeutic targets, a 
systems genetics approach was employed using a set of 60 BXD RI and ARI mice and their ancestral 
parental strains (C57BL/6 (B6) and DBA/2 (D2)). Genetic and non-genetic factors that modulate 
differential susceptibility to MA-EBOV were analyzed and the contribution of each of these cofactors 
evaluated using multivariate analysis. Preliminary QTLs that contain modifier genes that might be 
modulating differential response to aerosolized MA-EBOV were mapped. Continued work with this 
systems genetics approach will likely lead to the identification of additional host factors modulating 
differential susceptibility to lethal filovirus infection, besides the known effects of type 1 interferon 
response on infection outcomes.  
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2. Results and Discussion 

2.1. Exposure of Wild-Type and Immunocompromised Mice to a High Dose of Aerosolized MA-EBOV 

Three WT mouse strains (BALB/c, D2, and B6) and four different immunocompromised mouse 
strains, Stat1 KO, SCID, IFNγR KO, and Perforin KO, were tested for susceptibility to a high dose of 
aerosolized MA-EBOV. There were 10 animals of each strain and each animal was exposed to a dose 
of 2461 ± 201 pfu of aerosolized MA-EBOV. To achieve this “high” dose, undiluted virus stock  
(2 × 107 pfu/mL) was placed in the nebulizer. All of the strains lost weight (between 5–25%) and 
showed clinical signs of disease in the form of a general viral prodrome after exposure to virus  
(Figure 1A). There were no obvious signs of hemorrhage. The onset of clinical signs was 7 dpe for all 
groups, except signs were apparent at 6 dpe in the Perforin KO mice. All of the BALB/c and D2 mice 
recovered. Three of ten (33%) B6 mice became moribund between 8–13 dpe, and two of the survivors 
had permanent neurologic impairment. Exposure to aerosolized MA-EBOV was uniformly lethal in the 
four immunocompromised strains tested. IFNγR KO and Stat1 KO mice succumbed on 7 dpe whereas 
SCID and Perforin KO mice became moribund at an average of 9.8 and 10.7 dpe respectively.  
Overall, mice of each strain became moribund slightly sooner after this high dose exposure, than was 
observed after exposure to a 228 ± 26 pfu dose (Figure 1B), although this difference was not 
statistically significant. Following the low dose exposure, no mice B6 became moribund, however, one 
of 10 D2 mice succumbed to the infection on day 12. 
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Figure 1. Exposure of WT and immunocompromised mice to aerosolized WT &  
MA-EBOV (high dose). Percent weight loss, clinical disease score and survival of 
BALB/c, DBA-2, C57BL/6, Perforin KO, IFNγR KO, SCID and Stat1 KO mice are shown 
for 0-21 dpe (n = 10 per mouse strain) following high 2461 ± 201 pfu (A) or low 228 ± 26 
pfu (B) dose aerosol exposures. A BALB/c no virus control was included in the low dose 
challenge experiment only. 

 
  



Viruses 2012, 4                            
 

 

3473 

2.2. Differential Susceptibility of BXD RI and ARI Mice Strains Exposed to a High Dose of Aerosolized 
MA-EBOV 

Since three standard strains of mice, BALB/c, D2, and B6, were not uniformly susceptible to 
aerosolized MA-EBOV, even at a high dose, none of these strains were promising as a disease model. 
Although each of the four strains of immunocompromised mice tested were highly susceptible and 
could prove useful as models for studying some aspects of MA-EBOV infection, an animal model with 
an intact immune system is most desirable. Therefore, a panel of 60 BXD RI & ARI mouse strains, 
which are a genetically diverse pool of strains derived from crossing of B6 and D2 strains, were 
evaluated for susceptibility to infection with aerosolized MA-EBOV. Additionally, we expected that 
the diversity of the BXD panel would help to identify a suitable, uniformly susceptible strain for 
animal model development.  

Groups of up to 10 female mice of each strain were exposed to an average dose of 1608 ± 549 pfu 
of aerosolized MA-EBOV. Mice displayed differential susceptibility to aerosolized MA-EBOV, as 
manifested by the differences in lethality across the strains (Figure 2). The number of mice, average 
age, average baseline body weight, dose, and data on the disease course is presented for each strain 
(Table 1). There were differences across the BXD strains in weight loss, survival time and clinical 
disease scores (Table 1). Of particular importance were stark variations in mortality among the BXD 
strains with some strains exhibiting uniform lethality. The identification of such strains, which could 
be used as the basis of models to test novel EBOV therapeutics was a primary aim of our study. 

Figure 2. A range of susceptibility among BXD strains exposed to a high dose of 
aerosolized MA-EBOV. BXD strains fell into three groups based on the percent lethality 
following exposure to 1608 ± 549 pfu airborne MA-EBOV: resistant (green), intermediate 
susceptibility (purple) and susceptible (orange). Within each group, strains were ordered by 
survival (if applicable), percent of animals displaying clinical signs and percent weight loss 
corresponding to Table 1. 
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Table 1. BXD strains exposed to a high dose of aerosolized MA-EBOV. BXD strains 
fell into three groups based on the percent lethality following exposure to 1608 ± 549 pfu 
airborne MA-EBOV: resistant (green), intermediate (purple) and susceptible (orange). 
Within each group, strains were ordered by survival (if applicable), % of animals 
displaying clinical signs and % weight loss. Data presented are: average age of mice, 
aerosol dose, average starting weight, maximum % weight loss when all mice from group 
living, day of onset of clinical signs, % of mice with clinical signs, cumulative disease 
score, % survival, and first and last days animal became moribund ( n = 10). 

BXD 
Strain 

Ave. 
Age 

(days) 
Dose 

Ave. 
Starting 

Weight (g) 

Max Weight 
Loss (%) 

Onset 
clinical 
signs 

% with 
clinical 
signs 

Cumulative 
disease score 

% 
Survival 

1st day 
Mori-
bund  

Last Day 
Mori-
bund  

C57Bl6 44 2573 19.7 -18.1 7 100 169 70 9 13 
DBA 44 2132 15.2 -8.8 7 100 37 100 na na 

16 55 1291 21.2 -9.2 na 0 0 100 na na 
45 63 301 17.8 -11.3 na 0 0 100 na na 
97 55 1244 17.4 -11.7 na 0 0 100 na na 
42 70 1093 19.5 -12.8 na 0 0 100 na na 
15 55 1335 22 -13 na 0 0 100 na na 
19 51 2295 17.5 -14.6 na 0 0 100 na na 
74 41 1335 15 -14.7 na 0 0 100 na na 
28 78 1808 22.8 -23.7 na 0 0 100 na na 
102 71 2782 19.4 -13.5 8 10 1 100 na na 
8 78 1466 20 -19.6 6 10 2 100 na na 
11 55 1145 17.9 -11.3 9 50 8 100 na na 
103 63 2650 18.2 -18.6 8 50 9 100 na na 
60 70 1562 20.6 -19.7 9 80 16 100 na na 
24 49 1721 17.2 -9 7 100 64 100 na na 
98 57 1126 16 -11.2 7 100 13 100 na na 
2 55 1356 22.4 -11.8 7 100 12 100 na na 
61 63 1279 19.9 -14.8 7 100 41 100 na na 
33 63 1667 15.5 -16 8 100 20 100 na na 
49 67 1632 21.8 -16.1 8 100 15 100 na na 
32 71 1910 21.1 -17.2 8 100 26 100 na na 
14 61 1577 21.7 -17.4 8 100 15 100 na na 
79 66 2169 18.7 -18.2 8 100 14 100 na na 
87 56 279 16.1 -18.7 9 100 21 100 na na 
44 55 949 16.2 -18.9 7 100 40 100 na na 
73 51 2369 17.8 -20.1 7 100 35 100 na na 
48 77 1655 22.2 -20.5 8 100 24 100 na na 
96 70 1592 24.2 -20.5 7 100 30 100 na na 
55 70 1280 19.9 -20.6 7 100 26 100 na na 
70 70 2409 21.5 -21 6 100 38 100 na na 
64 46 1505 17.6 -24.7 6 100 40 100 na na 
69 63 1557 18.4 -13.4 7 100 56 90 11 11 
29 64 1600 19.3 -13.5 9 50 10 90 10 10 
51 62 1584 21 -16.7 6 100 28 90 17 17 
43 75 1777 19.1 -17.7 9 100 20 90 17 17 
56 65 1285 20 -18 20 10 5 90 20 20 
86 80 343 21.2 -18.7 9 100 24 90 10 10 
22 70 964 16.5 -18.9 8 100 53 90 10 10 
84 68 2212 19.2 -20.3 6 100 42 90 13 13 

29-Toll 74 1564 18.8 -11.6 8 100 30 80 10 11 
6 58 1141 17.8 -15 8 100 26 80 9 10 
27 51 2503 19.6 -16.3 7 100 51 80 10 11 
71 68 1303 20.4 -20.3 6 100 68 80 12 14 
38 65 2355 17.6 -21 7 100 98 80 12 12 
83 60 2728 18.9 -12.3 7 100 49 70 9 10 
62 77 2233 19.4 -16.6 9 100 45 70 9 11 
90 53 1170 16.8 -17 7 100 70 70 10 10 
9 70 1492 30 -17.8 7 100 90 60 11 123 
85 58 1347 19.4 -18.2 5 100 107 60 10 14 
75 49 1575 18.7 -19.4 8 100 54 60 10 12 
13 54 1249 20.3 -19.8 9 100 37 60 10 13 
40 75 1783 19.2 -17.3 8 100 92 40 11 11 
12 65 1101 17.2 -20.4 7 100 99 40 9 10 
1 60 1221 19.5 -21 7 100 117 30 8 12 
31 71 1735 21.5 -14.5 8 100 84 20 8 11 
5 68 1429 19 -16.9 8 100 136 10 10 17 
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Table 1. Cont. 
BXD 

Strain 
Ave. 
Age 

(days) 

Dose Ave. 
Starting 

Weight (g) 

Max Weight 
Loss (%) 

Onset 
clinical 
signs 

% with 
clinical 
signs 

Cumulative 
disease score 

% 
Survival 

1st day 
Mori-
bund  

Last Day 
Mori-
bund  

18 78 1552 21.3 -17 8 100 95 0 9 12 
21 51 2036 14.9 -17.7 7 100 103 0 10 11 
34 78 2110 24.1 -11.97 6 100 81 0 7 7 
68 51 2408 18.3 -20.2 7 100 90 0 10 10 
89 47 1345 20.3 -13 7 100 93 0 9 10 

2.3. Uniform Lethality in Five BXD Mouse Strains Exposed to a High Dose of Aerosolized MA-EBOV 

Figure 3A shows the weight, clinical disease scores and survival of only the five BXD mouse 
strains for which a high dose of aerosolized MA-EBOV infection resulted in a uniformly lethal 
disease. The actual dose delivered to these mice ranged from 1345–2408 pfu. Moribund condition 
occurred between days 7–12 and weight loss was ≥15%.  

Figure 3. Exposure of susceptible BXD strains to high (a) and low (b) doses of 
aerosolized MA-EBOV. Weight loss, clinical disease score and survival are shown for 
BXD18, BXD21, BXD34, and BXD68 exposed to high (1345-2408 pfu) or low (52 pfu) 
doses. BXD89 was exposed to a high dose only (n = 10 per mouse strain). 
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2.4. Exposure of Susceptible BXD Mouse Strains to a Low Dose of Aerosolized MA-EBOV 

For comparison purposes, four of five BXD strains with known 100% susceptibility to a high dose 
of MA-EBOV were tested for susceptibility to a low-dose (an average of 52 pfu) of MA-EBOV by the 
aerosol route. BXD89 was not available for this test. The onset of clinical disease scores in all strains 
was comparable to that seen with the high dose exposure and all strains had a weight loss  
of ≥10% (Figure 3B). However, lethality ranged from 0% (for BXD18) to 100% at the low dose with 
only one strain (BXD34), and another with 90% lethality (BXD68). BXD21 had 10% lethality. These 
data suggests that two BXD strains, BXD34 and BXD68, are the most susceptible to aerosolized  
MA-EBOV of the 60 BXD strains tested and will be used for further experiments.  

2.5. Tissue Viral Load and Histopathology in BXD Mouse Strains Exposed to Aerosolized MA-EBOV 

All mice that became moribund after low dose exposure to airborne MA-EBOV were necropsied. 
The organs were placed in fixative for histopathology analysis (n = 5 for BXD34 and BXD68 or 
titrated by plaque assay for viral load (n = 5 for BXD34 and n = 4 for BXD68). Heart, liver, kidney, 
brain, spleen and lung were evaluated for viral load by plaque assay (Figure 4). Tissue viral loads 
ranged from 2.5 × 103 pfu to 4.5 × 107 pfu per organ. More MA-EBOV was detected in tissues from 
BXD34 mice than BXD68 for each organ measured. Mice from both groups were exposed at the same 
time and received the approximately same dose of MA-EBOV. The increased organ viral loads in 
BXD34 ranged from 10 to15-fold more for lung and liver, approximately 250-fold more in the heart,  
and >1000-fold more in the brain and spleen.  

Figure 4. Average organ viral loads for the two most susceptible BXD strains, BXD34  
(n = 5) and BXD68 (n = 4) after aerosol exposure to MA-EBOV. Organs were taken after 
humane euthanasia of moribund mice (7–9 dpe). The pfu/tissue represents the viral load 
within the entire organ, since the entire organ was homogenized for each data-point. 
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2.6. Histological Findings 

Similar to previous studies of EBOV in mice, none of the susceptible BXD mice had evidence of 
systemic hemorrhagic diathesis or disseminated intravascular coagulation (DIC), which can variably 
occur with EBOV infection in humans and nonhuman primates (NHPs). However, all of the 
susceptible BXD mice analyzed had hepatic lesions consistent with those that have been previously 
reported in mice and NHPs with fatal systemic ebolavirus infection (Table 2). These lesions consisted 
of multiple, random foci of hepatocellular degeneration and necrosis with few associated inflammatory 
cells (usually neutrophils) (Figure 5A). Within hepatocytes adjacent to areas of necrosis in BXD34 
mice, there were numerous eosinophilic intracytoplasmic inclusion bodies characteristic of infection 
with ebolavirus (Figure 5B). Virus-induced intracytoplasmic inclusion bodies were detected within 
hepatocytes of all BXD34 mice but not in BXD68 mice. Similar hepatic inclusions have been seen in 
NHPs and in mice, but are not consistent findings [7,12,27]. The presence of these inclusions in all five 
mice from the BXD34 group and in none of the five animals from the BXD68 group could possibly be 
related to the mouse genetic strain, viral dose, and/or the fact that the BXD34 mice became moribund 
1–2 days earlier than the BXD68 mice. 

Table 2. Summary of significant histopathologic findings. 

Strain Ave.Dose (pfu) Day p.e. Liver* Spleen Mesenteric LN Lungs Adrenals 
BXD34 53 8 lesions necrosis lymphocytolysis WNL** cortical necrosis 
BXD68 51 9 lesions necrosis lymphocytolysis mf*** necrosis cortical necrosis 
p.e. = post-exposure 
* Typical hepatic lesions of ebolavirus infection in mice are described in the text 

** WNL = within normal limits 
*** mf = multifocal 

Within the spleen of all susceptible BXD mice, there was mild to moderate necrosis of the red and 
white pulp with no associated inflammatory cells (Figure 5C). Similar to the white pulp of the spleen, 
there was lymphocyte necrosis in lymphoid follicles that ranged in severity from minimal to mild. 
Many of the necrotic lymphocytes were phagocytized by macrophages, forming tingible-body 
macrophages. Lymphocyte death in the mandibular and/or the bronchial/mediastinal lymph nodes was 
also observed. In most of the susceptible BXD mice, there was mild to moderate lymphocyte necrosis 
throughout the thymic cortex. Within the adrenal glands, there was minimal to mild multifocal necrosis 
of cortical cells along the corticomedullary junction in all of the BXD68 mice, three of five BXD34 
mice analyzed.  

In all five BXD68 mice, there was mild to moderate multifocal congestion and edema of lung lobes 
with necrosis of cells lining alveoli and within alveolar lumina (Figures 5D–F). There were few 
neutrophils associated with necrotic lesions. There were no lung lesions present in BXD34 mice. 

The lesions present in the livers, spleens, and adrenal glands of BXD mice exposed to aerosolized 
MA-EBOV are consistent with those previously reported in mice with fatal, systemic MA-EBOV 
infection after intraperitoneal (IP) viral inoculation [11,12,27]. The lymphocyte death in the thymus, 
mesenteric lymph node, and other lymph nodes in these mice is also a common lesion reported to be 
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associated with systemic MA-EBOVs infection. However, necrosis of lymphocytes in mice is also a 
common, nonspecific response to stress and/or inflammation.  

Figure 5. Histopathology in tissues of most susceptible BXD strains after aerosol exposure 
to a low dose of MA-EBOV. Hematoxylin and eosin (H&E) stained tissues were examined 
from moribund BXD34 (n = 5) and BXD68 (n = 5) mice. Representative images are 
shown. (a) Section of liver with multiple pale-staining necrotic hepatocytes accompanied 
by infiltrates of occasional neutrophils. (b) Higher magnification of liver showing that, 
adjacent to areas of necrosis, many hepatocytes contain one or more dark-red 
intracytoplasmic inclusion bodies. (c) Spleen with foci of necrosis in the red pulp  
(lower left) and white pulp (upper right). Photos D-F are from strain BXD68 lung. (d) 
Pulmonary congestion and edema with scattered necrotic cells within alveolar lumina and 
lining alveoli. (e) Higher magnification showing necrosis of alveolar septa with 
hemorrhage into the small airways. (f) Focus of more extensive alveolar septal necrosis 
with hemorrhage and low numbers of neutrophils. 

 

2.7. Susceptibility of WT and Immunocompromised Mouse Strains to Aerosolized WT-EBOV 

Three WT mouse strains (BALB/c, B6 and D2) and two immunocompromised/ knock-out mice 
(Stat1 KO and SCID) were tested for susceptibility to aerosolized WT-EBOV. None of the WT mouse 
strains lost weight or showed clinical signs of disease (Figure 6A). In contrast, exposure to aerosolized 
WT-EBOV was uniformly lethal in SCID mice and 90% lethal in Stat 1 knockout mice.  
The time-to-death or euthanasia in these two strains was greater for WT-EBOV aerosols than was 
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observed after exposure to aerosolized MA-EBOV. Interestingly, a moribund condition took much 
longer to develop in SCID mice exposed to aerosolized WT-EBOV than Stat 1 KO mice. 

Figure 6. Exposure of mouse strains to aerosolized WT-EBOV. (a) BALB/c, DBA/2, 
C57BL/6, SCID and Stat1 KO mice and (b) BXD18, BXD21, BXD34, and BXD68 and 
BXD89 mice were exposed to non-adapted EBOV by the aerosol route and monitored for 
% weight change, disease score and survival for 17–80 days (n = 10 per mouse strain). 
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2.8. Susceptibility of BXD Strains to Aerosolized WT-EBOV 

The five BXD recombinant inbred strains (Jackson Laboratories) that were found to be most 
susceptible to aerosolized MA-EBOV were tested for susceptibility to aerosolized WT-EBOV  
(Figure 6B). Mice were exposed to an average dose of 392 pfu and were weighed and scored daily. Of 
the five strains tested, two lost a significant amount of weight. However, no mice succumbed in any 
group and no mice from any of the groups displayed any signs of illness (scores were 0 for all mice on 
all days except for one mouse on one day, which received a score of "1"). Therefore, BXD mice that 
are susceptible to airborne infection with MA-EBOV are not susceptible to WT-EBOV at the dose 
given. However, it is possible that increased disease and/or lethality could be observed at a  
higher dose.  

2.9. Multiple Covariate Analysis Confirms the Role of BXD Mouse Strains Genetic Background in 
Modulating Differential Susceptibility to Aerosolized MA-EBOV 

The scheme of generating these BXD strains allowed for accumulation of recombinations followed 
by inbreeding, therefore the genetic context of each strain is unique and fully inbred.  
Accordingly, each unique strain is represented by an infinite number of mice, and this contributes to 
the observed high reproducibility, and to the strength and power of statistical analyses. These features 
are beneficial for discovering QTLs in an unbiased manner, and for analyzing genetic loci associated 
with differential susceptibility to diseases, in this case aerosolized MA-EBOV infection.  

Having ruled out contributions of confounding factors on the observed differential susceptibility to 
MA-EBOV (see Supplemental Information), interactions between covariates and the genetic factors 
were determined. First, a “relative survival index,” which is an ordinal scale for mouse survival, 
irrelevant of its strain, was generated to normalize survival across experiments, and to minimize the 
inevitable experiment-to-experiment variations. To do so, survival days were graphed as dot plots and 
the distribution of survival days among BXD strains used within each experiment was determined.  
A multimodal distribution of survival days fell into three clusters, susceptible, intermediate, and 
resistant. A survival index was assigned to each mouse according to which cluster it fell within. 
Survival indices ranged from 0.25–1, 1.25–2, and 2.25–3 for susceptible, intermediate, and resistant 
clusters respectively. Survival indices were then subjected to 2-way ANOVA using general linear 
model (GLM) analyses to generate “Coefficient of corrected relative survival index” (Supplemental 
Information). This coefficient is a mean survival index for each strain, expressing the contribution of 
each BXD strain on survival taking into account confounding cofactors (age and weight) that might 
affect differential response (Figure 7). Using GLM analysis of covariates, the relative effect of each 
covariate (including mouse strain) on survival was determined. Mouse age was not a significant 
covariate modulating differential response; whereas mouse strain was the most significant predictor of 
survival (p ≤ 0.0001) (Supplemental Information). 
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Figure 7. Differential susceptibility of recombinant and advanced recombinant inbred 
BXD strains & their parental strains post-exposure to aerosolized MA-EBOV.  
Rank-ordered bar chart of differential survival of 60 BXD strains and their parental strains 
(n= 586 mice) expressed as coefficient of mean corrected relative survival index.  
Top panel: Strains are arranged from highly susceptible on the left-hand side to 
intermediate and finally highly resistant on right-hand side. Middle Panel: Variation in 
percent of body weight loss at death. Bar chart showing coefficient of mean corrected 
percent of body weight loss at death arranged in order of differential survival. Bottom 
Panel: Variation in maximum clinical disease score. Bar chart shows coefficient of mean 
corrected maximum score arranged in order of differential survival. Error bars represent 
standard error of the coefficient. Total number of mice used per strain is indicated in Table 
S1 (Supplemental Information). Statistical test used is two-way ANOVA with correction to 
covariates as detailed in methods section. 
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2.10. Preliminary Genome-Wide QTL Mapped Traits Associated with Differential Response of BXD 
Strains to Aerosolized MA-EBOV  

WebQTL, the mapping suite of the GeneNetwork (GN) platform was used to perform interval 
mapping of traits associated with differential response to high dose of aerosolized MA-EBOV. Each of 
the traits (phenotypes) associated with differential response is analyzed in the context of genotypic 
variations of BXD strains. Significance of phenotype-genotype association is assessed by 2000 
permutation tests and expressed in likelihood ratio statistics (LRS). Phenotype-genotype linkage 
mapping of the BXD differential response traits to MA-EBOV showed preliminarily QTLs on 
chromosomes 6, 9, 17 and X (Figure 8 and Supplementary Information). General haplotype analysis of 
strains at the mapped QTL on chromosome 6 showed this region has genomic recombinations among 
the BXD strains, and this will allow to fine-tune and narrow down the QTL by including  
additional strains, based on genomic variation within the mapped interval (Figure 8 and  
Supplementary Information).  

Suggestive preliminarily QTLs were mapped on proximal chromosome 9, associated with percent 
weight loss at death (Figure 8A), and on proximal chromosome 17, associated with maximum disease 
score (Figure 8B). These QTLs harbor polymorphic genes that are currently being investigated further. 
Contribution of more than one QTL to the disease outcome is not unusual as it reflects complex trait 
diseases. To further analyze the contribution of each QTL to disease outcome, we performed QTL 
comparison of the preliminary three mapped traits associated with differential response to MA-EBOV 
across BXD strains used (Figure 8C). The QTL on proximal chromosome 6 had the highest LRS 
(although not reaching significance) and it is associated with both differential survival and maximum 
disease score. For all three traits, suggestive QTLs on Chromosome 17 and X were found and these 
should be further investigated and verified. The suggestive QTL on chromosome 9 was associated with 
one trait only, namely percent weight loss at death. Further experiments to decipher the role of each of 
these QTLs in modulating differential response to MA-EBOV should shed light as to disease 
pathogenesis and the mechanisms underlying differential severity. 
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Figure 8. Comparison of preliminary genome-wide QTL mapped traits associated with 
differential response of BXD strains to aerosolized MA-EBOV. Interval mapping of 
percent weight loss at death (a) and maximum disease score (b) of BXD strains  
post-exposure to aerosolized MA-EBOV. Suggestive preliminarily QTLs were mapped. 
Proximal chromosome 9 is associated with percent weight loss at death (a) and proximal 
Chromosome 17 is associated with maximum disease score (b). (c) Preliminary QTL 
comparison of the three mapped traits associated with differential response to EBOV 
across BXD strains used. Chromosomes 17 and X are preliminary QTLs common for all 
three traits; chromosome 6 is most significant and associated with both differential survival 
and maximum disease score; chromosome 9 is associated with percent weight loss at death. 
Mouse chromosomes are depicted on the upper X-axis, and a physical map of each 
chromosome on lower X-axis (expressed in mega bases). The Y-axis shows significance of 
phenotype to genotype association expressed as LRS computed by WebQTL suite of 
GeneNetwork platform using 2000 permutation tests.  
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Figure 8. Cont.  

 

2.11. Linkage Analysis and Haplotype Mapping of Preliminary Survival QTLs Associated with 
Susceptibility to Airborne MA-EBOV.  

Considering that one of the main aims of this study is to select strains that could be used to test 
therapeutic interventions, we were especially interested in deciphering the genetic background of the 
five BXD strains that showed marked lethality post-exposure to high dose MA-EBOV.  
Therefore, haplotype analyses of these five BXD strains, focusing on QTLs associated with differential 
response to aerosolized MA-EBOV were performed. Using Linkage analyses, QTLs were chosen with 
LRS higher than 10 and thus are likely to harbor genes that modulate differential survival, weight loss, 
and maximum disease score (Figure 9). The highest LRS associated with differential survival was 
located on proximal chromosome 6 between markers CEL-6_24481169 and rs3701429. Analysis of 
the haplotypes of the five most susceptible BXD strains between these markers showed that they carry 
the B6 allele (relatively susceptible parental strain) (Figure 9). In addition, linkage analyses revealed 
that these five strains have a mix of B6 and D2 alleles at the other preliminary QTLs, except for 
BXD68 and BXD34, which were the most susceptible strains. Further challenge of these QTLs to 
determine genes and pathways that might be modulating differential response to EBOV will be done in  
future experiments. 
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Figure 9. Linkage analysis and haplotype mapping of preliminary survival QTLs.  
(a) Linkage analysis of QTLs associated with differential response post-exposure to 
aerosolized MA-EBOV. Linkage analysis of highest LRS of QTLs associated with 
differential survival, percent weight loss and maximum score. For each mapped trait, 
haplotypes of BXD strains showing highest lethality post-exposure to MA-EBOV 
(BXD68, BXD21, BXD34, BXD89 and BXD18) are analyzed. (b) Strain distribution 
patterns (SDP) and haplotype map of all available BXD strains at the most promising QTL 
mapped on chromosome 6. “B” = allele from C57BL/6 and “D” = allele from DBA/2 . 

 

3. Experimental Section  

3.1. Mice 

Female mice, aged 6–12 weeks, were allowed to acclimate to the bio-safety level (BSL) 4 suite for 
1 week before exposure. BALB/c, C57BL/6J (B6), DBA/2 (D2) and SCID (BALB/c background) mice 
were purchased from The National Cancer Institute (Frederick, MD). Stat1 KO (129S6/SvEvTac 
background) mice were purchased from Taconic (Rockville, MD). IFNγR KO (C57BL/6 background), 
Perforin KO (C57BL/6 and BALB/c background), and BXD mice were purchased from Jackson 
Laboratories (Bar Harbor, Maine). Sixty different BXD strains were used as well as the B6 and D2 
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parental strains (n = 600 (10 per group infected), n = 586 mice included in genetic analysis; belonging 
to the panels of recombinant inbred (RI) and advanced recombinant inbred (ARI) strains, which were 
generated as previously detailed [24–26]. 24−26.  

RI strains (BXD1-BXD42) were generated by Taylor et al. at Jackson laboratories, by crossing of 
B6 and D2 mice generating F1 hybrids, which were crossed to generate F2 progeny, each with random 
patterns of recombination [26] 26. F2 hybrids were assigned as parental for strains and sibling mated to 
generate inbred RI strains. ARI strains (BXD43 and higher), however, follow a scheme of crossing of 
F2 mice to generate F3 and so on, through F11. F14 or F19 generations were inbred by sibling mating 
for >20 generations to achieve homozygosity. This breeding scheme was done to increase 
recombination events resulting in significantly more recombinations per strain compared to 
conventional RI strains [15,23].  

The genomes of the B6 and D2 parental strains have been sequenced and a database of their SNPs 
is available at the Gene Network (GN) web site [28]. Simple sequence length polymorphism (SSLP) 
markers were typed for all BXD RI strains as previously described [23]. The BXD progeny is 
genotyped at 13377 SNPs and microsatellite markers [23], a selected subset of 3795 SNPs and 
microsatellite markers used by GN BXD genotype dataset for mapping traits, can be downloaded [29].  

3.2. Ethics and Animal Welfare 

Research was conducted in compliance with the Animal Welfare Act and other federal statutes and 
regulations relating to animals and experiments involving animals, and adhered to the principles stated 
in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011).  
The facility where this research was conducted (USAMRIID) is fully accredited by the Association for 
the Assessment and Accreditation of Laboratory Animal Care International (Frederick, MD).  
Research was conducted under a protocol approved by the Institutional Animal Care and Use 
Committee (IACUC) at USAMRIID. All animals were observed daily as described below in the  
“Post-exposure Monitoring” section of these methods. Early endpoint criteria, as also described in the 
“Post-exposure Monitoring” section below, were used to determine when animals should be  
humanely euthanized. 

3.3. Virus 

MA-EBOV and EBOV were diluted to an appropriate concentration for aerosol exposure into the 
three-jet Collision nebulizer (9 x 106 pfu/mL for EBOV, 1x107 pfu/mL and 1 × 106 pfu/mL for the low 
and high doses of MA-EBOV) in Eagle's Minimum Essential medium (EMEM) (Gibco) containing 
10% fetal bovine serum.  

3.4. Aerosol Exposures 

Mice were transferred to wire mesh cages (up to 10 mice per cage) and up to four wire mesh cages 
were placed in a whole-body aerosol chamber within a class three biological safety cabinet located 
inside a BSL-4 suite. Mice were exposed to aerosolized EBOV or MA-EBOV created by a three-jet 
collision nebulizer for 10 min at a constant flow rate of 19 L/min. The particle sizes generated had a 



Viruses 2012, 4                            
 

 

3487 

mass median aerodynamic diameter (MMAD) of 1.2–1.8 µm and a geometric standard deviation 
(GSD) of 1.8-2.1, as measured by an Aerodynamic particle sizer (TSI Incorporated, Shoreview, MN) 
(data not shown). Relative humidity reached a steady state of 43-65% and temperature was ambient 
(approximately 20-22 °). Samples were collected from the all-glass impinger (AGI) sampling at a rate 
of 6 L/min connected to the aerosol chamber and were analyzed by performing plaque assays to 
determine the inhaled dose of EBOV or MA-EBOV. The dose was calculated using the following 
formulas: Dose = [Aerosol] (µg/mL) × minute volume (mL) × exposure time (min); minute volume = 
2.1(weight (g)) °.75.  

3.5. Post-Exposure Monitoring 

Mice were observed at least once daily beginning the day of exposure and continuing for at least 21 
days or until an animal met the clinical criteria for euthanasia. During the daily observations, 
temperature and body weight were assayed and each mouse was monitored for clinical signs of 
infection or unexpected illness. Clinical disease scores were assigned based on grooming and provoked 
behavior, ranging from 0 for no illness, to 5 for severe illness/moribund condition. Scores were defined 
as: 0 = normal; 1 = reduced grooming, subdued behavior but normal when stimulated; 2 = dull/rough 
coat, subdued behavior even when stimulated; 3 = absence of grooming/hunched posture;  
5 = unresponsive when stimulated, weak/unable to walk. Animals that met the clinical criteria (a score 
of 5, as defined in the approved research protocol) were humanely euthanized. A full necropsy was 
then performed on some mice, with collection of tissue samples for analysis of histopathology or virus 
content from subsets of animals. 

3.6. Plaque Assay 

Assessments of viral concentration were performed on samples from the starting concentration 
loaded into the nebulizer, AGI contents, and tissues collected at necropsy. Tissues (entire organ) were 
first homogenized using a gentleMACS dissociator (Miltenyi Biotec) and brought up to equivalent 
volumes. All samples were then diluted in EMEM with 10% fetal bovine serum and 100 µl inoculated 
onto 6-well dishes containing Vero E6 cells (ATCC) at approximately 95% confluence. After a 1 h 
incubation at 37 °C, wells were overlaid with a 0.5% agarose Basal Medium Eagle with Earle’s Salts 
(EBME) with HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) solution. On day 7,  
a secondary agarose overlay containing 5% neutral red was added and plaques were counted the 
following day. For the nebulizer samples and AGI contents, viral concentrations were calculated as 
plaque-forming units (pfu) per µl; organ viral loads are reported as pfu/organ. For titering virus in 
organs the entire organ was taken and brought up to equivalent volumes across all samples.  

3.7. Histopathology 

The tissue samples collected for histology were fixed by immersion in a container of 10% neutral 
buffered formalin and held for a minimum of 21 days under BSL-4 containment. The following tissues 
were then prepared for histologic evaluation: brain, cerebellum, eyes, maxillary structures, pituitary 
gland, lungs, thymus, heart, trachea, esophagus, thyroid glands, liver, spleen, pancreas, gastrointestinal 
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tract, mesenteric lymph nodes, kidneys, adrenal glands, sex organs (uterus and ovaries), urinary 
bladder, salivary gland, mandibular lymph node, haired skin, skeletal muscle, and bone (femur).  
The tissue samples were trimmed, routinely processed, and embedded in paraffin. Sections of the  
paraffin-embedded tissues, 5 µm thick, were cut for histology. The histology slides were 
deparaffinized, stained with hematoxylin and eosin (H&E), cover-slipped, and labeled.  

3.8. Quantitative Trait Loci (QTL) Mapping 

QTL mapping was performed using web-based complex trait analysis available on the GN website 
(http://www.genenetwork.org) and the mapping module which analyzes phenotypes in context of 
mouse genotypic differences. Interval mapping evaluates potential QTL at regular intervals and 
estimates the significance at each location using 2000 permutation tests [30]. WebQTL evaluates 
potential QTL at regular intervals and estimates the significance at each location with a graphical 
representation of the likelihood ratio statistics (LRS); where LRS = 4.61 X LOD (log of odds). 
Mapping was done using three traits representative of differential severity to EBOV exposure, namely; 
differential survival post-exposure expressed as coefficient of corrected relative survival indices, 
percent weight loss at death and maximum disease score.  

3.9. Data Handling and Statistical Analysis 

All preliminary data sorting and calculations were performed using features and functions of 
Microsoft Excel. Data from Excel files were later exported to Data Desk (version 6.2.1) software (Data 
Description, Inc., Ithaca, NY. DataDesk software was used for all statistical analyses including index 
clustering, transformations, correlation analysis, linear regression, and general linear model (GLM) 
analysis. Covariates association was evaluated for significant associations by Spearman correlation as 
described previously 18. The coefficient of corrected relative survival indices is an ordinal scale, where 
two steps are involved towards its generation. First, the relative survival index was generated, with 
normalized survival across experiments. Survival days were plotted as dot plots and distribution of 
survival days for each experiment was determined. Multimodal distribution of survival days grouped 
into three clusters: susceptible, intermediate, and resistant. A survival index was assigned to each 
mouse according to which cluster it fell. Indices ranged from 0.25–1, 1.25–2, and 2.25–3 for 
susceptible, intermediate, and resistant clusters respectively. Relative survival indices were generated 
for each mouse in each experiment irrespective of its strain, age or weight. Relative survival index data 
were then subjected to 2-way ANOVA using general linear model (GLM) analyses to generate 
“Coefficient of corrected relative survival index.” This coefficient is a mean of each strain survival 
indices, expressing the contribution of each BXD strain towards survival. Covariates that might affect 
differential sensitivity of different BXD strains to severity of disease were corrected. 
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4. Conclusions  

BALB/c and C57BL/6 mice are typically the mouse of choice in MA-EBOV pathogenesis studies 
with inoculation by the IP route. BALB/c and C57BL/6 mice have been shown not to be susceptible by 
the SC route and interestingly, were found in this study not to be susceptible to aerosolized MA-EBOV 
infection. Immunocompromised mice (Stat1 KO, SCID, IFNγ KO, and Perforin KO) were found to be 
highly susceptible to MA-EBOV infection by the aerosol route. Additionally, Stat 1 KO and SCID 
mice were also susceptible to “wild-type” EBOV infection by the aerosol route, albeit with a 
prolonged disease course, particularly for the SCID mice. 

B6 and D2 mice were somewhat susceptible to aerosolized MA-EBOV with 0–10% and 0–30% 
lethality respectively in the two experiments (high and low dose) performed in this study. These two 
strains are the parent strains of a number of recombinant inbred “BXD” (for B6 × D2) strains.  
These 80 plus strains are stable, inbred mouse strains for which the recombination sites have been 
mapped [15,19]. BXD strains have been used to determine gene loci and even genes involved in 
different disorders (such as alcoholism) and susceptibility and resistance to infectious disease [31,32].  

We were able to obtain 60 of BXD strains to determine their susceptibility or resistance to 
aerosolized MA-EBOV. In doing so, five strains were identified that are completely susceptible to a 
high (approximately >2000 pfu) dose of MA-EBOV. Two of these strains were also highly susceptible 
to a low dose (approximately 200 pfu) of aerosolized MA-EBOV and had 90 to 100% mortality. 
Interestingly, in one of these two strains (BXD34), no lung lesions developed in the five mice that 
were analyzed by histopathology. However, in the strain with 90% lethality (BXD68) at the lower dose 
of aerosolized MA-EBOV, each of the five mice analyzed by histopathology were found to have areas 
of necrosis within the lung. Also of note is that there were no signs of disease in eight of 60 BXD 
strains, which means that these strains were less susceptible than the two parent strains (D2 and B6).  

These studies revealed that genetic differences in BXD mouse strains, and not confounding factors 
such as age, baseline weight or dose, play a role in susceptibility to MA-EBOV. Several chromosomes 
and recombination sites have been singled out as probable locations of alleles conferring susceptibility, 
most notably chromosome 6; however more work will enable mining of specific candidate genes. 
Interferon response genes are good candidates in conferring susceptibility, and these have not been 
ruled out. While other pathways could certainly be involved in conferring susceptibility in these 
strains, the putative QTLs on chromosome 6 that were identified encode at least several proteins 
involved in the interferon response. For example, on locus rs13478687, FAM40b (also called STRIP2 
for striatin-interacting protein 2) forms a protein-protein interaction with SIKE (“suppressor of IKKε), 
which is a negative regulator for the interferon pathway [33,34]. Another locus, rs3665582 contains 
transmembrane protein 229A (TMEM229a), which has an interferon binding domain [35]. 
Furthermore, locus rs3701429 contains the ubiquitin conjugating enzyme (UBE2H), which interacts 
with interferon-inducible tripartite-motif (TRIM) 56, which is a regulator of double-stranded  
DNA-mediated type I interferon induction [36]. Chromosome 9 also has such examples;  
locus rs4227587 encodes the E26 avian leukemia oncogene 1 (ETS1) 5’ domain, which can contribute 
to up-regulation of the type 1 IFN pathway [37]. Further experiments and analyses of the preliminary 
QTLs may help to verify and identify regions involved in susceptibility or resistance to  
filovirus infection.  
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The biological basis for the pathology differences observed in the lungs of the two most susceptible 
BXD strains is also of great interest. BXD68 and BXD21 mice had lung lesions consisting of 
multifocal congestion, edema, hemorrhage and necrosis. This may be unique to an aerosol route of 
infection; lung lesions have not been reported in mice infected IP with MA-EBOV.  
However, multifocal pulmonary congestion, edema, and hemorrhage has recently been reported in 
interferon receptor-deficient mice that were aerosol-challenged with “wild-type” EBOV; necrosis was 
apparently not a feature of the lesions in the mice of this latter study 1°. In contrast, the BXD34 mice 
did not have lung lesions. These mice received a slightly higher viral dose than the other animals and 
they became moribund 1-2 days earlier than the mice in the other two groups. The lack of lung lesions 
in these mice might have been related to genetic differences in this mouse group and/or the earlier 
timing of their deaths. The underlying reasons for these differences will be explored in future studies.  

The five BXD strains that were susceptible to airborne MA-EBOV were not susceptible to airborne 
WT-EBOV. Since the mice lost weight however, it is possible that lethal disease could occur if a 
higher dose is given or that these mice might be susceptible to WT-EBOV administered by another 
route. These susceptible BXD mouse strains may also be useful in developing models with other 
filovirus/route combinations, which have proved difficult thus far.  

There are several similarities between the aerosolized MA-EBOV infection of mice reported here 
and NHPs infected with filovirus by the aerosol route. Specifically, the lymphocyte death, lesions in 
the lungs, liver and kidney observed here are also observed in NHPs 4. Furthermore, the time at which 
moribund condition (7–12 days) is reached is also similar for NHPs exposed to filovirus by the aerosol 
route 3−5. Unlike NHPs however, aerosolized MA-EBOV of mice was not associated with evidence of 
disseminated intravascular coagulopathy (DIC). We conclude that BXD68 and BXD34 are both highly 
susceptible to aerosolized MA-EBOV infection and either could be used as a model for early stage 
testing of filovirus countermeasures.  
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