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Abstract: Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with 

high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and 

dendritic cells. The infection spreads to the liver, spleen and later other organs by blood 

and lymph flow. A hallmark of filovirus infection is the depletion of non-infected 

lymphocytes; however, the molecular mechanisms leading to the observed bystander 

lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the 

fate of infected cells in filovirus disease. In this review we will explore what is known 

about the intracellular events leading to virus amplification and cell damage in filovirus 

infection. Furthermore, we will discuss how cellular dysfunction and cell death may 

correlate with disease pathogenesis. 

Keywords: Ebola Virus; Marburg Virus; filoviruses; viral replication cycle; target cells; 

animal models; ultrastructural analysis; virus-cell interaction; bystander apoptosis; 

cell death 

 

OPEN ACCESS



Viruses 2011, 3            

 

 

1502

1. Introduction 

The members of the filovirus family, Ebola virus (EBOV) and Marburg virus (MARV), cause a 

severe hemorrhagic fever in infected humans with high fatality rates [1]. Infected individuals who go 

on to succumb to filovirus infection exhibit dysregulated immune responses (reviewed in two other 

articles in this issue). This appears to result from several factors, including viral mediated impairment 

of early innate immune responses and consequent dysregulation of innate immunity [2]. Some reports 

have suggested that adaptive immune responses may occur [3–6], but it is evident that these fail to 

clear the disease. Lymphopenia resulting from apoptosis as the infection progresses has also been 

suggested to contribute to the failure to clear the infection [7]. Studies of both human survivors and 

murine model systems suggest that a well-regulated cytokine response early in the course of the 

infection may be critical to the outcome of the disease [8,9]. 

Ebolaviruses are currently subdivided into four distinct species, Zaire ebolavirus (ZEBOV), Sudan 

ebolavirus, Tai Forest ebolavirus, and Reston ebolavirus (REBOV), while there is only a single 

MARV species (Lake Victoria marburgvirus) (ICTV virus taxonomy 2009). Since the Bundibugyo 

isolate is genetically distinct from the known Ebola viruses, a suggestion has been made to classify it 

as a new EBOV species, Bundibugyo ebolavirus [10]. The different EBOV species not only show 

significant molecular differences, they also vary in terms of virulence and pathogenicity. The most 

pathogenic species in humans is ZEBOV with a case fatality rate of about 80%, followed by Sudan 

with a case fatality rate of about 50% [11], and Bundibugyo with a fatality rate of about 30% [12]. To 

date, there are two reported non-fatal human cases of Tai Forest ebolavirus [13,14] and several 

asymptomatic human cases of REBOV infection [15–17].  

The first reported MARV outbreak occurred in Germany and Yugoslavia in 1967 and was caused 

by infected African green monkeys imported from Uganda [18,19]. Since this outbreak was associated 

with a case fatality rate of 22%, it was believed for a long time that MARV was less pathogenic than 

EBOV. However, recent outbreaks of MARV in the Democratic Republic of the Congo in 1998–2000 

and in Angola in 2004 were associated with fatality rates up to 90%, indicating that MARV can be as 

virulent as EBOV [20–22]. 

Despite the severity of the disease, filoviruses have been regarded as exotic pathogens with fatal 

outbreaks restricted to Central Africa, and with no major health threat outside of the endemic areas. 

Knowledge on their biology and pathogenicity consequently remained limited. However, there has 

been renewed interest given the potential for using filoviruses in bioterrorism attacks and the 

possibility for infected, asymptomatic persons for bringing the disease to other countries. Indeed, two 

cases of MARV have been reported in the Netherlands and in the United States, both tourists 

returning from trips to Uganda [23,24]. Together, the potential for spread outside central Africa has 

reignited research endeavors to elucidate the biology of the filoviruses and to develop effective 

therapeutic strategies. 

In this review we will describe how filoviruses enter their target cells, replicate their genomes and 

assemble progeny viruses by exploiting cellular machineries. We will also briefly touch upon the 

interaction of filoviruses with cellular signaling pathways. Finally, we will discuss the current 

understanding of the fate of infected and non-infected cells in filovirus infection. In addition, we will 
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present ultrastructural data of infected and non-infected cells, demonstrating the morphological 

changes in filovirus infection. 

2. The Central Players: Virus and Target Cells 

2.1. Filovirus Structure 

The structure of filovirus particles has been described in detail in [1] and multiple review articles. 

Briefly, the single stranded non-segmented RNA genome of filoviruses is of negative polarity and 

contains seven monocistronic genes. It is associated with four viral proteins, the nucleoprotein NP 

which enwraps the viral RNA, the RNA-dependent RNA polymerase L, the polymerase cofactor 

VP35, and the transcription factor VP30. The four nucleocapsid proteins are required for replication 

and transcription of the viral genome (reviewed in [25]). Filovirus genomes encode two 

matrix proteins, VP40, the functional equivalent of the matrix proteins M of other non-segmented 

negative-stand RNA viruses, and the minor matrix protein, VP24, which is unique to filoviruses. As a 

peripheral membrane protein, VP40 is located at the inner side of the virion’s membrane. It mediates 

budding and viral particle release [26]. The minor matrix protein VP24 is involved in nucleocapsid 

formation and assembly [27–29] and contributes to the regulation of viral transcription/replication 

[30,31]. EBOV VP24 and MARV VP40 are considered important virulence factors and play a crucial 

role in host adaptation. Both proteins block IFN signaling, however, they target different cellular 

proteins and use different mechanisms to antagonize the IFN response [32–35]. The role of EBOV 

VP24 and MARV VP40 in the innate immune response to filovirus infection will be discussed in more 

detail in another article in this issue. Filoviruses possess a single surface protein, the type I 

transmembrane glycoprotein GP that mediates attachment to target cells, entry, and fusion [36]. The 

precursor preGP is cleaved in the trans Golgi network by furin or a furin-like protease resulting in two 

disulfide-linked subunits, GP1and GP2 [37]. Notably, EBOV GP has been implicated in cell damage, 

which will be discussed in more detail in Section 4.2.2. 

EBOV genomes encode an additional protein, the nonstructural soluble form of the glycoprotein, 

sGP. As GP, sGP is encoded by the fourth gene, but is translated from non-edited mRNA species, 

while the membrane-bound GP is the result of mRNA editing during transcription [38,39]. sGP is not 

incorporated into viral particles, but is secreted from infected cells. Although the function of the 

protein is not fully understood, there is evidence that it acts as an anti-inflammatory factor by 

protecting the endothelial cell barrier function during infection [40]. Besides sGP, a second soluble GP 

variant generated by mRNA editing, the small soluble protein (ssGP) has been identified [41,42]. A 

nonstructural MARV protein comparable to EBOV sGP is not expressed. 

2.2. Target Cells in Filovirus Infection 

Filoviruses have a broad cell tropism in susceptible host species. Among the target cells supporting 

viral replication are monocytes, macrophages, dendritic cells (DCs), hepatocytes, adrenal cortical cells, 

fibroblasts and endothelial cells [43–57]. 

The earliest events during infection are likely to center around cells of the mononuclear phagocyte 

system, including monocytes, macrophages, and DCs. These cells not only orchestrate innate and 
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adaptive immune responses [58,59], but also serve as early targets of viral infection [47–49,55,56, 

60–66]. It is thought that the early infection of these cells is responsible for the rapid and widespread 

dissemination of the virus throughout an infected host [67]. 

Replication of MARV in peritoneal macrophages of guinea pigs can be detected within 24 h after 

intraperitoneal infection [50]. In African green monkeys, infected Kupffer cells were identified in the 

liver early in infection, on days 2 or 3 following infection with ZEBOV or MARV. The liver and 

adrenals are target organs of these viruses, whose parenchyma cells support filovirus replication. 

Infected hepatocytes and adrenal cortical cells can be detected a day or two after finding infected 

macrophages. Secondary target cells also include fibroblasts and endothelial cells, which were 

observed 5 to 7 days after filovirus infection of non-human primates [47,49,50]. Filovirus-infected 

macrophages, fibroblasts, and endothelial cells were found in all organs examined in these animal 

models [46–52,55]. The presence of these cell types in virtually all organs may account for the 

observed filovirus pantropism. Indeed, MARV or ZEBOV can be isolated from any organ or tissue. 

Besides the typical target cells for ZEBOV and MARV infection in non-human primates, additional 

target cells were occasionally found in individual animals. These cells included alveolar epithelial 

cells, bronchial epithelial cells and the cells of endocardial layer [50]. In cynomolgus macaques, 

REBOV was shown to have similar target tropism, and also to rarely infect alveolar and kidney 

epithelium as well as adrenal medulla cells [64]. 

Filoviruses are present in the blood of infected animals and are therefore potentially spread to all 

parts of the body by blood flow both as free virions as well as within infected monocytes. It is likely 

that the lymphatics also contribute to the rapid spread of the virus as free viruses and virus-infected 

DCs. The structure of sinusoids and sinuses in the liver and spleen allows for the direct migration of 

filoviruses from the blood stream, facilitating the infection of hepatocytes and splenic macrophages. 

Migration of infected monocytes from blood vessels may deliver the virus into connective tissue where 

it infects fibroblasts, which then spread progeny viruses by their protrusions to sites far from the main 

body of the infected cell [46,49,50,68]. It is therefore likely that filoviruses are disseminated in the 

infected host by multiple different mechanisms including transport of free virus particles by blood and 

lymphatic fluids, migration of infected monocytes, macrophages and DCs into various tissues, and 

viral cell-to-cell spread via cell protrusions.  

One of the most intriguing features of fatal filovirus infection in animals and humans is that little or 

no inflammatory cellular response occurs at the sites of viral replication. Accumulation of neutrophils, 

monocytes, and lymphocytes around infected cells has been rarely observed in infected tissues. The 

minimal inflammatory cellular response is considered to be a distinctive feature of filovirus infection 

[45,49,55,60,63,69–71] and may represent a part of the dysregulated immune response observed in 

fatal cases of EBOV and MARV infection. In non-fatal EBOV infections of guinea pigs, in contrast, a 

prominent inflammatory response is observed, and infected cells are tightly surrounded by leukocytes 

forming a substantial barrier which could impair viral dissemination [48,62]. 
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3. What Happens in the Infected Cell? 

3.1. Entry: Speak Friend and Enter 

The first step that determines if a cell will be a target for infection is the ability of the virus to 

attach. Filoviruses are able to infect multiple cell types in vivo and in cell culture by exploiting cellular 

entry machineries. However, some cells are more susceptible to infection than others, and some are not 

permissive to infection. 

The filovirus replication cycle is depicted in Figure 1. Filoviruses enter the target cells by different 

uptake mechanisms including lipid raft-dependent and receptor-mediated endocytosis [72–75] and 

macropinocytosis [76,77]. Receptor binding and attachment to the target cells is mediated by the 

glycoprotein subunit GP1. A number of cellular proteins have been implicated in filovirus entry, and it 

is not clear whether there is a “primary” receptor for these viruses. The different co-receptors likely 

provide access for the virus into different target cells. The folate receptor has been suggested to be a 

significant filovirus receptor [78]. However, cells lacking folate receptor-α are still permissive for 

infection [79,80]. An interesting group of glycan binding proteins that enhance filovirus uptake in a 

cell-specific manner belong to the C-type lectin family. The highly glycosylated GP of both MARV 

and EBOV is decorated with a set of N- and O-linked glycans [81–83] which, depending on their 

specific structures, can be recognized by different C-type lectins. This includes asialoglycoprotein 

receptor on hepatocytes, DC-SIGN and hMGL on macrophages and immature DCs, and L-SIGN and 

LSECtin on endothelial cells in liver and lymph nodes [84–91]. Another group of proteins involved in 

filovirus entry are the β1-integrins [92,93]. Integrins are expressed on a wide range of cell types and are 

involved in the uptake of a variety of different viruses. Interestingly, detailed study of one of these 

integrins, the α5β1-integrin, has demonstrated that it is not involved in EBOV internalization, but rather 

in the regulation of endosomal cathepsin required for EBOV fusion [93]. More recently T-cell 

immunoglobulin and mucin domain 1 (TIM-1) has been suggested as a receptor for EBOV and MARV 

GP [94]. TIM-1 is not expressed by the primary targets of filoviruses, macrophages and DCs, but is 

expressed on mucosal epithelial cells, whose role in infection is not clear yet. Another interesting 

group of proteins involved in EBOV uptake are the members of the Tyro3/Axl/Mer (TAM) receptor 

family. Ligand-activated TAM receptors are negative regulators of inflammation in macrophages and 

DCs by upregulating the expression of SOCS1 and SOCS3 proteins in a phospho-STAT1-dependent 

manner [95]. The TAM receptor Axl serves as a co-receptor for EBOV entry by binding the viral 

surface protein GP [96]. To bind GP, the TAM receptor ligand binding domain has to be intact [97]. 

However, it is not known if GP binding leads to the activation of Axl. Recently, Axl has been shown to 

be involved in receptor-independent uptake of EBOV by macropinocytosis [75].  

After uptake, the virus particles are internalized into the endosomes, where fusion takes place. 

Fusion of the viral and cellular membrane is mediated by the fusogenic cleavage product GP2 [98]. To 

initiate fusion, the proteolytic cleavage of GP1 by the endosomal proteases cathepsin B and cathepsin L 

is mandatory [99–101]. Interestingly, the cathepsin dependence of virus entry seems to be cell-type 

specific. While virus entry into Vero cells is dependent on the activity of both cathepsin B and 

cathepsin L, infection of human DCs by EBOV does not require active cathepsin L [102]. 
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Figure 1. Scheme of the filovirus infection cycle. Filoviruses enter the cell by 

receptor-mediated endocytosis or macropinocytosis. After fusion of the viral and cellular 

membrane, the nucleocapsid is released into the cytoplasm and serves as a template for 

transcription and replication. The replicated RNA is encapsidated by the nucleocapsid 

proteins. The newly synthesized nucleocapsids are transported to the sites of viral release, 

where budding takes place. 

 

3.2. Replication: The Intruders Take Over 

Fusion of the viral and cellular membrane leads to the release of the viral nucleocapsids into the 

cytoplasm of the infected cell where transcription and replication of the viral genome take place 

(Figure 1). The nucleocapsid, rather than the naked RNA, serves as the template for both transcription 

and replication. During transcription, the seven viral genes are sequentially transcribed into 

monocistronic mRNAs which are capped and polyadenylated and are used for the production of viral 

proteins. During replication, the encapsidated RNA is copied into full-length positive-sense replicative 

intermediates, the RNA antigenomes, which are enwrapped by the nucleocapsid proteins. In turn, the 

antigenomes are used as templates for the synthesis of progeny genomes. The nucleocapsid proteins do 

not only encapsidate the RNA genomes, they are also essential for replication and transcription. The 

viral polymerase, consisting of L and VP35, catalyzes replication as well as transcription, including 

polyadenylation and capping (reviewed in [25]).  
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The driving force for nucleocapsid formation is NP [103,104]. It has been proposed for EBOV that 

NP forms helical structures which interact with VP35 and VP24, resulting in the formation of 

nucleocapsid-like structures [105,106].  

It is believed that the amplification of the viral genome and the assembly of newly synthesized 

nucleocapsids occur in highly organized regions in the cytoplasm, the viral inclusions [103,106,107] 

(Figure 2A). The appearance of granular material of average electron density in the cytoplasm of the 

infected cells at 12 h (MARV) and 9 h (ZEBOV) post infection (p.i.), respectively, is the first 

morphological sign of viral replication, as revealed by electron microscopic studies following the 

course of MARV and ZEBOV infection in Vero and MDCK cells [50]. The granular material is 

closely associated with the surface of the ER and contains viral proteins and RNA (Figure 2C). 

Tubular structures with an average diameter of 50 nm then appear in the granular material representing 

the newly synthesized viral nucleocapsids [50,105] (Figures 2B,C). The viral inclusions can be easily 

detected as large irregularly formed cytoplasmic aggregates by immunofluorescence microscopy 

[108,109]. To date, it is not known if cellular components are required for inclusion formation. 

The morphological characteristics of filovirus replication in animal cells in vivo are identical to 

those observed in cell culture. We analyzed the morphology of inclusion bodies in EBOV and 

MARV-infected cells of various organs of non-human primates, guinea pigs, mice, and chick embryos, 

as well as Vero, BHK-13 and MDCK cells and observed that filovirus inclusions, though 

morphologically heterogeneous, are always composed of granular material and varying numbers of 

nucleocapsids [50]. A few examples of filovirus infected cells in animal tissues are presented in 

Figure 3. 

3.3. Exit: Rats Abandon a Sinking Ship 

Following assembly, newly synthesized nucleocapsids are transported to the sites of virus budding. 

Immunoelectron microscopy of EBOV-infected cells revealed that NP and the matrix protein VP40 

accumulate in the viral inclusions and are closely associated during viral morphogenesis [110]. 

Meanwhile, it has been confirmed by multiple studies that the filoviral VP40 protein is the major 

player in viral budding, though various viral proteins significantly enhance the release of viral particles 

(reviewed in [111–113]). Importantly, filoviruses exploit the vesicular transport machineries of the 

infected cell for viral egress, and viral proteins of both MARV and EBOV have been reported to 

interact with various protein components of the COPII vesicular transport system and the ESCRT 

machinery (reviewed in [111,114,115]). Viral budding occurs either at intracellular membranes, the 

multivesicular bodies (MVB) [116], or at the plasma membrane [50,105,117]. In cell culture, MARV 

particles are preferentially released at filopodia, which may facilitate the infection of neighboring 

cells [117].  
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Figure 2. Morphological characteristics of Zaire ebolavirus (ZEBOV) replication.  

(A) Ultrathin section of a ZEBOV-infected Vero cell containing large viral inclusions. The 

inclusions are composed of granular material (1; also shown in (C)) and rod-like 

nucleocapsids. Released virions are indicated by long arrows and are shown in the inserts. 

(B) Cross section of viral inclusion containing nucleocapsids. (C) Longitudinal section of 

viral inclusion containing nucleocapsids. (D–F) Budding of viral particles. In the initial 

step of budding a particle can be positioned parallel (D and E, cross and longitudinal 

sections), or perpendicular (F) to the membrane and then subsequently is enveloped. Short 

arrows indicate the cellular plasma membrane. 2—nucleus, 3—nucleolus, 4—Golgi zone. 

Bars in Figures 2B–F correspond to 250 nm. Thick part of frame around cross-sectioned 

virion corresponds to 120 nm, and thick part of frame around longitudinal section 

corresponds to 160 nm. Transmission electron microscopy. Cells were fixed at 16 h p.i. 
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Electron microscopic studies of filovirus-infected cells suggested two models for the release of the 

long, filamentous viral particles: horizontal budding after lateral association of the nucleocapsids with 

the plasma membrane or vertical budding [50,105,117] (Figures 2D–F). A recent electron tomography 

study of MARV-infected cells convincingly reconciled the results into a single model. Welsch and 

colleagues [118] showed that the budding process is initiated by the lateral association of the 

intracellular nucleocapsids with the plasma membrane. Starting from one end, the nucleocapsids are 

then subsequently wrapped by the plasma membrane until the viral particles protrude vertically from 

the cell surface. The formation of such long filamentous particles (700–900 nm or more) is certainly 

challenging for the infected cells and may lead to membrane perturbation in the cells and in the 

released viruses. Notably, the release of infectious filamentous MARV from cultured cells has been 

reported to peak at early time points post infection (1–2 days p.i.), when the cells were still intact. At 

late time points (4 d p.i.), most of the infected cells were vesiculated, the released virions were 

morphologically different, being round or bent, and coincidentally infectivity was decreased [118].  

4. To Live or Die: The Fate of Infected and Non-Infected Cells in Filovirus Infection 

4.1. Mechanisms of Cell Death 

Viruses exploit the host cell for successful replication, potentially leading to death of the infected 

cell. Since the production of progeny viruses is hampered when the infected cells are destroyed early in 

infection, many viruses have evolved mechanisms to avoid host cell death, as reflected by a complex 

interaction between viruses and cell death signaling pathways (reviewed in [119,120]). Different types 

of cell death, including apoptosis, necrosis, and autophagy, can be described by different 

morphological and biochemical characteristics (reviewed in [121,122]). Apoptosis or programmed cell 

death is characterized by shrinking of the dying cell, plasma membrane blebbing, nuclear 

condensation, and final fragmentation of the cell in apoptotic bodies [123,124]. Tissue lymphocytes 

from filovirus-infected non-human primates showing typical signs of apoptosis, such as condensation 

and marginal localization of chromatin, are shown in Figures 4B–E. Biochemically, apoptosis is 

characterized by activation of caspases. Caspase cleavage can be activated by extrinsic pathways via 

death receptor signaling induced by TRAIL, Fas/CD95 (Fas), or TNFα or by intrinsic pathways via 

regulation of cytochrome C efflux from the mitochondria (reviewed in [125–127]). Lymphocyte 

apoptosis plays an important role in T cell development and control of T cell tolerance [128] and might 

also play a crucial role in the pathogenesis of filovirus infection as discussed in Section 4.3. In contrast 

to apoptosis, necrosis is generally described as uncontrolled cell death, but recent findings suggest that 

it also might be regulated by conserved biochemical mechanisms (reviewed in [129,130]). Necrosis is 

characterized by swelling of the cell and cellular organelles, membrane blebbing, vacuolization and 

results in rupture of the plasma membrane [121,124]. Autophagy is a conserved pathway of eukaryotic 

cells for recycling cellular components. However, extensive cellular stress can lead to autophagic or 

type II cell death. Autophagic cells feature vacuolization and formation of double membraned vesicles, 

the autophagosomes, for degradation of cellular content [131,132]. Characteristic features of 

non-apoptotic cell death, such as vacuolization, swelling, and the lack of chromatin condensation can 

be seen in Figures 3E,F.  
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4.2. Infected Cells 

In cell culture, filovirus infection leads to a clear cytopathic effect (CPE) including cell blebbing, 

cell rounding, vacuolization, and detachment [109,118,133,134]. However, the severity of the 

observed CPE is dependent on the virus species and the cell line used [54,135,136]. The mechanisms 

leading to cell death in filovirus infection are far from being understood and the published data are to 

some extent contradictory. While some studies describe apoptotic cell death for isolated primary 

human macrophages infected with ZEBOV or Bundibugyo [136,137], others did not observe any signs 

of apoptosis in filovirus-infected primary human cells including monocytes/macrophages from 

peripheral blood mononuclear cell cultures, macrovascular endothelial cells, or microvascular 

endothelial cells [54,138].  

Electron microscopic studies and biochemical analyses of tissues from infected animals indicate 

that infected cells, including macrophages, DCs, hepatocytes, and endothelial cells, do not undergo 

apoptosis [47–50,55,60,62,63,69,138]. Morphologically, the cells appear normal (Figure 3A–D) 

or they show signs of necrosis (Figures 3E and F). A few examples of filovirus-infected cells from 

tissues from infected animals are shown in Figure 3. Although the shown tissue macrophages 

(Figures 3A,B,E,F), hepatocytes (Figure 3C), and endothelial cells (Figure 3D) are infected, as 

indicated by the presence of viral inclusions in the cytoplasm of the infected cells, they do not show 

any signs of apoptosis. Vacuolization of the infected cells, however, indicates that they finally undergo 

non-apoptotic cell death (Figures 3E,F). Notably, the number of swollen and necrotic cells increases 

during infection [49,55,62,63,69,138].  

Intriguingly, the number of DCs was shown to dramatically decrease early in ZEBOV infection in 

baboons, African green monkeys, and rhesus macaques, and they were totally absent at 6–7 days 

p.i. [50]. In contrast, DCs were still present in ZEBOV-infected cynomolgus monkeys on day 6 [55]. 

These differences might be attributed to species-specific variability in the various non-human primate 

models for filovirus infection [139].  

In non-human primates and guinea pigs, infected hepatocytes develop necrosis not related to the 

formation of inflammatory foci. The liver is a major target organ for filovirus infection and necrotic 

hepatocytes appear 3–4 days p.i. in numbers that depend on the infectious dose [44,47,50,60,69]. 

Notably, significant apoptosis of hepatocytes has been observed in a lethal mouse model for ZEBOV 

and seems to play an important role in pathogenesis; however, it is not clear if the apoptotic 

hepatocytes were infected [3].  

Extensive filovirus infection may lead to the depletion of cellular stocks and disruption of cellular 

homeostasis. Morphologically, such depleted cells first show signs of swelling and vacuolization of 

cellular organelles including the ER, mitochondria and Golgi, suggesting that the cells are unable to 

maintain a normal water-ion balance. This is followed by cellular swelling, vacuolization and cell 

rounding, which leads to the formation of vacuolar structures consistent with necrosis in the cytoplasm 

of infected cells (Figures 3E,F), reflecting edematous conditions within the cells [140]. Whether this is 

due to damage to ion pumps in the plasma membrane or vacuolization of the membrane resulting in 

cell permeability as a result of viral budding is unclear. As noted earlier, however, the changes in the 

host cells are also coincident with changes in the progeny virus morphology and infectivity.  
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Figure 3. Transmission electron microscopy of ultrathin sections of tissues from animals 

experimentally infected with filoviruses. Tissues were fixed at day 5 or 6 p.i. (A) Ultrathin 

section of liver tissue from ZEBOV-infected rhesus monkey showing an infected 

macrophage. (B,C) Ultrathin sections of liver tissue from Marburg virus (MARV)-infected 

guinea pig. Shown are an infected macrophage (B) and an infected hepatocyte (C).  

(D) Ultrathin section of spleen tissue from ZEBOV-infected African green monkey 

showing an infected endothelial cell. (E) Ultrathin section of lymphatic node tissue from 

ZEBOV-infected African green monkey showing a necrotic infected macrophage.  

(F) Ultrathin section of a necrotic ZEBOV-infected Vero cell showing an infected 

macrophage. Arrows show vacuolization of endoplasmic reticulum cisterns in cells 

undergoing non-apoptotic cell death. 1—filovirus inclusions; 2—nucleus; 3—erythrocyte. 

Bars correspond to 2 µm. 
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4.2.1. Interaction of Filoviruses with Cellular Pathways 

The striking lack of infected apoptotic cells reported in most studies raises the question if 

filoviruses manipulate signaling pathways involved in apoptosis or cell survival. A first hint pointing 

in this direction has been given by a recent study showing that EBOV entry leads to the activation of 

the PI3K/Akt signaling pathway very early in infection, resulting in the activation of Rac1, a regulator 

of endocytosis and vesicular trafficking [141]. PI3K is embedded in a complex network of signaling 

cascades regulating cell metabolism, proliferation and survival, and many viruses modulate the 

PI3K/Akt pro-survival pathway to prevent premature apoptosis of infected cells [142]. The temporal 

modulation of PI3K activation during viral infection is critical, and different arms of the PI3K 

signaling network might be activated by distinct viral triggers during the replication cycle. Thus, it has 

been shown for influenza virus that transient PI3K activation during entry leads to the activation of 

Rac1, while late in infection, PI3K activation prevents the induction of premature apoptosis [143]. It is 

currently not known if PI3K/Akt pro-survival signaling cascades are activated at late stages in filovirus 

infection, but this would be an attractive model to at least partially explain why apoptosis does not 

seem to be the preferred mechanism of cell death in filovirus infection.  

Filoviruses are known to interfere with antiviral signaling pathways. Since the innate immune 

response to filovirus infection and the corresponding viral countermeasures are the main subject of 

another review article in this issue, we will focus on the mechanisms involved in the regulation of 

apoptosis. To combat viral invasion, cells have evolved multiple antiviral defense mechanisms that are 

activated upon infection and ideally, will lead to the elimination of the viral intruders. The antiviral 

response is initiated by a cellular detection process mediated by various cellular pattern recognition 

receptors (PPR) that specifically recognize pathogen-associated molecular patterns (PAMPs). Typical 

PAMPs of negative-sense RNA viruses are surface proteins and RNA [144,145]. A prominent filovirus 

PAMP are the 5′triphosphate ends of the genomic RNA which can be sensed by RIG-I, leading to the 

induction of the type I interferon (IFN) response [146]. However, in cells infected with EBOV, the 

induction of the type I IFN response via RIG-I activation is blocked by the polymerase cofactor VP35 

(reviewed in [147,148]). Recent findings show that RIG-I activation may lead to the induction of 

mitochondrial-mediated apoptosis, which is triggered by binding of the IFN regulatory factor 3 (IRF-3) 

to the pro-apoptotic Bax protein. The IRF-3-mediated induction of apoptosis has been considered an 

important antiviral defense mechanism against RNA viruses [149–151]. In addition, it has been 

reported that the mitochondrial antiviral signaling protein (MAVS; also known as IPS-1, VISA, or 

Cardif), an adaptor protein in the RIG-I signaling pathway, is able to activate apoptosis signaling, and 

this activation can be inhibited by viruses to prevent the induction of apoptosis [152,153]. Although 

one can speculate that the inhibition of RIG-I signaling by VP35 may prevent the induction of 

apoptosis in infected cells, no data are available to support this hypothesis. Noteworthy, the activation 

of PPRs by viral infection or double-stranded (ds) RNA may likewise induce anti-apoptotic signaling 

through NFκB, resulting in increased host cell survival [154–156] (reviewed in [157]). 

The antiviral protein dsRNA-dependent protein kinase R (PKR) senses dsRNA and is a main 

regulator of IFN signaling and apoptosis. Since dsRNA is formed during replication and transcription 

of multiple RNA and DNA viruses [158], it is considered to be a major PAMP in viral infection. Upon 

activation by dsRNA PKR phosphorylates the translation initiation factor eIF2α, leading to 
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translational arrest and apoptosis [159]. Intriguingly, PKR is not activated in ZEBOV-infected cells, 

and VP35 has been shown to actively block PKR activation [160,161]. It has been reported for various 

viruses that they inhibit PKR-mediated eIF2α phosphorylation to prevent host cell apoptosis [162–164]. 

However, it is not known if the inhibition of PKR in EBOV-infected cells blocks the induction of apoptosis. 

Toll-like receptors (TLRs) are another important group of PRRs recognizing viral PAMPs [145]. 

TRL signaling was found to play pro- and anti-apoptotic roles in different cell types highlighting its 

role in regulation of host cell death [165,166]. The EBOV surface protein GP is recognized by TLR4 

and activates TLR4 signaling, including activation of NFκB [167]. It remains unclear, however, if 

TLR4 signaling is triggered in the context of EBOV infection, since in a recent study, EBOV VP35 

was found to interfere with the maturation of DCs induced by lipopolysaccharide, an agonist of 

TLR4 [168]. VP35 was also shown to inhibit the induction of IFN in murine DCs after treatment with 

CpG DNA, an agonist for TLR9 [169]. However, a recent study by Leung et al. [170] suggests that 

cells utilizing TLR-mediated antiviral pathways such as plasmacytoid dendritic cells are less prone to 

the inhibitory effects of VP35 EBOV than cells relying on RIG-like signaling pathways. In conclusion, 

the role of TLR signaling in filovirus infection is not well understood and additional studies using 

filovirus infection models are needed. 

4.2.2. The Cytopathic Factor GP 

Multiple expression studies have implicated the EBOV surface protein GP in cytotoxicity and cell 

damage, inducing cell rounding, detachment, and membrane permeabilization [92,171–177], while 

other EBOV proteins did not induce cell detachment [171]. Expression of GP also leads to a general 

downregulation of cell surface proteins including adhesion molecules, MHC class I proteins, and EGF 

receptor [92,174,176,178]. Moreover, GP expression in explanted blood vessels resulted in endothelial 

cell loss and increased vascular permeability [171].  

As mentioned above, GP is proteolytically cleaved in two subunits, GP1 and GP2. Intriguingly, both 

GP subunits contribute to the observed cytopathogenicity. The cytopathic domain within GP1 has been 

mapped to the so-called mucin-like domain, a highly O- and N-glycosylated serine-threonine-rich 

region of about 150 amino acids in length, which is sufficient to cause detachment and downregulation 

of cellular surface proteins [171,178,179]. Interestingly, the mucin-like domain does not only induce 

cytopathic effects in cells expressing EBOV GP, but was also shown to induce activation of NFκB and 

ERK signaling pathways in cells treated with EBOV-like particles [180].  

It has been suggested that the GP-induced cytotoxic effects are caused by the interaction of GP 

with the GTPase dynamin, leading to interference with the intracellular trafficking of cell surface 

proteins [176]. However, a recent study has questioned the involvement of dynamin in GP-induced 

CPE [178]. GP has also been shown to modulate the ERK/MAPK signaling cascade by reducing ERK2 

activation. This effect is dependent on the mucin-like domain. Since downregulation of active ERK2 

leads to a decreased alphaV-integrin expression, which is associated with cell rounding and 

detachment, it has been suggested that ERK2 signaling cascades are involved in the induction of 

GP-mediated cytopathic effects [179]. Another possible mechanism of GP-induced cytotoxicity might 

be the induction of ER stress associated with the unfolded protein response. A recent study reports that 

ectopically expressed GP containing the mucin-like domain accumulates in the ER, whereas GP 
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lacking the mucin-like domain is distributed throughout the cell and does not localize in the ER. When 

the membrane-anchored GP2 subunit is expressed in cells in the absence of GP1, it also induces 

cytopathic effects by enhancing the permeability of the plasma membrane. This effect is mediated by 

the transmembrane domain [177,181]. If and how the different proposed mechanisms to explain 

GP-mediated cytopathogenicity are connected, is currently not known.  

There is some debate over the ability of GP to induce cell death. Several groups reported that 

expression of GP, though inducing detachment of the cells, does not lead to cell disruption [172,174], 

while others observed cell death [171,175,179]. It is possible that the observed differences are due to 

experimental differences, including GP expression rates, the expression system used, long-term versus 

short-term expression, and the cell type. Intriguingly, GP has been shown to induce a specific form of 

apoptosis, anoikis, in primary human cardiac microvascular endothelial cells, while THP-1 cells, a 

human monocyte–macrophage-derived cell line, did not undergo cell death upon GP expression [175]. 

Another group has shown that GP-induced cell death is non-apoptotic [179]. 

Since the described data are based on ectopic expression of GP in the absence of other viral 

proteins, the question arises: What happens in the infected cells? Volchkov et al. [173] addressed this 

question by using a recombinant EBOV system. The membrane-anchored full-length GP is synthesized 

from an edited version of the GP mRNA, which accounts for about 20% of the total GP mRNA. When 

the editing site was mutated in the viral genome, all GP mRNA molecules were translated into the 

full-length version of GP, leading to the production of enhanced levels of membrane-anchored GP. 

The mutant was significantly more cytopathogenic than wild-type virus, indicating that the expression 

rate of GP in infected cells determines its cytotoxic properties. These results were confirmed by more 

recent studies showing that low expression rates of GP helped to avoid cytotoxic effects [133]. In 

addition, there might be other regulatory mechanisms in infected cells to mitigate GP-induced 

cytotoxicity. As mentioned above, VP35 is able to block various signaling pathways involved in the 

antiviral response to viral infection and it is conceivable that VP35 also interferes with cellular 

signaling pathways involved in GP-induced cellular stress.  

It remains puzzling that MARV GP does not seem to be cytotoxic when expressed in the absence of 

other viral proteins, although it is as highly glycosylated as EBOV GP [172]. Also, infection studies in 

non-human primates revealed that the endothelium remains relatively intact even late in infection, 

suggesting that the hemorrhagic symptoms in EBOV infection are not caused by EBOV-induced 

cytolysis of infected endothelial cells, but are rather the result of dysregulated immune mechanisms 

targeting the vascular system [54,182,183]. Endothelial cells are secondary target cells in filovirus 

infection and the morphological characteristics of filovirus replication in these cells do not differ from 

those in other tissues or in cell culture [47,50,51,54,110]. 

4.3. Non-Infected Cells 

Lymphocytes do not support filoviral replication, perhaps because they lack receptors for these 

viruses [184,185]. Nevertheless, lymphocyte apoptosis is a characteristic feature of filovirus infections 

and can be observed in both blood and tissues of infected patients and animals [7,55,138,186–188]. 

Figure 4 shows apoptotic lymphocytes in lymph node tissue from filovirus-infected animals. 

The apoptotic lymphocytes are not infected and are engulfed by surrounding macrophages. 
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Filovirus-induced lymphocyte apoptosis is also observed in EBOV-infected human PBMCs [137]. The 

apoptosis of non-infected lymphocytes is not unique to filoviruses. It has been reported in a number of 

viral infections, including lymphocyte choriomeningitis virus [189], human immunodeficiency virus 

[190], human herpesvirus 6 [191] and Vaccinia virus infections [192]. Although protection from 

apoptosis of infected cells is a strategy for survival for a number of viruses [193], induced periods of 

transient or chronic lymphocytopenia brought about by bystander apoptosis is thought to contribute to 

the generalized immunosuppression that accompanies some viral infections [192,194].  

Figure 4. Transmission electron microscopy of ultrathin sections of lymph node tissue 

from filovirus-infected African green monkeys infected with ZEBOV (A,C–E) or MARV 

(B). Tissues were fixed at 4 days p.i. (A) Small lymphocyte showing normal nuclear 

morphology with large areas of heterochromatin. (B,C) Apoptotic lymphocytes. Typical 

signs of apoptosis such as chromatin condensation and marginal location of chromatin are 

visible. (D,E) Apoptotic lymphocytes being engulfed by macrophages. (D) shows initial 

stages of phagocytosis. The lymphocyte is engulfed by a macrophage. The macrophage 

shown in (E) contains several destroyed apoptotic lymphocytes. Arrows show filoviral 

particles. 1—highly condensed heterochromatin; 2—monocyte showing normal nuclear 

morphology; 3—nucleus of macrophage. Bars correspond to 2 µm.  

 
 

As mentioned above, apoptosis can be initiated by both extrinsic factors and intrinsic mechanisms, 

both of which activate caspases and lead to DNA fragmentation and cell death (reviewed in [195]). 

The best known example of bystander lymphocyte apoptosis in viral infections is in CD4 T cells 

during HIV infection. Nevertheless, despite years of study, the mechanisms of depletion of these cells 

remain controversial. However, extrinsic and intrinsic pathways appear to be involved. Although CD4 
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T cells are a target of HIV, the majority of lymphocytes that are depleted are uninfected, and the 

depletion of uninfected cells accelerates with disease progression [190,196]. Both viral proteins 

released from infected cells [197–199] and host-derived proteins [200,201] have been suggested to 

contribute to CD4 T cell death. More recently, an accumulation of incomplete viral transcripts during 

abortive infection of resting CD4 T cells has been demonstrated to activate intrinsic pathways that lead 

to apoptosis during HIV infection [202]. It is unclear which of these mechanisms account for the 

majority of T cell apoptosis during HIV infection, or if multiple mechanisms are important in HIV 

pathogenesis. Given that many gaps remain in our understanding of bystander T cell apoptosis in HIV 

infection, despite years of study, it is not surprising that we would have even less of a universal view 

of how filoviruses cause bystander cell loss. 

In the case of filovirus infection, not only are CD4 T cells depleted, but CD8 T cells and NK cells 

as well [7,55,186], suggesting that some generalized mechanisms may contribute to lymphocyte 

apoptosis in filovirus disease. Using a mouse model of EBOV infection, Bradfute et al. [3] suggested 

that both intrinsic and extrinsic apoptotic pathways may contribute to lymphocyte depletion. If this is 

also the case for the disease in humans and non-human primates, then it is likely that multiple 

mechanisms contribute to the generalized lymphocyte depletion. The loss of lymphocytes has been 

postulated to contribute to the failure to generate fully protective adaptive immune responses in these 

species [7,203-205]. In fact, extensive lymphocyte apoptosis has been shown to proceed the generation 

of adaptive responses in humans with fatal disease [7], making this hypothesis all the more plausible. 

EBOV-infected cells may secrete TRAIL and increased levels of soluble Fas have been detected in 

the sera of some EBOV-infected non-human primates [55,206]. Moreover, increased expression levels 

of TRAIL and Fas mRNA have been observed in peripheral blood mononuclear cells of infected  

non-human primates [55]. These could trigger conventional extrinsic pathways of apoptosis in 

susceptible cells, including T cells. This view is supported by an analysis of Fas expression on T cells 

from patients who survived or succumbed to EBOV infection [188]. In patients who died, a very high 

proportion of the few remaining CD4 and CD8 T cells were Fas positive in contrast to T cells from 

survivors. Although Fas can be induced as a result of specific T cell activation [207], it is unlikely that 

the residual cells in these patients were only antigen-specific T cells. 

It is also possible that dysregulated DCs and macrophages could contribute in other ways to 

lymphocyte apoptosis. Infected DCs and macrophages fail to produce regulated cytokine responses, 

and they are also impaired in their ability to upregulate costimulatory molecules, such as CD40 and the 

B7 family member CD86, consistent with their inability to efficiently prime T cells [208,209]. 

Interestingly, however, other members of the B7 family, including co-inhibitory molecules such as 

programmed death ligand 1 (PD-L1) are upregulated on infected DCs, and its receptor, programmed 

death 1 (PD-1) may be upregulated on CD8 T cells in EBOV infections [210]. The interaction of these 

molecules could lead to apoptosis. The PD-1/PD-L1 pathway is important for controlling T cell 

tolerance and has been shown to be used by pathogens to down-regulate T cell responses [128,211]. 

PD-1 signaling results in decreased T cell proliferation and recent findings suggest this might be due 

to induction of apoptosis via PD-L1 binding [212,213]. While this might explain the depletion of 

antigen-specific T cell populations, this mechanism is unlikely to explain the generalized lymphopenia 

observed during filovirus infection, since the infected DCs would not be expected to engage T cells 

that were not specific for filovirus epitopes sufficiently to trigger PD-1 signaling.  
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Alternatively, T cell apoptosis may result in part from the dysregulated cytokine responses during 

filovirus infections. IFN helps productively modulate CD8 T cell responses if present at or near the 

time of T cell activation. However, if not, IFN can have pro-apoptotic consequences on T cells [214]. 

Interestingly, IFN is present at high levels in the serum late in fatal filovirus infection [2,162], and 

these high levels could result in the activation of T cell and/or NK cell apoptotic pathways. 

Finally, a 17-mer in filovirus GPs, which resembles an immunosuppressive motive found in retroviral 

envelope proteins, has been reported to induce lymphocyte death and suppression of cytokine 

responses [215–217]. This is puzzling, because lymphocytes do not bind to the viral GP [184,185]. So 

the mechanism by which the 17-mer mobilizes lymphocyte death remains unclear.  

5. Conclusions 

We have learned a lot about the interaction of filoviruses with infected (and non-infected) cells, 

including identification of target cells, elucidating stages of the replication cycle, cytopathic effects 

induced by the viruses, and host restriction factors. Nevertheless, there is still a long way to go towards 

understanding both the cellular and organismal events that lead to the outcome of this devastating 

disease. There remain major gaps in our understanding of the alterations in signaling pathways in 

infected cells, the cellular components that contribute to filovirus replication, and the mechanisms that 

control cell fate in infected cells. Moreover, we remain largely ignorant in our understanding of the 

mechanisms that impact the innate and adaptive immune system and modulate inflammatory responses 

during infection. These avenues of inquiry will be crucial for us to have a more complete 

understanding of the pathogenesis of filoviral disease.  

Acknowledgments 

The authors thank Kristina Brauburger for the graphic work in Figure 1, Adam Hume for critically 

reading the manuscript, and Julia Spitsyna for processing of electron micrographs. This work 

was supported by National Institutes of Health (NIH) grants U01-AI082954 and AI057159 (New 

England Regional Center of Excellence-Kasper, subaward 149047-0743), and by start-up funds from 

Boston University. 

Conflict of Interest 

The authors declare no conflict of interest.  

References and Notes 

1. Kuhn, J.H. Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory 

studies. Arch. Virol. Suppl. 2008, 20, 13–360. 

2. Mohamadzadeh, M.; Chen, L.; Schmaljohn, A.L. How Ebola and Marburg viruses battle the 

immune system. Nat. Rev. Immunol. 2007, 7, 556–567. 

3. Bradfute, S.B.; Swanson, P.E.; Smith, M.A.; Watanabe, E.; McDunn, J.E.; Hotchkiss, R.S.; 

Bavari, S. Mechanisms and consequences of ebolavirus-induced lymphocyte apoptosis. 

J. Immunol. 2010, 184, 327–335. 



Viruses 2011, 3            

 

 

1518

4. Ksiazek, T.G.; West, C.P.; Rollin, P.E.; Jahrling, P.B.; Peters, C.J. ELISA for the detection of 

antibodies to Ebola viruses. J. Infect. Dis. 1999, 179, S192–S198. 

5. Onyango, C.O.; Opoka, M.L.; Ksiazek, T.G.; Formenty, P.; Ahmed, A.; Tukei, P.M.; Sang, R.C.; 

Ofula, V.O.; Konongoi, S.L.; Coldren, R.L.; et al. Laboratory diagnosis of Ebola hemorrhagic 

fever during an outbreak in Yambio, Sudan, 2004. J. Infect. Dis. 2007, 196, S193–S198. 

6. Towner, J.S.; Rollin, P.E.; Bausch, D.G.; Sanchez, A.; Crary, S.M.; Vincent, M.; Lee, W.F.; 

Spiropoulou, C.F.; Ksiazek, T.G.; Lukwiya, M.; et al. Rapid diagnosis of Ebola hemorrhagic fever 

by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a 

predictor of outcome. J. Virol. 2004, 78, 4330–4341. 

7. Baize, S.; Leroy, E.M.; Georges-Courbot, M.C.; Capron, M.; Lansoud-Soukate, J.; Debre, P.; 

Fisher-Hoch, S.P.; McCormick, J.B.; Georges, A.J. Defective humoral responses and extensive 

intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. 

Nat. Med. 1999, 5, 423–426. 

8. Baize, S.; Leroy, E.M.; Georges, A.J.; Georges-Courbot, M.C.; Capron, M.; Bedjabaga, I.; 

Lansoud-Soukate, J.; Mavoungou, E. Inflammatory responses in Ebola virus-infected patients. 

Clin. Exp. Immunol. 2002, 128, 163–168. 

9. Mahanty, S.; Gupta, M.; Paragas, J.; Bray, M.; Ahmed, R.; Rollin, P.E. Protection from lethal 

infection is determined by innate immune responses in a mouse model of Ebola virus infection. 

Virology 2003, 312, 415–424. 

10. Kuhn, J.H.; Becker, S.; Ebihara, H.; Geisbert, T.W.; Johnson, K.M.; Kawaoka, Y.; Lipkin, W.I.; 

Negredo, A.I.; Netesov, S.V.; Nichol, S.T.; et al. Proposal for a revised taxonomy of the family 

Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 2010, 

155, 2083–2103. 

11. Hutchinson, K.L.; Rollin, P.E. Cytokine and chemokine expression in humans infected with 

Sudan Ebola virus. J. Infect. Dis. 2007, 196, S357–S363. 

12. Towner, J.S.; Sealy, T.K.; Khristova, M.L.; Albarino, C.G.; Conlan, S.; Reeder, S.A.; Quan, P.L.; 

Lipkin, W.I.; Downing, R.; Tappero, J.W.; et al. Newly discovered ebola virus associated with 

hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008, 4, e1000212. 

13. Formenty, P.; Hatz, C.; Le Guenno, B.; Stoll, A.; Rogenmoser, P.; Widmer, A. Human infection 

due to Ebola virus, subtype Cote d'Ivoire: Clinical and biologic presentation. J. Infect. Dis. 1999, 

179, S48–S53. 

14. Le Guenno, B.; Formenty, P.; Boesch, C. Ebola virus outbreaks in the Ivory Coast and Liberia, 

1994–1995. Curr. Top. Microbiol. Immunol. 1999, 235, 77–84. 

15. Barrette, R.W.; Metwally, S.A.; Rowland, J.M.; Xu, L.; Zaki, S.R.; Nichol, S.T.; Rollin, P.E.; 

Towner, J.S.; Shieh, W.J.; Batten, B.; et al. Discovery of swine as a host for the Reston 

ebolavirus. Science 2009, 325, 204–206. 

16. Miranda, M.E.; Ksiazek, T.G.; Retuya, T.J.; Khan, A.S.; Sanchez, A.; Fulhorst, C.F.; Rollin, P.E.; 

Calaor, A.B.; Manalo, D.L.; Roces, M.C.; et al. Epidemiology of Ebola (subtype Reston) virus in 

the Philippines, 1996. J. Infect. Dis. 1999, 179, S115–S119. 



Viruses 2011, 3            

 

 

1519

17. Rollin, P.E.; Williams, R.J.; Bressler, D.S.; Pearson, S.; Cottingham, M.; Pucak, G.; Sanchez, A.; 

Trappier, S.G.; Peters, R.L.; Greer, P.W.; et al. Ebola (subtype Reston) virus among quarantined 

nonhuman primates recently imported from the Philippines to the United States. J. Infect. Dis. 

1999, 179, S108–S114. 

18. Slenczka, W.; Klenk, H.D. Forty years of marburg virus. J. Infect. Dis. 2007, 196, S131–S135. 

19. Slenczka, W.G. The Marburg virus outbreak of 1967 and subsequent episodes. Curr. Top. 

Microbiol. Immunol. 1999, 235, 49–75. 

20. Feldmann, H. Marburg hemorrhagic fever—The forgotten cousin strikes. N. Engl. J. Med. 2006, 

355, 866–869. 

21. Towner, J.S.; Khristova, M.L.; Sealy, T.K.; Vincent, M.J.; Erickson, B.R.; Bawiec, D.A.; 

Hartman, A.L.; Comer, J.A.; Zaki, S.R.; Ströher, U.; et al. Marburgvirus genomics and 

association with a large hemorrhagic fever outbreak in Angola. J. Virol. 2006, 80, 6497–6516. 

22. Bausch, D.G.; Nichol, S.T.; Muyembe-Tamfum, J.J.; Borchert, M.; Rollin, P.E.; Sleurs, H.; 

Campbell, P.; Tshioko, F.K.; Roth, C.; Colebunders, R.; et al. Marburg hemorrhagic fever 

associated with multiple genetic lineages of virus. N. Engl. J. Med. 2006, 355, 909–919. 

23. Imported case of Marburg hemorrhagic fever—Colorado, 2008. MMWR Morb. Mortal Wkly. Rep. 

2009, 58, 1377–1381. 

24. Timen, A.; Koopmans, M.P.; Vossen, A.C.; van Doornum, G.J.; Gunther, S.; van den Berkmortel, 

F.; Verduin, K.M.; Dittrich, S.; Emmerich, P.; Osterhaus, A.D.; et al. Response to imported case 

of Marburg hemorrhagic fever, the Netherland. Emerg. Infect. Dis. 2009, 15, 1171–1175. 

25. Mühlberger, E. Filovirus replication and transcription. Future Virology 2007, 2, 205–215. 

26. Hartlieb, B.; Weissenhorn, W. Filovirus assembly and budding. Virology 2006, 344, 64–70. 

27. Bamberg, S.; Kolesnikova, L.; Möller, P.; Klenk, H.D.; Becker, S. VP24 of Marburg virus 

influences formation of infectious particles. J. Virol. 2005, 79, 13421–13433. 

28. Han, Z.; Boshra, H.; Sunyer, J.O.; Zwiers, S.H.; Paragas, J.; Harty, R.N. Biochemical and 

functional characterization of the Ebola virus VP24 protein: Implications for a role in virus 

assembly and budding. J. Virol. 2003, 77, 1793–1800. 

29. Noda, T.; Halfmann, P.; Sagara, H.; Kawaoka, Y. Regions in Ebola virus VP24 that are important 

for nucleocapsid formation. J. Infect. Dis. 2007, 196, S247–S250. 

30. Watanabe, S.; Noda, T.; Halfmann, P.; Jasenosky, L.; Kawaoka, Y. Ebola virus (EBOV) VP24 

inhibits transcription and replication of the EBOV genome. J. Infect. Dis. 2007, 196, S284–S290. 

31. Hoenen, T.; Jung, S.; Herwig, A.; Groseth, A.; Becker, S. Both matrix proteins of Ebola virus 

contribute to the regulation of viral genome replication and transcription. Virology 2010, 403,  

56–66. 

32. Ebihara, H.; Takada, A.; Kobasa, D.; Jones, S.; Neumann, G.; Theriault, S.; Bray, M.; Feldmann, H.; 

Kawaoka, Y. Molecular determinants of Ebola virus virulence in mice. PLoS Pathog. 2006, 2, e73. 

33. Reid, S.P.; Leung, L.W.; Hartman, A.L.; Martinez, O.; Shaw, M.L.; Carbonnelle, C.; Volchkov, 

V.E.; Nichol, S.T.; Basler, C.F. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 

nuclear accumulation. J. Virol. 2006, 80, 5156–5167. 

34. Valmas, C.; Grosch, M.N.; Schümann, M.; Olejnik, J.; Martinez, O.; Best, S.M.; Krähling, V.; 

Basler, C.F.; Mühlberger, E. Marburg virus evades interferon responses by a mechanism distinct 

from ebola virus. PLoS Pathog. 2010, 6, e1000721. 



Viruses 2011, 3            

 

 

1520

35. Valmas, C.; Basler, C.F. Marburg virus VP40 antagonizes interferon signaling in a species-

specific manner. J. Virol. 2011, 85, 4309–4317. 

36. Feldmann, H.; Volchkov, V.E.; Volchkova, V.A.; Klenk, H.D. The glycoproteins of Marburg and 

Ebola virus and their potential roles in pathogenesis. Arch. Virol. Suppl. 1999, 15, 159–169. 

37. Volchkov, V.E.; Feldmann, H.; Volchkova, V.A.; Klenk, H.D. Processing of the Ebola virus 

glycoprotein by the proprotein convertase furin. Proc. Natl. Acad. Sci. U. S. A. 1998, 95,  

5762–5767. 

38. Volchkov, V.E.; Becker, S.; Volchkova, V.A.; Ternovoj, V.A.; Kotov, A.N.; Netesov, S.V.; 

Klenk, H.D. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and 

vaccinia virus polymerases. Virology 1995, 214, 421–430. 

39. Sanchez, A.; Trappier, S.G.; Mahy, B.W.; Peters, C.J.; Nichol, S.T. The virion glycoproteins of 

Ebola viruses are encoded in two reading frames and are expressed through transcriptional 

editing. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 3602–3607. 

40. Wahl-Jensen, V.; Kurz, S.K.; Hazelton, P.R.; Schnittler, H.J.; Stroher, U.; Burton, D.R.; 

Feldmann, H. Role of Ebola virus secreted glycoproteins and virus-like particles in activation of 

human macrophages. J. Virol. 2005, 79, 2413–2419. 

41. Volchkova, V.A.; Feldmann, H.; Klenk, H.D.; Volchkov, V.E. The nonstructural small 

glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 

1998, 250, 408–414. 

42. Mehedi, M.; Falzarano, D.; Seebach, J.; Hu, X.; Carpenter, M.S.; Schnittler, H.J.; Feldmann, H.  

A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J. Virol. 2011, 85, 

5406–5414. 

43. Bowen, E.T.; Platt, G.S.; Simpson, D.I.; McArdell, L.B.; Raymond, R.T. Ebola haemorrhagic 

fever: Experimental infection of monkeys. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 188–191. 

44. Ellis, D.S.; Simpson, I.H.; Francis, D.P.; Knobloch, J.; Bowen, E.T.; Lolik, P.; Deng, I.M. 

Ultrastructure of Ebola virus particles in human liver. J. Clin. Pathol. 1978, 31, 201–208. 

45. Baskerville, A.; Fisher-Hoch, S.P.; Neild, G.H.; Dowsett, A.B. Ultrastructural pathology of 

experimental Ebola haemorrhagic fever virus infection. J. Pathol. 1985, 147, 199–209. 

46. Johnson, E.; Jaax, N.; White, J.; Jahrling, P. Lethal experimental infections of rhesus monkeys by 

aerosolized Ebola virus. Int. J. Exp. Pathol. 1995, 76, 227–236. 

47. Ryabchikova, E.; Strelets, L.; Kolesnikova, L.; Pyankov, O.; Sergeev, A. Respiratory Marburg 

virus infection in guinea pigs. Arch. Virol. 1996, 141, 2177–2190. 

48. Ryabchikova, E.; Kolesnikova, L.; Smolina, M.; Tkachev, V.; Pereboeva, L.; Baranova, S.; 

Grazhdantseva, A.; Rassadkin, Y. Ebola virus infection in guinea pigs: Presumable role of 

granulomatous inflammation in pathogenesis. Arch. Virol. 1996, 141, 909–921. 

49. Ryabchikova, E.I.; Kolesnikova, L.V.; Luchko, S.V. An analysis of features of pathogenesis in 

two animal models of Ebola virus infection. J. Infect. Dis. 1999, 179, S199–S202. 

50. Ryabchikova, E.; Price, B.B.S. Ebola and Marburg Viruses: A View of Infection Using Electron 

Microscopy; Battelle Press: Columbus, Ohio, USA, 2004. 

51. Jaax, N.K.; Davis, K.J.; Geisbert, T.J.; Vogel, P.; Jaax, G.P.; Topper, M.; Jahrling, P.B. Lethal 

experimental infection of rhesus monkeys with Ebola-Zaire (Mayinga) virus by the oral and 

conjunctival route of exposure. Arch. Pathol. Lab. Med. 1996, 120, 140–155. 



Viruses 2011, 3            

 

 

1521

52. Davis, K.J.; Anderson, A.O.; Geisbert, T.W.; Steele, K.E.; Geisbert, J.B.; Vogel, P.; Connolly, 

B.M.; Huggins, J.W.; Jahrling, P.B.; Jaax, N.K. Pathology of experimental Ebola virus infection 

in African green monkeys. Involvement of fibroblastic reticular cells. Arch. Pathol. Lab. Med. 

1997, 121, 805–819. 

53. Wyers, M.; Formenty, P.; Cherel, Y.; Guigand, L.; Fernandez, B.; Boesch, C.; Le Guenno, B. 

Histopathological and immunohistochemical studies of lesions associated with Ebola virus in a 

naturally infected chimpanzee. J. Infect. Dis. 1999, 179, S54–S59. 

54. Geisbert, T.W.; Young, H.A.; Jahrling, P.B.; Davis, K.J.; Larsen, T.; Kagan, E.; Hensley, L.E. 

Pathogenesis of Ebola hemorrhagic fever in primate models: Evidence that hemorrhage is not a 

direct effect of virus-induced cytolysis of endothelial cells. Am. J. Pathol. 2003, 163, 2371–2382. 

55. Geisbert, T.W.; Hensley, L.E.; Larsen, T.; Young, H.A.; Reed, D.S.; Geisbert, J.B.; Scott, D.P.; 

Kagan, E.; Jahrling, P.B.; Davis, K.J. Pathogenesis of Ebola hemorrhagic fever in cynomolgus 

macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol. 

2003, 163, 2347–2370. 

56. Zaki, S.R.; Goldsmith, C.S. Pathologic features of filovirus infections in humans. Curr. Top. 

Microbiol. Immunol. 1999, 235, 97–116. 

57. Steele, K.E.; Anderson, A.O.; Mohamadzadeh, M. Fibroblastic reticular cell infection by 

hemorrhagic fever viruses. Immunotherapy 2009, 1, 187–197. 

58. Reis e Sousa, C. Toll-like receptors and dendritic cells: for whom the bug tolls. Semin. Immunol. 

2004, 16, 27–34. 

59. Reis e Sousa, C. Activation of dendritic cells: translating innate into adaptive immunity. Curr. 

Opin. Immunol. 2004, 16, 21–25. 

60. Murphy, F.A.; Simpson, D.I.; Whitfield, S.G.; Zlotnik, I.; Carter, G.B. Marburg virus infection in 

monkeys. Ultrastructural studies. Lab. Invest. 1971, 24, 279–291. 

61. Bray, M.; Davis, K.; Geisbert, T.; Schmaljohn, C.; Huggins, J. A mouse model for evaluation of 

prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 1999, 179, S248–S258. 

62. Connolly, B.M.; Steele, K.E.; Davis, K.J.; Geisbert, T.W.; Kell, W.M.; Jaax, N.K.; Jahrling, P.B. 

Pathogenesis of experimental Ebola virus infection in guinea pigs. J. Infect. Dis. 1999, 179,  

S203–S217. 

63. Gibb, T.R.; Bray, M.; Geisbert, T.W.; Steele, K.E.; Kell, W.M.; Davis, K.J.; Jaax, N.K. 

Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J. Comp. Pathol. 2001, 

125, 233–242. 

64. Geisbert, T.W.; Jahrling, P.B.; Hanes, M.A.; Zack, P.M. Association of Ebola-related Reston 

virus particles and antigen with tissue lesions of monkeys imported to the United States. J. Comp. 

Pathol. 1992, 106, 137–152. 

65. Riabchikova, E.I.; Baranova, S.G.; Tkachev, V.K.; Grazhdantseva, A.A. The morphological 

changes in Ebola infection in guinea pigs. Vopr. Virusol. 1993, 38, 176–179. 

66. Geisbert, T.W.; Jaax, N.K. Marburg hemorrhagic fever: Report of a case studied by 

immunohistochemistry and electron microscopy. Ultrastruct. Pathol. 1998, 22, 3–17. 

67. Bray, M.; Geisbert, T.W. Ebola virus: The role of macrophages and dendritic cells in the 

pathogenesis of Ebola hemorrhagic fever. Int. J. Biochem. Cell Biol. 2005, 37, 1560–1566. 



Viruses 2011, 3            

 

 

1522

68. Schnittler, H.J.; Feldmann, H. Marburg and Ebola hemorrhagic fevers: Does the primary course of 

infection depend on the accessibility of organ-specific macrophages? Clin. Infect. Dis. 1998, 27, 

404–406. 

69. Baskerville, A.; Bowen, E.T.; Platt, G.S.; McArdell, L.B.; Simpson, D.I. The pathology of 

experimental Ebola virus infection in monkeys. J. Pathol. 1978, 125, 131–138. 

70. Martini, G.A.; Siegert, R. Marburg Virus Disease; Springer: New York, NY, USA, 1971. 

71. Zaki, S.R.; Kilmarx, P.H. Ebola virus hemorrhagic fever. In Pathology of Emerging Infections; 

Horsburgh, C.R., Nelson, A.M., Eds.; ASM (USA): Washington, DC, USA, 1998. 

72. Bavari, S.; Bosio, C.M.; Wiegand, E.; Ruthel, G.; Will, A.B.; Geisbert, T.W.; Hevey, M.; 

Schmaljohn, C.; Schmaljohn, A.; Aman, M.J. Lipid raft microdomains: A gateway for 

compartmentalized trafficking of Ebola and Marburg viruses. J. Exp. Med. 2002, 195, 593–602. 

73. Empig, C.J.; Goldsmith, M.A. Association of the caveola vesicular system with cellular entry by 

filoviruses. J. Virol. 2002, 76, 5266–5270. 

74. Sanchez, A. Analysis of filovirus entry into vero e6 cells, using inhibitors of endocytosis, 

endosomal acidification, structural integrity, and cathepsin (B and L) activity. J. Infect. Dis. 2007, 

196, S251–S258. 

75. Hunt, C.L.; Kolokoltsov, A.A.; Davey, R.A.; Maury, W. The Tyro3 receptor kinase Axl enhances 

macropinocytosis of Zaire ebolavirus. J. Virol. 2011, 85, 334–347. 

76. Nanbo, A.; Imai, M.; Watanabe, S.; Noda, T.; Takahashi, K.; Neumann, G.; Halfmann, P.; 

Kawaoka, Y. Ebolavirus is internalized into host cells via macropinocytosis in a viral 

glycoprotein-dependent manner. PLoS Pathog. 2010, 6, doi:10.1371/journal.ppat.1001121. 

77. Saeed, M.F.; Kolokoltsov, A.A.; Albrecht, T.; Davey, R.A. Cellular entry of ebola virus involves 

uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late 

endosomes. PLoS Pathog. 2010, 6, pii: e1001110. 

78. Chan, S.Y.; Empig, C.J.; Welte, F.J.; Speck, R.F.; Schmaljohn, A.; Kreisberg, J.F.; Goldsmith, 

M.A. Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 

2001, 106, 117–126. 

79. Simmons, G.; Rennekamp, A.J.; Chai, N.; Vandenberghe, L.H.; Riley, J.L.; Bates, P. Folate 

receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. 

J. Virol. 2003, 77, 13433–13438. 

80. Sinn, P.L.; Hickey, M.A.; Staber, P.D.; Dylla, D.E.; Jeffers, S.A.; Davidson, B.L.; Sanders, D.A.; 

McCray, P.B., Jr. Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce 

airway epithelia from the apical surface independently of folate receptor alpha. J. Virol. 2003, 77, 

5902–5910. 

81. Sanchez, A.; Yang, Z.Y.; Xu, L.; Nabel, G.J.; Crews, T.; Peters, C.J. Biochemical analysis of the 

secreted and virion glycoproteins of Ebola virus. J. Virol. 1998, 72, 6442–6447. 

82. Feldmann, H.; Will, C.; Schikore, M.; Slenczka, W.; Klenk, H.D. Glycosylation and 

oligomerization of the spike protein of Marburg virus. Virology 1991, 182, 353–356. 

83. Feldmann, H.; Nichol, S.T.; Klenk, H.D.; Peters, C.J.; Sanchez, A. Characterization of filoviruses 

based on differences in structure and antigenicity of the virion glycoprotein. Virology 1994, 199, 

469–473. 



Viruses 2011, 3            

 

 

1523

84. Becker, S.; Spiess, M.; Klenk, H.D. The asialoglycoprotein receptor is a potential liver-specific 

receptor for Marburg virus. J. Gen. Virol. 1995, 76, 393–399. 

85. Alvarez, C.P.; Lasala, F.; Carrillo, J.; Muniz, O.; Corbi, A.L.; Delgado, R. C-type lectins DC-

SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 2002, 76, 

6841–6844. 

86. Simmons, G.; Reeves, J.D.; Grogan, C.C.; Vandenberghe, L.H.; Baribaud, F.; Whitbeck, J.C.; 

Burke, E.; Buchmeier, M.J.; Soilleux, E.J.; Riley, J.L.; et al. DC-SIGN and DC-SIGNR bind 

ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 2003, 

305, 115–123. 

87. Baribaud, F.; Doms, R.W.; Pohlmann, S. The role of DC-SIGN and DC-SIGNR in HIV and Ebola 

virus infection: can potential therapeutics block virus transmission and dissemination? Expert. 

Opin. Ther. Targets 2002, 6, 423–431. 

88. Marzi, A.; Gramberg, T.; Simmons, G.; Moller, P.; Rennekamp, A.J.; Krumbiegel, M.; Geier, M.; 

Eisemann, J.; Turza, N.; Saunier, B.; et al. DC-SIGN and DC-SIGNR interact with the 

glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. 

J. Virol. 2004, 78, 12090–12095. 

89. Takada, A.; Fujioka, K.; Tsuiji, M.; Morikawa, A.; Higashi, N.; Ebihara, H.; Kobasa, D.; 

Feldmann, H.; Irimura, T.; Kawaoka, Y. Human macrophage C-type lectin specific for galactose 

and N-acetylgalactosamine promotes filovirus entry. J. Virol. 2004, 78, 2943–2947. 

90. Gramberg, T.; Hofmann, H.; Moller, P.; Lalor, P.F.; Marzi, A.; Geier, M.; Krumbiegel, M.; 

Winkler, T.; Kirchhoff, F.; Adams, D.H.; et al. LSECtin interacts with filovirus glycoproteins and 

the spike protein of SARS coronavirus. Virology 2005, 340, 224–236. 

91. Matsuno, K.; Kishida, N.; Usami, K.; Igarashi, M.; Yoshida, R.; Nakayama, E.; Shimojima, M.; 

Feldmann, H.; Irimura, T.; Kawaoka, Y.; et al. Different potential of C-type lectin-mediated entry 

between Marburg virus strains. J. Virol. 2010, 84, 5140–5147. 

92. Takada, A.; Watanabe, S.; Ito, H.; Okazaki, K.; Kida, H.; Kawaoka, Y. Downregulation of beta1 

integrins by Ebola virus glycoprotein: Implication for virus entry. Virology 2000, 278, 20–26. 

93. Schornberg, K.L.; Shoemaker, C.J.; Dube, D.; Abshire, M.Y.; Delos, S.E.; Bouton, A.H.; White, 

J.M. Alpha5beta1-integrin controls ebolavirus entry by regulating endosomal cathepsins. 

Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 8003–8008. 

94. Kondratowicz, A.S.; Lennemann, N.J.; Sinn, P.L.; Davey, R.A.; Hunt, C.L.; Moller-Tank, S.; 

Meyerholz, D.K.; Rennert, P.; Mullins, R.F.; Brindley, M.; et al. T-cell immunoglobulin and 

mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. 

Proc. Natl. Acad. Sci. U. S. A. 2011, doi:10.1073/pnas.1019030108. 

95. Rothlin, C.V.; Ghosh, S.; Zuniga, E.I.; Oldstone, M.B.; Lemke, G. TAM receptors are pleiotropic 

inhibitors of the innate immune response. Cell 2007, 131, 1124–1136. 

96. Shimojima, M.; Takada, A.; Ebihara, H.; Neumann, G.; Fujioka, K.; Irimura, T.; Jones, S.; 

Feldmann, H.; Kawaoka, Y. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. 

J. Virol. 2006, 80, 10109–10116. 

97. Shimojima, M.; Ikeda, Y.; Kawaoka, Y. The mechanism of Axl-mediated Ebola virus infection. 

J. Infect. Dis. 2007, 196, S259–S263. 



Viruses 2011, 3            

 

 

1524

98. Weissenhorn, W.; Calder, L.J.; Wharton, S.A.; Skehel, J.J.; Wiley, D.C. The central structural 

feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-

stranded coiled coil. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 6032–6036. 

99. Chandran, K.; Sullivan, N.J.; Felbor, U.; Whelan, S.P.; Cunningham, J.M. Endosomal proteolysis 

of the ebola virus glycoprotein is necessary for infection. Science 2005, 308, 1643–1645. 

100. Schornberg, K.; Matsuyama, S.; Kabsch, K.; Delos, S.; Bouton, A.; White, J. Role of endosomal 

cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 2006, 80, 4174–4178. 

101. Hood, C.L.; Abraham, J.; Boyington, J.C.; Leung, K.; Kwong, P.D.; Nabel, G.J. Biochemical and 

structural characterization of cathepsin L-processed Ebola virus glycoprotein: Implications for 

viral entry and immunogenicity. J. Virol. 2010, 84, 2972–2982. 

102. Martinez, O.; Johnson, J.; Manicassamy, B.; Rong, L.; Olinger, G.G.; Hensley, L.E.; Basler, C.F. 

Zaire Ebola virus entry into human dendritic cells is insensitive to cathepsin L inhibition. Cell 

Microbiol. 2010, 12, 148–157. 

103. Kolesnikova, L.; Mühlberger, E.; Ryabchikova, E.; Becker, S. Ultrastructural organization of 

recombinant Marburg virus nucleoprotein: Comparison with Marburg virus inclusions. J. Virol. 

2000, 74, 3899–3904. 

104. Mavrakis, M.; Kolesnikova, L.; Schoehn, G.; Becker, S.; Ruigrok, R.W. Morphology of Marburg 

virus NP-RNA. Virology 2002, 296, 300–307. 

105. Noda, T.; Ebihara, H.; Muramoto, Y.; Fujii, K.; Takada, A.; Sagara, H.; Kim, J.H.; Kida, H.; 

Feldmann, H.; Kawaoka, Y. Assembly and budding of Ebolavirus. PLoS Pathog. 2006, 2, e99. 

106. Huang, Y.; Xu, L.; Sun, Y.; Nabel, G.J. The assembly of Ebola virus nucleocapsid requires virion-

associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol. Cell 2002, 

10, 307–316. 

107. Noda, T.; Aoyama, K.; Sagara, H.; Kida, H.; Kawaoka, Y. Nucleocapsid-like structures of Ebola 

virus reconstructed using electron tomography. J. Vet. Med. Sci. 2005, 67, 325–328. 

108. Becker, S.; Rinne, C.; Hofsäss, U.; Klenk, H.-D.; Mühlberger, E. Interactions of Marburg virus 

nucleocapsid proteins. Virology 1998, 249, 406–417. 

109. Schmidt, K.M.; Schümann, M.; Olejnik, J.; Krähling, V.; Mühlberger, E. Recombinant Marburg 

virus expressing EGFP allows rapid screening of virus growth and real time visualization of virus 

spread. J. Infect. Dis. 2011, in press. 

110. Geisbert, T.W.; Jahrling, P.B. Differentiation of filoviruses by electron microscopy. Virus Res. 

1995, 39, 129–150. 

111. Liu, Y.; Harty, R.N. Viral and host proteins that modulate filovirus budding. Future Virol. 2010, 

5, 481–491. 

112. Dolnik, O.; Kolesnikova, L.; Becker, S. Filoviruses: Interactions with the host cell. Cell Mol. Life 

Sci. 2008, 65, 756–776. 

113. Dolnik, O.; Kolesnikova, L.; Stevermann, L.; Becker, S. Tsg101 is recruited by a late domain of 

the nucleocapsid protein to support budding of Marburg virus-like particles. J. Virol. 2010, 84, 

7847–7856. 

114. Roxrud, I.; Stenmark, H.; Malerod, L. ESCRT & Co. Biol. Cell 2010, 102, 293–318. 

115. Hurley, J.H.; Boura, E.; Carlson, L.A.; Rozycki, B. Membrane budding. Cell 2010, 143, 875–887. 



Viruses 2011, 3            

 

 

1525

116. Kolesnikova, L.; Berghofer, B.; Bamberg, S.; Becker, S. Multivesicular bodies as a platform for 

formation of the Marburg virus envelope. J. Virol. 2004, 78, 12277–12287. 

117. Kolesnikova, L.; Bohil, A.B.; Cheney, R.E.; Becker, S. Budding of Marburgvirus is associated 

with filopodia. Cell Microbiol. 2007, 9, 939–951. 

118. Welsch, S.; Kolesnikova, L.; Krahling, V.; Riches, J.D.; Becker, S.; Briggs, J.A. Electron 

tomography reveals the steps in filovirus budding. PLoS Pathog. 2010, 6, e1000875. 

119. Lamkanfi, M.; Dixit, V.M. Manipulation of host cell death pathways during microbial infections. 

Cell Host Microbe 2010, 8, 44–54. 

120. Kaminskyy, V.; Zhivotovsky, B. To kill or be killed: How viruses interact with the cell death 

machinery. J. Intern. Med. 2010, 267, 473–482. 

121. Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell death. N. Engl. J. Med. 2009, 

361, 1570–1583. 

122. Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead 

and dying eukaryotic cells. Infect. Immun. 2005, 73, 1907–1916. 

123. Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-

ranging implications in tissue kinetics. Br. J. Cancer 1972, 26, 239–257. 

124. Walker, N.I.; Harmon, B.V.; Gobe, G.C.; Kerr, J.F. Patterns of cell death. Methods Achiev. Exp. 

Pathol. 1988, 13, 18–54. 

125. Gonzalvez, F.; Ashkenazi, A. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 

2010, 29, 4752–4765. 

126. Degterev, A.; Boyce, M.; Yuan, J. A decade of caspases. Oncogene 2003, 22, 8543–8567. 

127. Burlacu, A. Regulation of apoptosis by Bcl-2 family proteins. J. Cell Mol. Med. 2003, 7, 249–257. 

128. Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 

and its ligands in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245. 

129. Moquin, D.; Chan, F.K. The molecular regulation of programmed necrotic cell injury. Trends 

Biochem. Sci. 2010, 35, 434–441. 

130. Golstein, P.; Kroemer, G. Cell death by necrosis: Towards a molecular definition. Trends 

Biochem. Sci. 2007, 32, 37–43. 

131. De Duve, C.; Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 1966, 28, 435–492. 

132. Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a 

decade. Nat. Rev. Mol. Cell Biol. 2007, 8, 931–937. 

133. Alazard-Dany, N.; Volchkova, V.; Reynard, O.; Carbonnelle, C.; Dolnik, O.; Ottmann, M.; 

Khromykh, A.; Volchkov, V.E. Ebola virus glycoprotein GP is not cytotoxic when expressed 

constitutively at a moderate level. J. Gen. Virol. 2006, 87, 1247–1257. 

134. Barrientos, L.G.; Rollin, P.E. Release of cellular proteases into the acidic extracellular milieu 

exacerbates Ebola virus-induced cell damage. Virology 2007, 358, 1–9. 

135. Boehmann, Y.; Enterlein, S.; Randolf, A.; Mühlberger, E. A reconstituted replication and 

transcription system for Ebola virus Reston and comparison with Ebola virus Zaire. Virology 

2005, 332, 406–417. 



Viruses 2011, 3            

 

 

1526

136. Gupta, M.; Goldsmith, C.S.; Metcalfe, M.G.; Spiropoulou, C.F.; Rollin, P.E. Reduced virus 

replication, proinflammatory cytokine production, and delayed macrophage cell death in human 

PBMCs infected with the newly discovered Bundibugyo ebolavirus relative to Zaire ebolavirus. 

Virology 2010, 402, 203–208. 

137. Gupta, M.; Spiropoulou, C.; Rollin, P.E. Ebola virus infection of human PBMCs causes massive 

death of macrophages, CD4 and CD8 T cell sub-populations in vitro. Virology 2007, 364, 45–54. 

138. Geisbert, T.W.; Hensley, L.E.; Gibb, T.R.; Steele, K.E.; Jaax, N.K.; Jahrling, P.B. Apoptosis 

induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab. Invest. 2000, 80, 

171–186. 

139. Bente, D.; Gren, J.; Strong, J.E.; Feldmann, H. Disease modeling for Ebola and Marburg viruses. 

Dis. Model Mech. 2009, 2, 12–17. 

140. Rosenblum, W.I. Cytotoxic edema: Monitoring its magnitude and contribution to brain swelling. 

J. Neuropathol. Exp. Neurol. 2007, 66, 771–778. 

141. Saeed, M.F.; Kolokoltsov, A.A.; Freiberg, A.N.; Holbrook, M.R.; Davey, R.A. Phosphoinositide-

3 kinase-Akt pathway controls cellular entry of Ebola virus. PLoS Pathog. 2008, 4, e1000141. 

142. Cooray, S. The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus 

survival. J. Gen. Virol. 2004, 85, 1065–1076. 

143. Ehrhardt, C.; Ludwig, S. A new player in a deadly game: Influenza viruses and the PI3K/Akt 

signalling pathway. Cell Microbiol. 2009, 11, 863–871. 

144. Brennan, K.; Bowie, A.G. Activation of host pattern recognition receptors by viruses. Curr. Opin. 

Microbiol. 2010, 13, 503–507. 

145. Baum, A.; Garcia-Sastre, A. Induction of type I interferon by RNA viruses: Cellular receptors and 

their substrates. Amino Acids 2010, 38, 1283–1299. 

146. Habjan, M.; Andersson, I.; Klingstrom, J.; Schümann, M.; Martin, A.; Zimmermann, P.; Wagner, 

V.; Pichlmair, A.; Schneider, U.; Mühlberger, E.; et al. Processing of genome 5' termini as a 

strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. 

PLoS ONE 2008, 3, e2032. 

147. Basler, C.F.; Amarasinghe, G.K. Evasion of interferon responses by Ebola and Marburg viruses. 

J. Interferon. Cytokine Res. 2009, 29, 511–520. 

148. Leung, D.W.; Prins, K.C.; Basler, C.F.; Amarasinghe, G.K. Ebolavirus VP35 is a multifunctional 

virulence factor. Virulence 2010, 1, 526–531. 

149. Chattopadhyay, S.; Yamashita, M.; Zhang, Y.; Sen, G.C. The IRF-3/Bax-mediated apoptotic 

pathway, activated by viral cytoplasmic RNA and DNA, inhibits virus replication. J. Virol. 2011, 

85, 3708–3716. 

150. Sharif-Askari, E.; Nakhaei, P.; Oliere, S.; Tumilasci, V.; Hernandez, E.; Wilkinson, P.; Lin, R.; 

Bell, J.; Hiscott, J. Bax-dependent mitochondrial membrane permeabilization enhances IRF3-

mediated innate immune response during VSV infection. Virology 2007, 365, 20–33. 

151. Chattopadhyay, S.; Marques, J.T.; Yamashita, M.; Peters, K.L.; Smith, K.; Desai, A.; Williams, 

B.R.; Sen, G.C. Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J. 2010, 

29, 1762–1773. 



Viruses 2011, 3            

 

 

1527

152. Lei, Y.; Moore, C.B.; Liesman, R.M.; O'Connor, B.P.; Bergstralh, D.T.; Chen, Z.J.; Pickles, R.J.; 

Ting, J.P. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS ONE 2009, 4, 

e5466. 

153. Scott, I.; Norris, K.L. The mitochondrial antiviral signaling protein, MAVS, is cleaved during 

apoptosis. Biochem. Biophys. Res. Commun. 2008, 375, 101–106. 

154. Zamanian-Daryoush, M.; Mogensen, T.H.; DiDonato, J.A.; Williams, B.R. NF-kappaB activation 

by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-

inducing kinase and IkappaB kinase. Mol. Cell Biol. 2000, 20, 1278–1290. 

155. Sato, S.; Sugiyama, M.; Yamamoto, M.; Watanabe, Y.; Kawai, T.; Takeda, K.; Akira, S. Toll/IL-1 

receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-

associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, 

NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 2003, 

171, 4304–4310. 

156. Kumar, A.; Haque, J.; Lacoste, J.; Hiscott, J.; Williams, B.R. Double-stranded RNA-dependent 

protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. 

Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 6288–6292. 

157. Unterholzner, L.; Bowie, A.G. The interplay between viruses and innate immune signaling: 

Recent insights and therapeutic opportunities. Biochem. Pharmacol. 2008, 75, 589–602. 

158. Weber, F.; Wagner, V.; Rasmussen, S.B.; Hartmann, R.; Paludan, S.R. Double-stranded RNA is 

produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by 

negative-strand RNA viruses. J. Virol. 2006, 80, 5059–5064. 

159. Gale, M., Jr.; Katze, M.G. Molecular mechanisms of interferon resistance mediated by viral-

directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol. Ther. 1998, 78,  

29–46. 

160. Feng, Z.; Cerveny, M.; Yan, Z.; He, B. The VP35 protein of Ebola virus inhibits the antiviral 

effect mediated by double-stranded RNA-dependent protein kinase PKR. J. Virol. 2007, 81,  

182–192. 

161. Schümann, M.; Gantke, T.; Mühlberger, E. Ebola virus VP35 antagonizes PKR activity through 

its C-terminal interferon inhibitory domain. J. Virol. 2009, 83, 8993–8997. 

162. Zhang, P.; Jacobs, B.L.; Samuel, C.E. Loss of protein kinase PKR expression in human HeLa 

cells complements the vaccinia virus E3L deletion mutant phenotype by restoration of viral 

protein synthesis. J. Virol. 2008, 82, 840–848. 

163. Gale, M., Jr.; Kwieciszewski, B.; Dossett, M.; Nakao, H.; Katze, M.G. Antiapoptotic and 

oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of 

the PKR protein kinase. J. Virol. 1999, 73, 6506–6516. 

164. Garcia, M.A.; Guerra, S.; Gil, J.; Jimenez, V.; Esteban, M. Anti-apoptotic and oncogenic 

properties of the dsRNA-binding protein of vaccinia virus, E3L. Oncogene 2002, 21, 8379–8387. 

165. Francois, S.; El Benna, J.; Dang, P.M.; Pedruzzi, E.; Gougerot-Pocidalo, M.A.; Elbim, C. 

Inhibition of neutrophil apoptosis by TLR agonists in whole blood: Involvement of the 

phosphoinositide 3-kinase/Akt and NF-kappaB signaling pathways, leading to increased levels of 

Mcl-1, A1, and phosphorylated Bad. J. Immunol. 2005, 174, 3633–3642. 



Viruses 2011, 3            

 

 

1528

166. Aliprantis, A.O.; Yang, R.B.; Mark, M.R.; Suggett, S.; Devaux, B.; Radolf, J.D.; Klimpel, G.R.; 

Godowski, P.; Zychlinsky, A. Cell activation and apoptosis by bacterial lipoproteins through toll-

like receptor-2. Science 1999, 285, 736–739. 

167. Okumura, A.; Pitha, P.M.; Yoshimura, A.; Harty, R.N. Interaction between Ebola virus 

glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and 

SOCS1. J. Virol. 2010, 84, 27–33. 

168. Jin, H.; Yan, Z.; Prabhakar, B.S.; Feng, Z.; Ma, Y.; Verpooten, D.; Ganesh, B.; He, B. The VP35 

protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide. 

J. Gen. Virol. 2010, 91, 352–361. 

169. Chang, T.H.; Kubota, T.; Matsuoka, M.; Jones, S.; Bradfute, S.B.; Bray, M.; Ozato, K. Ebola 

Zaire virus blocks type I interferon production by exploiting the host SUMO modification 

machinery. PLoS Pathog. 2009, 5, e1000493. 

170. Leung, L.W.; Park, M.S.; Martinez, O.; Valmas, C.; Lopez, C.B.; Basler, C.F. Ebolavirus VP35 

suppresses IFN production from conventional but not plasmacytoid dendritic cells. Immunol. Cell 

Biol. 2011, doi:10.1038/icb.2010.169. 

171. Yang, Z.Y.; Duckers, H.J.; Sullivan, N.J.; Sanchez, A.; Nabel, E.G.; Nabel, G.J. Identification of 

the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. 

Nat. Med. 2000, 6, 886–889. 

172. Chan, S.Y.; Ma, M.C.; Goldsmith, M.A. Differential induction of cellular detachment by envelope 

glycoproteins of Marburg and Ebola (Zaire) viruses. J. Gen. Virol. 2000, 81, 2155–2159. 

173. Volchkov, V.E.; Volchkova, V.A.; Mühlberger, E.; Kolesnikova, L.V.; Weik, M.; Dolnik, O.; 

Klenk, H.D. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the 

GP gene and viral cytotoxicity. Science 2001, 291, 1965–1969. 

174. Simmons, G.; Wool-Lewis, R.J.; Baribaud, F.; Netter, R.C.; Bates, P. Ebola virus glycoproteins 

induce global surface protein down-modulation and loss of cell adherence. J. Virol. 2002, 76, 

2518–2528. 

175. Ray, R.B.; Basu, A.; Steele, R.; Beyene, A.; McHowat, J.; Meyer, K.; Ghosh, A.K.; Ray, R. Ebola 

virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells. 

Virology 2004, 321, 181–188. 

176. Sullivan, N.J.; Peterson, M.; Yang, Z.Y.; Kong, W.P.; Duckers, H.; Nabel, E.; Nabel, G.J. Ebola 

virus glycoprotein toxicity is mediated by a dynamin-dependent protein-trafficking pathway. 

J. Virol. 2005, 79, 547–553. 

177. Han, Z.; Licata, J.M.; Paragas, J.; Harty, R.N. Permeabilization of the plasma membrane by Ebola 

virus GP2. Virus Genes 2007, 34, 273–281. 

178. Francica, J.R.; Matukonis, M.K.; Bates, P. Requirements for cell rounding and surface protein 

down-regulation by Ebola virus glycoprotein. Virology 2009, 383, 237–247. 

179. Zampieri, C.A.; Fortin, J.F.; Nolan, G.P.; Nabel, G.J. The ERK Mitogen-Activated Protein Kinase 

Pathway Contributes to Ebola Glycoprotein-Induced Cytotoxicity. J. Virol. 2006, doi:10.1128/ 

JVI.01586-06. 

180. Martinez, O.; Valmas, C.; Basler, C.F. Ebola virus-like particle-induced activation of NF-kappaB 

and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 

2007, 364, 342–354. 



Viruses 2011, 3            

 

 

1529

181. Bhattacharyya, S.; Hope, T.J. Full-length Ebola glycoprotein accumulates in the endoplasmic 

reticulum. Virol. J. 2011, 8, 11. 

182. Geisbert, T.W.; Young, H.A.; Jahrling, P.B.; Davis, K.J.; Kagan, E.; Hensley, L.E. Mechanisms 

underlying coagulation abnormalities in ebola hemorrhagic fever: Overexpression of tissue factor 

in primate monocytes/macrophages is a key event. J. Infect. Dis. 2003, 188, 1618–1629. 

183. Aleksandrowicz, P.; Wolf, K.; Falzarano, D.; Feldmann, H.; Seebach, J.; Schnittler, H. Viral 

haemorrhagic fever and vascular alterations. Hamostaseologie 2008, 28, 77–84. 

184. Wool-Lewis, R.J.; Bates, P. Characterization of Ebola virus entry by using pseudotyped viruses: 

Identification of receptor-deficient cell lines. J. Virol. 1998, 72, 3155–3160. 

185. Yang, Z.; Delgado, R.; Xu, L.; Todd, R.F.; Nabel, E.G.; Sanchez, A.; Nabel, G.J. Distinct cellular 

interactions of secreted and transmembrane Ebola virus glycoproteins. Science 1998, 279,  

1034–1037. 

186. Reed, D.S.; Hensley, L.E.; Geisbert, J.B.; Jahrling, P.B.; Geisbert, T.W. Depletion of peripheral 

blood T lymphocytes and NK cells during the course of ebola hemorrhagic Fever in cynomolgus 

macaques. Viral. Immunol. 2004, 17, 390–400. 

187. Bradfute, S.B.; Braun, D.R.; Shamblin, J.D.; Geisbert, J.B.; Paragas, J.; Garrison, A.; Hensley, 

L.E.; Geisbert, T.W. Lymphocyte death in a mouse model of Ebola virus infection. J. Infect. Dis. 

2007, 196, S296–S304. 

188. Wauquier, N.; Becquart, P.; Padilla, C.; Baize, S.; Leroy, E.M. Human fatal zaire ebola virus 

infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. 

PLoS Negl. Trop. Dis. 2010, 4, e837. 

189. Zarozinski, C.C.; McNally, J.M.; Lohman, B.L.; Daniels, K.A.; Welsh, R.M. Bystander 

sensitization to activation-induced cell death as a mechanism of virus-induced immune 

suppression. J. Virol. 2000, 74, 3650–3658. 

190. Finkel, T.H.; Tudor-Williams, G.; Banda, N.K.; Cotton, M.F.; Curiel, T.; Monks, C.; Baba, T.W.; 

Ruprecht, R.M.; Kupfer, A. Apoptosis occurs predominantly in bystander cells and not in 

productively infected cells of HIV- and SIV-infected lymph nodes. Nat. Med. 1995, 1, 129–134. 

191. Inoue, Y.; Yasukawa, M.; Fujita, S. Induction of T-cell apoptosis by human herpesvirus 6. 

J. Virol. 1997, 71, 3751–3759. 

192. Yates, N.L.; Yammani, R.D.; Alexander-Miller, M.A. Dose-dependent lymphocyte apoptosis 

following respiratory infection with Vaccinia virus. Virus Res. 2008, 137, 198–205. 

193. Hilleman, M.R. Strategies and mechanisms for host and pathogen survival in acute and persistent 

viral infections. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 14560–14566. 

194. Gougeon, M.L. Apoptosis as an HIV strategy to escape immune attack. Nat. Rev. Immunol. 2003, 

3, 392–404. 

195. Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770–776. 

196. Jekle, A.; Keppler, O.T.; De Clercq, E.; Schols, D.; Weinstein, M.; Goldsmith, M.A. In vivo 

evolution of human immunodeficiency virus type 1 toward increased pathogenicity through 

CXCR4-mediated killing of uninfected CD4 T cells. J. Virol. 2003, 77, 5846–5854. 



Viruses 2011, 3            

 

 

1530

197. Schindler, M.; Munch, J.; Kutsch, O.; Li, H.; Santiago, M.L.; Bibollet-Ruche, F.; Muller-Trutwin, 

M.C.; Novembre, F.J.; Peeters, M.; Courgnaud, V.; Bailes, E.; Roques, P.; Sodora, D.L.; Silvestri, 

G.; Sharp, P.M.; Hahn, B.H.; Kirchhoff, F. Nef-mediated suppression of T cell activation was lost 

in a lentiviral lineage that gave rise to HIV-1. Cell 2006, 125, 1055–1067. 

198. Westendorp, M.O.; Frank, R.; Ochsenbauer, C.; Stricker, K.; Dhein, J.; Walczak, H.; Debatin, 

K.M.; Krammer, P.H. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and 

gp120. Nature 1995, 375, 497–500. 

199. Lenassi, M.; Cagney, G.; Liao, M.; Vaupotic, T.; Bartholomeeusen, K.; Cheng, Y.; Krogan, N.J.; 

Plemenitas, A.; Peterlin, B.M. HIV Nef is secreted in exosomes and triggers apoptosis in 

bystander CD4+ T cells. Traffic 2010, 11, 110–122. 

200. Gandhi, R.T.; Chen, B.K.; Straus, S.E.; Dale, J.K.; Lenardo, M.J.; Baltimore, D. HIV-1 directly 

kills CD4+ T cells by a Fas-independent mechanism. J. Exp. Med. 1998, 187, 1113–1122. 

201. Herbeuval, J.P.; Grivel, J.C.; Boasso, A.; Hardy, A.W.; Chougnet, C.; Dolan, M.J.; Yagita, H.; 

Lifson, J.D.; Shearer, G.M. CD4+ T-cell death induced by infectious and noninfectious HIV-1: 

role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood 2005, 106,  

3524–3531. 

202. Doitsh, G.; Cavrois, M.; Lassen, K.G.; Zepeda, O.; Yang, Z.; Santiago, M.L.; Hebbeler, A.M.; 

Greene, W.C. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human 

lymphoid tissue. Cell 2010, 143, 789–801. 

203. Hevey, M.; Negley, D.; Pushko, P.; Smith, J.; Schmaljohn, A. Marburg virus vaccines based upon 

alphavirus replicons protect guinea pigs and nonhuman primates. Virology 1998, 251, 28–37. 

204. Ignatyev, G.M. Immune response to filovirus infections. Curr. Top. Microbiol. Immunol. 1999, 

235, 205–217. 

205. Leroy, E.M.; Baize, S.; Volchkov, V.E.; Fisher-Hoch, S.P.; Georges-Courbot, M.C.; Lansoud-

Soukate, J.; Capron, M.; Debre, P.; McCormick, J.B.; Georges, A.J. Human asymptomatic Ebola 

infection and strong inflammatory response. Lancet 2000, 355, 2210–2215. 

206. Hensley, L.E.; Young, H.A.; Jahrling, P.B.; Geisbert, T.W. Proinflammatory response during 

Ebola virus infection of primate models: Possible involvement of the tumor necrosis factor 

receptor superfamily. Immunol. Lett. 2002, 80, 169–179. 

207. Park, C.G.; Lee, S.Y.; Kandala, G.; Choi, Y. A novel gene product that couples TCR signaling to 

Fas(CD95) expression in activation-induced cell death. Immunity 1996, 4, 583–591. 

208. Bosio, C.M.; Aman, M.J.; Grogan, C.; Hogan, R.; Ruthel, G.; Negley, D.; Mohamadzadeh, M.; 

Bavari, S.; Schmaljohn, A. Ebola and Marburg viruses replicate in monocyte-derived dendritic 

cells without inducing the production of cytokines and full maturation. J. Infect. Dis. 2003, 188, 

1630–1638. 

209. Mahanty, S.; Hutchinson, K.; Agarwal, S.; McRae, M.; Rollin, P.E.; Pulendran, B. Cutting edge: 

Impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J. Immunol. 

2003, 170, 2797–2801. 

210. Mohamadzadeh, M. Potential factors induced by filoviruses that lead to immune supression. 

Curr. Mol. Med. 2009, 9, 174–185. 

211. Fife, B.T.; Bluestone, J.A. Control of peripheral T-cell tolerance and autoimmunity via the 

CTLA-4 and PD-1 pathways. Immunol. Rev. 2008, 224, 166–182. 



Viruses 2011, 3            

 

 

1531

212. Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; 

Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell 

apoptosis: a potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800. 

213. Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; 

Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the PD-1 immunoinhibitory 

receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. 

J. Exp. Med. 2000, 192, 1027–1034. 

214. Badovinac, V.P.; Harty, J.T. Programming, demarcating, and manipulating CD8+ T-cell memory. 

Immunol. Rev. 2006, 211, 67–80. 

215. Volchkov, V.E.; Blinov, V.M.; Netesov, S.V. The envelope glycoprotein of Ebola virus contains 

an immunosuppressive- like domain similar to oncogenic retroviruses. FEBS Lett. 1992, 305, 

181–184. 

216. Bukreyev, A.; Volchkov, V.E.; Blinov, V.M.; Netesov, S.V. The GP-protein of Marburg virus 

contains the region similar to the 'immunosuppressive domain' of oncogenic retrovirus P15E 

proteins. FEBS Lett. 1993, 323, 183–187. 

217. Yaddanapudi, K.; Palacios, G.; Towner, J.S.; Chen, I.; Sariol, C.A.; Nichol, S.T.; Lipkin, W.I. 

Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and 

Marburg viruses. Faseb J. 2006, 20, 2519–2530. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


