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Abstract: The innate immune response to viral pathogens is critical in order to mobilize 

protective immunity. Cells of the innate immune system detect viral infection largely 

through germline-encoded pattern recognition receptors (PRRs) present either on the cell 

surface or within distinct intracellular compartments. These include the Toll-like receptors 

(TLRs), the retinoic acid-inducble gene I-like receptors (RLRs), the nucleotide 

oligomerization domain-like receptors (NLRs, also called NACHT, LRR and PYD domain 

proteins) and cytosolic DNA sensors. While in certain cases viral proteins are the trigger of 

these receptors, the predominant viral activators are nucleic acids. The presence of viral 

sensing PRRs in multiple cellular compartments allows innate cells to recognize and 

quickly respond to a broad range of viruses, which replicate in different cellular 

compartments. Here, we review the role of PRRs and associated signaling pathways in 

detecting viral pathogens in order to evoke production of interferons and cytokines. By 

highlighting recent progress in these areas, we hope to convey a greater understanding  

of how viruses activate PRR signaling and how this interaction shapes the anti-viral 

immune response. 

Keywords: pattern recognition receptor; toll like receptor; nod like receptor; AIM2 like 

receptor; RIG-I like receptor; cytosolic DNA sensor; inflammasome; interferon; virus 
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1. Introduction  

Cells of the innate immune system utilize pattern recognition receptors (PRRs) to identify viral 

pathogens by engaging pathogen-associated molecular patterns (PAMPs). Once thought to be moieties 

found only on pathogens our understanding of PAMPs (pathogen associated molecular patterns) has 

expanded to include not only classical PAMPS such as lipopolysaccharides found on bacteria but also 

nucleic acids. Nucleic acid sensing has emerged as a major component of the immune systems  

anti-microbial arsenal. A diverse range of pathogens are sensed via recognition of their genomes or 

nucleic acids which accumulate during their replication. Nowhere is this more prevalent than in viral 

detection. PRRs respond to signatures present in viruses such as 5‟ triphosphate RNA, which is not 

normally found in host RNA or to nucleic acids such as viral DNA which is exposed to sensors 

localized in the cytoplasm.  

Of the PRRs, the Toll-like receptors (TLRs) are perhaps the most extensively studied. TLRs are 

type 1 transmembrane proteins that traffic between the plasma membrane and endosomal vesicles.  

They are primarily responsible for detecting PAMPs in the extracellular environment. Those located 

on the plasma membrane are usually specific for hydrophobic lipids and proteins while those found in 

endosomes detect nucleic acids. This segregation appears intentional allowing innate cells to respond 

to components of the viral envelope such as fusion machinery at their surface. In contrast, nucleic 

acids are detected in the endosome where many viruses uncoat their genomes and enter the cytoplasm. 

Upon reaching the cytoplasm, viral components are subject to the scrutiny of the retinoic acid-inducble 

gene I-like receptors (RLRs), the nucleotide oligomerization domain-like receptors (NLRs) and 

cytosolic DNA sensors such as members of the AIM2 family. Similar to TLRs, RLRs and DNA 

sensors regulate transcription factors essential for the production of interferons and cytokines. In 

contrast, NLRs and AIM2 are mainly responsible for the maturation of IL-1β and IL-18 through the 

activation of caspase-1. Interestingly, the immature forms of IL-1β and IL-18 are induced by TLR 

signaling while NLRs act as a „checkpoint,‟ regulating the activation and release of these potent 

effectors. In addition to the production of proinflammatory molecules, many classes of PRRs mobilize 

the adaptive immune response by increasing expression of MHC class II and inducing expression of 

the costimulatory molecules CD40, CD80 and CD86.  

2. The Toll-like Receptors 

The Toll protein was first recognized for its role in dorsal-ventral patterning of Drosophila 

embryos. Later studies found it to be important for the adult fly‟s immune response to bacterial and 

fungal infections fueling the search for mammalian homologs. To date, 10 TLRs have been identified 

in humans, 13 in mice with TLRs 1-9 common to both. TLR1, TLR2, TLR4, TLR5 and TLR6 are 

located on the plasma membrane while TLR3, TLR7, TLR8, and TLR9 are endosomal. All TLRs share 

a common architecture consisting of extracellular leucine-rich repeats and a cytoplasmic 

Toll/Interleukin-1 Receptor (TIR) domain [1]. These receptors signal as dimers, differentially 

recruiting the adaptor proteins Mal (MyD88 adapter-like), also called TIRAP (TIR domain-containing 

adaptor protein) and MyD88 (Myeloid differentiation primary response gene 88) and/or TRIF 

(TIR-domain-containing adaptor inducing IFNβ) and TRAM (Trif-related adaptor molecule) [1]. 
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Adaptors initiate signal cascades culminating in the activation of nuclear factor kappa b (NF-κB), 

mitogen-activated protein kinase (MAPK) and interferon regulatory factors 1, 3, 5 and 7 (IRF-3, -5  

and -7) [2]. Together these transcription factors not only drive expression of interferons, cytokines and 

chemokines but also influence cellular maturation and survival.  

2.1. TLR Signaling 

With the exception of TLR3 all TLRs recruit MyD88 upon activation. In the case of TLR2 and 

TLR4, the Mal/TIRAP protein acts as a bridging adapter to recruit MyD88 to the activated receptor 

[3]. MyD88‟s death domain associates with and activates IL-1R-associated kinase 1 (IRAK-1) and/or 

IRAK-2. IRAK-4 also transiently interacts with this complex and is thought to phosphorylate IRAK-1. 

IRAK-1 is subsequently released and engages TNFα receptor-associated factor 6 (TRAF6). Activated 

TRAF6 is capable of K63-linked polyubiquitination of itself and other proteins. It interacts with 

NF-κB essential modulator (NEMO, also known as IKKγ), another of its ubiquitination targets, as well 

as TGF-β-activated kinase-1 (TAK1) and the TAK1 binding proteins (TAB1, TAB2 and TAB3). 

NEMO forms a complex with IKKα and IKKβ, which are the catalytic kinases responsible for 

phosphorylating IκB. IκB binds to and sequesters NF-κB in the cytoplasm. Following phosphorylation, 

IκB is ubiquitinated and finally degraded by the proteasome releasing NF-κB to enter the nucleus and 

induce gene expression. Studies indicate that TAK1 plays an essential role in both the NF-κB and 

MAPK pathways by phosphorylating IKKβ and c-Jun N-terminal kinase (JNK), respectively [4,5]. 

TLR3 is incapable of recruiting MyD88 and instead interacts with the adaptor protein TIR-domain-

containing adapter-inducing interferon-β (TRIF). TRIF can directly bind TRAF6 and induce NF-κB in 

a manner similar to MyD88. In contrast to MyD88, TRIF is also able to recruit the protein receptor 

interacting protein-1 (RIP-1). RIP-1 synergizes with TRAF6 resulting in more potent NF-κB 

activation. A third protein recruited to TRIF is TRAF3. TRAF3 associates with TANK binding  

kinase-1 (TBK1) and IKKi and is essential for the production of type I interferon. TBK1 and IKKi 

mediate this production by phosphorylating interferon regulatory factor-3 (IRF3) and IRF7.  

This allows them to dimerize and enter the nucleus where they cooperate with NF-κB and activator 

protein 1 (AP-1) to bring about target gene transcription. TLR4 can recruit TRIF through the adaptor  

TRIF-related adaptor molecule (TRAM) and can therefore signal through either pathway.  

A number of primary immunodeficiencies in humans are the result of defects in the innate signal 

pathways described above. For instance, one study of children with nonfunctional MyD88 proteins 

found they were predisposed to recurrent life-threatening pyogenic bacterial infections [6]. A similar 

phenotype has been reported in patients with IRAK-4 deficiency [7]. A study of two unrelated children 

with defects in UNC-93B1, a protein thought to be involved in trafficking TLR3, TLR7, TLR8 and 

TLR9 to the endosome, found an increased susceptibility to encephalitic herpes simplex virus-1 

infection [8]. PBMCs and fibroblasts derived from these children demonstrated a reduced type I 

interferon response to HSV-1 challenge and a concomitant enhancement in viral replication [8]. 

2.2. TLR Expression and Activity 

The inflammatory response evoked by viral PAMPs depends on a variety of factors. Firstly, cellular 

expression of TLRs differs between innate cell types. Human macrophages are known to express high 
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levels of TLR2 and TLR4 while plasmacytoid dendritic cells (pDCs) mainly express TLR7 and 

TLR9 [1]. Expression patterns also vary between species, where TLR9 is restricted to a few cell types 

in humans it is widely distributed in mice. Furthermore, expression of certain downstream signaling 

molecules fluctuates between innate cell types. For example, pDCs are unique in that they 

constitutively express the transcription factor IRF7 allowing them to quickly produce high levels of 

type I IFNs in response to viral infection while other cell types such as macrophages may respond in a 

more delayed manner [2,3]. Thus, the response to identical viral PAMPs may differ between cell types 

both in the nature of effector molecules produced and the kinetics of the response. Virally encoded 

proteins that subvert or distort the TLR response often further complicate this picture. In the 

subsequent sections we discuss the TLRs individually, detailing the viruses they detect and wherever 

possible the specific viral products sensed. 

2.3. TLR4 

The TLR4-mediated response to LPS is well known for its critical role in innate immune control of 

Gram-negative bacterial infection. It was also the first TLR shown to respond to a viral pathogen. In 

2000, Kurt-Jones et al. reported the interaction between the fusion (F) protein of respiratory syncytial 

virus (RSV) and TLR4 [4]. The importance of TLR4 in human viral disease and RSV pathogenesis has 

been documented in genetic studies. In humans, inheritances of two different single nucleotide 

polymorphisms (SNPs) in the ectodomain of TLR4 are associated with reduced responses to both LPS 

and RSV F. A highly significant association was found between RSV infection in high-risk infants and 

inheritance of hyporesponsive TLR4 SNPs [5]. This was confirmed in a separate study that likewise 

found a significant association between these same TLR4 SNPs and severity of RSV disease in 

infants [6].  

Initial studies linking TLR4 expression to RSV pathogenesis were done in the TLR4-deficient 

mouse strain C57BL10ScNCr (which has a deletion of the gene region containing TLR4) as well as in 

C3H/HeJ mice (non-signaling point mutation of TLR4) [4,7]. These studies found that RSV activated 

NF-B in a TLR4-dependent manner at early time points of infection [8]. The original RSV infection 

studies with ScNCr mice were controversial as it was suggested that the failure to control RSV was 

due to a defect in IL-12R signaling [9]. However, this discrepancy between the different studies was 

due in part to confusion about the mouse nomenclature since the ScNCr mice used in the initial studies 

(but misidentified as ScCR in the paper [4]) have normal IL-12R [10] while the ScCr mice used by the 

second group were IL-12R-deficient [9]. More recent work using targeted TLR4 knockouts on a B6 

background (with normal IL-12R) have confirmed the role of TLR4 in controlling RSV replication 

independent of IL-12R, but interestingly these studies have also revealed an even more important role 

for TLR2 in limiting RSV replication [11]. The purified F protein of RSV induced IL-6 production in a 

dose-dependent manner in human peripheral blood mononuclear cells (PBMCs) and wild type mouse 

macrophages alike. However, this response was lost in TLR4 deficient and TLR4 knockout 

macrophages [4,11]. Studies by Vogel and colleagues have shown that the ability of TLR4 to be 

triggered by RSV F is critical to prevent RSV-induced pathology. Indeed, the formalin-inactivated 

RSV vaccine which caused exacerbated disease in clinical trials and was found to contain a denatured, 

non-stimulatory F protein. The disease enhancing activity of the formalin-inactivated RSV vaccine 
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could be reversed by the addition of MPL, a non-toxic lipid A TLR4 agonist [12]. Disease severity is 

also correlated with the absence of “alternatively activated” (AA) macrophages that play a crucial role 

in tissue repair [13]. Taken together with the human and mouse genetics, these studies suggest that 

TLR4-F protein interactions may protect the host from severe RSV disease by mitigating or 

reprogramming the host response to promote AA-macrophages and thus promote healing [14].  

TLR4 is also important for infections by the retrovirus mouse mammary tumor virus (MMTV). 

MMTV was shown to activate NF-B and induce B220 and CD69 lymphocyte activation markers in B 

cells from wild type but not C3H/HeJ or congenic BALB/c (C.C3H Tlr4
lps-d

) lines [15]. TLR4 

activation, attributed to the envelope (Env) protein, was found to stimulate production of IL-10 [16]. 

Surprisingly induction of TLR4 signaling appears to benefit MMTV. First, it activates quiescent B 

cells encouraging cell division, which is necessary for viral genome integration in the host 

chromosome. Secondly, it promotes secretion of IL-10, an immunosuppressive cytokine that helps the 

virus persist indefinitely [15].  

2.4. TLR2 

Functional TLR2 exists as a heterodimer with either TLR1 or TLR6 on the plasma membrane of 

both innate and adaptive immune cells. It can be activated by lipoteichoic acid, a common component 

of gram-positive bacteria, as well as GPI anchors of parasitic protozoan such as Plasmodium 

falciparum. The TLR2/TLR6 heterodimer has recently been shown to play a role in the innate immune 

response to RSV. Macrophages from mice deficient in TLR2 or TLR6 responded to RSV with lower 

levels of TNF, IL-6, CCL2 (MCP-1) and CCL5 (RANTES) than their wild type counterparts. When 

TLR2 or TLR6 knockout mice were challenged intranasally with RSV they had elevated peak viral 

titers and lower numbers of neutrophils and activated DC in their lungs [11]. Thus, TLR2/TLR6 

signaling likely contributes to both innate immune cell recruitment and viral clearance in vivo during 

RSV infection [11]. In human PBMCs, TLR2 contributes to IL-8 and MCP-1 production in response to 

Epstein-Barr virus (EBV) [17]. A TLR2/TLR1-mediated proinflammatory response to the related 

human cytomegalovirus (HCMV) has also been reported. One study found TLR2 deficient mouse 

macrophages had significantly reduced IL-6 and IL-8 production in response to UV-inactivated 

HCMV [18]. Furthermore, expression of TLR2 and CD14 was required for maximal NF-B activation 

and IL-8 secretion in HEK293 cells exposed to HCMV. Envelope glycoproteins B and H were later 

shown to coimmunoprecipitate with TLR2 and TLR1 and are theorized to be the HCMV PAMPs 

stimulating TLR2 [19].  

Lymphocytic Choriomeningitis (LCMV) is a non-cytolytic virus that can cause fatal encephalitis in 

mice. Wild type glial cells infected with LCMV produce TNF, CCL2 and CCL5, a response that is 

abolished in cells derived from TLR2 deficient mice [20]. TLR2 also induces MHC class-I and  

class-II, CD40 and CD86 expression in microglia challenged with LCMV, implicating this pathway in 

the induction of adaptive immunity [20]. In LCMV infection, where much of the CNS damage is 

caused by the immune response itself, it remains to be determined if TLR2 signaling is protective or 

pathological. Interestingly, TLR2 is important for type I IFN induction during LCMV infection but the 

mechanism is unclear [21]. Although TLR2 is normally not associated with type I IFN induction, a 
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recent study from Barton and colleagues demonstrated that on inflammatory monocytes, TLR2 

regulates induction of type I interferon in response to viral but not bacterial ligands [22].  

Surprisingly, it appears TLR2 can play either a protective or detrimental role in disease caused by 

herpes simplex virus (HSV) depending on the context of the infection. Studies using an intraperitoneal 

infection model found TLR2 deficient neonates were protected from lethal HSV-1 encephalitis 

compared to wild type mice [23]. Despite having similar viral loads, the TLR2 knockouts 

demonstrated improved survival, attenuated symptoms and reduced CNS inflammatory lesions. In 

contrast, TLR2 was shown to work synergistically with TLR9 to promote survival in an intranasal 

HSV-1 infection model [24]. In addition, TLR2 has been shown to be beneficial in both intraperitoneal 

and intravaginal HSV-2 infection models [25]. TLR2‟s role in murine HSV infection models may be 

influenced by factors such as the size of the viral inoculum, the route of administration and the age of 

the subject. HSV induced two distinct responses; a TLR2-dependent inflammatory cytokine response 

and a TLR9 and/or non-TLR-dependent type I IFN response. A strong IFN response is necessary to 

control early virus replication (IFN-deficient mice quickly succumb to infection) and prevent spread 

from the genital tract to the brain [25]. Once in the brain, however, inflammation is linked to increased 

mortality [23].  

Measles virus (MV) is another infection in which TLR2 signaling may have both favorable and 

unfavorable effects. Challenging mice with live or UV-inactivated wild type MV induces IL-6 

production and CD150 surface expression in mouse macrophages; a response that is impaired in 

TLR2-deficient cells [26]. Intriguingly, CD150 is required for entry of wild type MV into monocytes, 

thus immune activation through TLR2 may in fact benefit the virus by conferring susceptibility. This 

study identified MV hemaglutinin (HA) protein as the viral PAMP triggering TLR2 activation [26]. 

MV vaccine strains carrying a single asparagine to tyrosine substitution in the HA protein lacked the 

ability to activate TLR2.  

2.5. TLR3 

With the exception of neutrophils and pDCs, TLR3 is widely expressed in innate immune cells 

where it is localized to the endosomal compartment [27,28]. In 2001, Alexopoulou et al. demonstrated 

that activation of TLR3 signaling by the double stranded RNA analog poly(I:C) contributed to the 

production of type I IFN and cytokines in macrophages. Moreover, genomic dsRNA isolated from 

reovirus was found to activate wild type but not TLR3 deficient splenocytes. The idea that TLR3 could 

respond to dsRNA, a common viral PAMP, led to intense speculation about its role in the host 

response to numerous infections. Counterintuitively, a later study found no difference in the survival, 

viral titers or pathology of TLR3 deficient mice following reovirus challenge [29]. The authors 

suggested that during in vivo infection, TLR3 may not encounter reovirus dsRNA or that levels may be 

too low to efficiently activate TLR3 [29]. This study also reported indistinguishable immune responses 

to LCMV, VSV and MCMV infection in TLR3 deficient and wild type mice [29]. However, other 

evidence exists suggesting that TLR3 does in fact play a role in controlling MCMV as some studies 

observed blunted type I IFN and IL-12 production accompanied by higher viral loads in the spleens of 

mice lacking TLR3 [30,31]. Despite this, only TLR9 deficient mice had significantly decreased 

survival compared to wild type suggesting TLR9 is more crucial than TLR3 in MCMV infections [30]. 
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A recent study also implicates TLR3 in immune suppression of the related herpes virus HSV-1. 

Patients with TLR3 dominant negative mutations were found to be more susceptible to herpes simplex 

encephalitis, a rare but devastating manifestation of HSV-1 infection [32]. The presumed ligand for 

TLR3 in infections with DNA viruses is dsRNA generated during bidirectional transcription of 

opposing DNA strands. TLR3 signaling also reduces lethality of encephalomyocarditis virus (EMCV), 

a ssRNA virus that directly damages heart tissue [33]. TLR3 deficient mice challenged with EMCV 

had decreased levels of TNF, IL-6 and IL-1 mRNA in cardiac tissue and a corresponding reduction 

in inflammatory infiltrate at 3 days post infection [33]. Without TLR3 signaling, EMCV replicated to 

higher levels in the heart resulting in more rapid and extensive mortality in knockouts [33].  

Although this study indicates that the TLR3-mediated inflammatory response is beneficial in 

EMCV infections; TLR3 signaling appears to be detrimental in a number of other viral infections. For 

instance, TLR3 deficient mice were protected compared to their wild type counterparts when 

challenged with a lethal dose of West Nile Virus (WNV) [34]. This study found that TLR3 driven 

production of inflammatory cytokines compromised the blood-brain barrier facilitating WNV entry. 

This resulted in higher viral loads in the CNS and worsened neuropathology. Likewise, TLR3 was 

shown to play a pathologic role in infections with Punta Toro Virus (PTV) [35]. Wild type mice had 

drastically reduced survival and increased hepatic injury compared to TLR3 deficient mice following 

PTV challenge. Despite having similar serum and hepatic viral loads, wild type mice had elevated 

levels of IL-6, IFN, CCL2 and CCL5, suggesting these proinflammatory molecules may mediate 

much of the damage observed [35]. Interestingly, although TLR3 signaling increases inflammation and 

reduces Influenza A virus (IAV) lung titers, it causes a paradoxical decrease in survival. Thus, in IAV 

infections, lethality appears to be more dependent on TLR3 signaling than direct virus-induced injury.  

2.6. TLR7 and TLR8 

TLR7 and TLR8 are two closely related receptors that, like TLR3, act in the endosome. Human 

TLR7 and TLR8 were first shown to respond to the imidazoquinoline-like compound resiquimod  

(R-848), a synthetic drug recognized for its antiviral and antitumor activity [36,37]. We now know that 

nearly any long single-stranded RNA (ssRNA) is capable of activating TLR7 and TLR8 [38]. Despite 

this, differences do exist between these receptors. For example, short dsRNAs containing certain 

motifs preferentially activate TLR7 [39,40]. Furthermore, synthetic agonists specific to TLR7 or TLR8 

differentially activate innate immune cells leading to distinct cytokine profiles [41]. In 2004,  

Diebold et al. showed that TLR7 mediates IFN production by pDCs in response to live or  

heat-inactivated influenza virus [42]. This TLR7 response could be elicited simply by exposure to 

purified genomic ssRNA and was completely abrogated by chloroquine, an inhibitor of endolysosomal 

acidification [42]. Thus, the authors proposed a model, now known as the exogenous pathway, 

whereby pDCs endocytose and degrade a portion of incoming influenza virions, allowing TLR7 to 

engage exposed genomic RNA. A similar TLR7-dependent type I interferon response was observed 

when pDCs were challenged with vesicular stomatitis virus (VSV) [43]. Under normal circumstances 

both influenza and VSV require endocytosis for viral entry. However, using a recombinant strain of 

VSV (VSV-RSV-F), capable of fusing to the plasma membrane, Lund et al. demonstrated that VSV 

activated TLR7 regardless of the route of viral entry. TLR7 is also responsible for pDC production of 
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IFN in response to Sendai virus (SV); another ssRNA virus which enters at the plasma 

membrane [44]. Interestingly studies of SV using human U937 and murine RAW 264.7 myeloid lines 

found only a partial role for TLR signaling in cytokine and chemokine production [45]. Recent 

evidence suggests the cytosolic RLR receptors are chiefly responsible for the cytokine and interferon 

response to SV in myeloid cell types other than pDCs [46]. 

One important observation gleaned from studies using SV and VSV was that, in contrast to 

influenza, UV-inactivation of these virions abolished TLR7 activation [44]. From this work a second 

model of TLR7 activation known as the endogenous pathway was proposed. According to this theory, 

ssRNA intermediates produced during SV and VSV infection are transferred from the cytoplasm to the 

endosome by means of autophagy [44]. Thus, to elicit a TLR7 response by this route, cells must be 

exposed to live, replication competent virus. This model is supported by studies showing that selective 

inhibitors of autophagy and mice deficient in autophagic pathways lack a TLR7 mediated response to 

SV and VSV [44]. Recent studies have implicated TLR7 and TLR8 in the response to human 

immunodeficiency virus (HIV). ssRNA derived from the HIV genome caused murine pDCs and 

macrophages and human PBMCs to produce IFN, IL-6 and TNF [47]. In mice this activity was 

TLR7-dependent while in humans it appears to rely on TLR8 suggesting that HIV receptors may be 

species-specific. A study by Wang et al. found IFN production by human and mouse pDCs 

responding to Coxsackievirus B (CVB) was also dependent on TLR7 [48]. Interestingly, this response 

required the presence of CVB-specific antibodies as well as functional Fc Receptor complexes on the 

pDC surface. Thus they proposed a mechanism whereby opsonized CBV is delivered to the endosome 

via FcR and once internalized viral RNA is detected by TLR7 [48]. This observation suggests previous 

exposure to CVB can influence subsequent innate responses furthering our understanding of the 

complex interplay between adaptive and innate immunity.  

2.7. TLR9  

In both humans and mice, TLR9 is highly expressed in pDCs, innate cells renowned for their ability 

to rapidly produce large amounts of type I interferon [1]. TLR9 responds to the unmethylated 

deoxycytidylate-phosphate-deoxyguanylate (CpG) motifs in viral and bacterial DNA [49]. Not 

surprisingly TLR9 has been shown to play a crucial role in infections caused by a number of DNA 

viruses. For instance, TLR9 deficient mice infected with MCMV have a drastically increased mortality 

compared to their wild type counterparts. This hypersensitivity is likely due to the blunted type I IFN 

and IL-12 response and reduced NK cell activation which results in an elevated MCMV load [30]. In 

EBV infection, production of type I IFN, IL-6 and IL-8 by pDCs is largely dependent on TLR9 [17]. 

This is in contrast to monocytes where TLR2 synergizes with TLR9 to orchestrate the cytokine 

response to EBV [17]. TLR9 signaling also plays a role in the interferon response to HSV types I and 

II. One study found IFN production by mouse pDCs in response to HSV-2 was completely dependent 

on TLR9 and independent of viral replication [50]. Using cholorquine it was shown that this 

recognition required endosomal maturation and could be evoked simply by exposure to purified  

HSV-2 DNA [50]. Furthermore, following in vivo HSV-2 challenge, IFN was only detectable in the 

serum of mice with intact TLR9. A similar role for TLR9 was described in the response to HSV-1 by 

splenic pDCs. However, this study also described a delayed IFN response by conventional dendritic 
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cells (cDCs) and macrophages that was both TLR9 and MyD88-independent but required exposure to 

replication competent virus. The TLR9-independent IFN response is likely due to cytoplasmic RLRs 

and may explain why one study using TLR9 deficient mice identified no in vivo defects in the HSV-1 

control [51]. Alternatively, TLR9 signaling may be more important in certain manifestations of HSV-1 

induced disease. A recent study showed TLR9 deficient mice did have higher rates of mortality and 

viral replication when challenged intranasally with HSV-1 [24]. Thus TLR9‟s precise role in HSV 

pathogenesis and the relative contributions of other PRRs requires further investigation. Figure 1 

illustrates the TLRs activated by viral pathogens and depicts their downstream signal pathways. 

Figure 1. Cell surface and endosomal recognition of viruses by Toll-like receptors (TLRs). 

TLR2 responds to a variety of viruses resulting in activation of a MyD88-dependent  

NF-κB and MAPK pathway. TLR4, responding to viral proteins (e.g., RSV F-protein) 

activates both a MyD88-dependent and MyD88-independent response. The MyD88-

dependent response leads to transcriptional regulation of inflammatory cytokines, while the 

MyD88-independent response is regulated via TRAM/TRIF and the IKK-related kinases 

which drive IRF3 activation and type I Interferon production. In the endosome, TLR3, 

TLR7, TLR8 and TLR9 sense viral nucleic acids and generate either IRF3 activation 

(TLR3) or IRF7-driven type I IFNs (TLR7, 8 and 9).  
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3. Intracellular Nucleic Acid Sensors 

As discussed above, the TLRs play an important role in sensing viral PAMPS that are present 

within the extracellular compartment, as well as in endosomes. In certain contexts, TLRs can receive 

viral nucleic acids generated from viruses that replicate in the cytoplasm, via an autophagy 

mechanism. A role for intracellular sensors in the clearance of viruses that replicate and reside within 

the cytosol of cells has recently emerged. Following the generation of mice lacking TLRs and 

examination of their susceptibility to virus infections, it became clear that additional sensing 

mechanisms must also exist and contribute to anti-viral defenses. The last decade or more has revealed 

numerous additional classes of innate sensors. Of particular relevance to anti-viral defenses was the 

discovery of specialized classes of cytosolic nucleic acid sensors, termed RIG-I like receptors (RLRs), 

which recognize intracellular RNA that is introduced to the cytosol during viral infection or that 

accumulates during replication. Additionally, a diverse selection of intracellular DNA sensors which 

recognize viral DNA within the cytosol have also emerged.  

3.1. The RIG-I like Receptor Family 

The RLR family is comprised of three DExD/H box RNA helicases: retinoic acid-inducible gene 

(RIG-I), melanoma differentiation-associated gene 5 (MDA-5), and laboratory of genetics and 

physiology-2 (LGP-2) [60–64]. Both RIG-I and MDA-5 are comprised of tandem N-terminal caspase 

activation and recruitment domains (CARDs) followed by a DExD/H box RNA helicase domain which 

has ATPase activity and a C-terminal repressor domain (RD). Unlike RIG-I and MDA-5, LGP-2 lacks 

the N-terminal CARD domains, containing only the RNA helicase domain. As such, LGP-2 was 

postulated to act as a negative regulator of the other RLRs [61,63]. Under resting conditions, RIG-I 

resides in the cytoplasm in an inactive form that is auto inhibited by its regulatory domain. Upon viral 

infection, RIG-I undergoes a conformational change by which it dimerizes in an ATP dependent 

manner [63]. The activated multimeric form of RIG-I or MDA5 then interacts with the downstream 

adaptor protein mitochondrial antiviral signaling protein (MAVS), also known as VISA, IPS-1, and 

CARDIF, via CARD-CARD interactions. MAVS is localized to the outer leaflet of the mitochondrial 

membrane, which is an essential location to support downstream signaling. Recently, MAVS was also 

shown to be localized on peroxisomes, from where it induces an early antiviral response through the 

direct induction of a subset of anti-viral genes via the transcription factor IRF1. Upon engagement of 

RIG-I or MDA5 with MAVS, MAVS activates the IKK-related kinase, TBK1/IKKi, which activates 

IRF3/IRF7, resulting in the transcription of type I interferons. MAVS also activates NF-κB through 

recruitment of TRADD, FADD, caspase-8, and caspase-10 [65–69]. 

3.2. RNA Recognition by RLRs 

The RLRs are critical components of the anti-viral defense pathway in many cell types including 

fibroblasts, epithelial cells, and conventional dendritic cells [70]. Initially, it was thought that both 

RIG-I and MDA-5 recognized the synthetic dsRNA, polyinosinic acid (polyI:C). However, studies 

from RIG-I and MDA-5 deficient mice determined that MDA-5 alone was responsible for interferon 

production by polyI:C stimulation [71]. Instead, RIG-I recognizes 5‟-triphosphorylated, uncapped 
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ssRNA, which is a common feature in many viral genomes. However, it is unable to recognize the 

capped 5‟-ppp ssRNA from the host cell [72–74]. These finding suggest that RIG-I uses the 5‟ end of a 

transcript to discriminate between viral and host RNA. MDA-5 distinguishes between viral and host 

RNA not by its 5‟ end, but rather by the length of the RNA sequence; long dsRNA is not naturally 

present in host cells and acts as a ligand of MDA-5. In addition to recognizing 5‟-triphosphate RNA, 

RIG-I is also capable of recognizing short dsRNA, which is produced as a byproduct of viral 

replication [75].  

RIG-I and MDA-5 appear to differentially recognize different classes of RNA viruses. Studies 

involving RIG-I deficient mice implicated RIG-I in the recognition of vesicular stomatitis virus (VSV), 

rabies virus, SV, Newcastle disease virus (NDV), RSV, measles virus, Influenza A and B, hepatitis C 

virus (HCV), Japanese encephalitis virus, and ebola virus [53,70,71,76–78]. Studies from MDA-5 

deficient mice show that MDA-5 is able to recognize EMCV, theiler‟s virus, and mengo virus [71,77]. 

All of these viruses do not contain a 5‟ triphosphate RNA, but are able to produce long dsRNA, 

providing further evidence that MDA5 discriminates between self and non-self RNA based on 

sequence length and not the 5‟triphosphate. More recently studies have shown that both CVB and 

poliovirus are dependent on MDA-5 for type I IFN production [79,80]. Moreover, some viruses,  

such as dengue, West Nile virus, and reovirus, signal through a combination of both RIG-I and  

MDA-5 [79,81,82].  

As discussed above, LGP-2 lacks N-terminal CARD domains, and was first thought to be a negative 

regulator of RLR function [61,63]. Initial studies found that overexpression of LGP-2 decreased the 

capacity of SV and NDV to induce interferon production. Evidence that LGP-2 could associate with 

RIG-I through mutual RD domains led to the proposal that LGP-2 directly prevented RIG-I association 

and activation. Consistent with this idea, interferon signaling was found to be increased in LGP-2 

deficient mice responding to polyI:C, providing evidence for negative regulation of MDA-5 as well [83]. 

A second in vivo study using LGP-2 deficient mice as well as mice harboring an inactive ATPase in 

the DExD/H-box RNA helicase domain showed that LGP-2 acted as a positive regulator of RIG-I and 

MDA-5-mediated signaling after infection by RIG-I and MDA-5-specific RNA viruses. This 

phenotype is consistent with the possibility that LGP-2 might promote RNA accessibility, thus 

enabling RIG-I or MDA-5 dependent viral recognition. Further studies on these mice will no doubt 

clarify this upstream mechanism and the role of LGP-2 in this pathway.  

3.3. DDX3 

Another member of the DExD/H box RNA helicase family, DDX3, has also recently been 

implicated in anti-viral defenses. Schroder et al. found that the vaccinia virus protein K7 inhibited 

IFNβ induction by binding to DDX3, which led to the discovery that DDX3 had a positive role in the 

RLR signaling pathway [84]. A more recent study reported that DDX3 binds to both polyI:C and viral 

RNA introduced into the cytosol and associates with MAVS/IPS-1 to upregulate IFNβ production. 

These results led the authors to speculate that DDX3 might enhance RNA recognition, forming a 

complex with RIG-I and MAVS to induce interferon production [85]. Further studies are required to 

determine whether DDX3 is a bona fide RNA sensor or a component of the RLR signaling pathway in 

order to fully understand the function DDX3 plays in anti-viral surveillance and signaling.  
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3.4. Cytosolic DNA Sensors 

Prior to the discovery of TLR9, it was known that DNA derived from pathogens could activate 

fibroblasts to produce type I IFNs [86]. This phenomenon was ignored or underestimated for decades 

and was rediscovered following the observation that transfection of pathogen-derived dsDNA activated 

a TLR9 negative thyroid cell line to upregulate various immunological genes [87]. Akira and 

colleagues subsequently demonstrated that TLR9−/− MEFs, which failed to respond to CpG DNA, 

produced large amounts of IFN in response to transfection with synthetic b-form dsDNA or genomic 

DNA isolated from bacteria, viruses, and mammalian cells [87]. This was similar to findings presented 

by the Medzhitov lab using a 45 bp dsDNA region from the Listeria monocytogenes genome. 

Cytosolic administration of dsDNA did not appear to utilize any known TLRs to induce interferon 

since cells from mice lacking both MyD88 and TRIF responded normally.  

Like the cytosolic RNA recognition pathways, cytosolic DNA recognition also leads ultimately to 

activation of TBK1 and IRF-3 and production of type I IFNs. However, the signaling pathway linking 

upstream DNA sensors to TBK1 are poorly characterized. TBK1 associates with DDX3, a DEAD box 

RNA helicase, which regulates IFNβ transcription via IRF-3 [84,85]. In addition, TBK1 interacts with 

the exocyst protein Sec5 in a complex that includes the recently identified endoplasmic reticulum (ER) 

adaptor stimulator of interferon genes (STING) [69,88–90]. STING plays a central role in the signaling 

pathway upstream of TBK1 following HSV infection [69]. STING also interacts with the ER 

translocon components Sec61β and TrapB in a manner essential for regulation of cytosolic  

DNA-induced type I IFN production, although the mechanistic understanding of this finding is not 

known [88]. In unstimulated cells, STING localizes to the ER and perhaps ER-associated mitochondria 

[90]. Following stimulation with cytosolic DNA and HSV-1, STING translocates to perinuclear foci, 

via the Golgi [88]. STING localizes partially to endosomes, particularly Sec5 positive structures [88], 

whilst another report has demonstrated that STING localizes to vesicular structures, which are not 

peroxisomes, mitochondria, endosomes or autophagosomes [91]. Further work is required to clarify the 

precise subcellular localization of STING. What is clear is the essential role of STING in cytosolic 

DNA sensing pathways. Much less clear is the mechanisms or receptors which act upstream of STING. 

A growing number of DNA sensors have now been implicated and will be outlined below. 

3.5. DAI 

DNA-dependent activator of IFN-regulatory factors (DAI) was among the first of the cytosolic 

DNA sensors to be discovered. It is composed of two binding domains for left-handed, Z form DNA, 

although the protein can recognize B form DNA as well. When DAI was exogenously expressed in 

L929 cells, it increased type I IFN production in a dose dependent manner following stimulation by 

both B and Z form DNA. Similarly, knockdown of DAI with siRNA impaired type I IFN production in 

response to DNA, the 45 bp interferon stimulatory DNA (ISD) from Listeria and the herpesvirus, 

HSV-1 [92,93]. The production of type-1 interferons by fibroblasts in response to HCMV was also 

found to be dependent on DAI [94]. DAI-knockout mice were subsequently generated, and 

surprisingly, cells derived from DAI deficient mice respond normally to synthetic and viral dsDNA 
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[92,95]. These results suggested that DAI might play a cell type specific, and redundant role in sensing 

cytoplasmic DNA, and that other sensors must also be necessary for inducing these responses.  

3.6. RNA Pol III 

As discussed above, both synthetic and viral RNA trigger the production of type I IFNs via RIG-I. 

Although, the RLRs are sensors of RNA, some data has suggested a role for this system in detection of 

DNA. A somewhat surprising finding was that synthetic B-form dsDNA can also induce IFN 

production in human cells in a manner that was dependent on the RIG-I adapter molecule MAVS  

[52–54]. These findings suggested the existence of an unknown DNA sensor that would signal via 

MAVS. Recently, two independent studies have provided an explanation for these findings and shown 

that AT-rich DNA can be transcribed by RNA polymerase III into 5'-ppp RNA, which subsequently 

activates RIG-I [52,55]. This pathway was reported to be involved in type I IFN induction during EBV 

infections where the EBERs are transcribed by RNA polymerase III [56]. This indirect DNA-sensing 

system was also reported to be involved in induction of type I IFN following HSV-1 or Legionella 

infection [52,55,57]. 

3.7. LRRFIP1 

In addition to DAI and RNA Pol III, Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1) 

has recently been implicated as a regulator of DNA-driven innate immune signaling. LRRFIP1 was 

found to bind to the drosophila homolog flightless I and play a role in actin organization during 

drosophila embrogenesis. In a study using Listeria monocytogenes to screen for potential cytosolic 

DNA sensing molecules, siRNA against LRRFIP1 was found to inhibit type I IFN production induced 

by the bacteria. The authors showed that the IFN response to VSV was dampened in these cells as 

well. Furthermore, knockdown of LRRFIP1 inhibited IFN production in response to polyI:C, and the 

synthetic DNA species, poly(dG:dC) and poly(dA:dT), implicating LRRFIP1 in the recognition of 

both dsRNA and both B and Z form dsDNA. Surprisingly, this function is independent of RNA Pol III. 

LRRFIP1 does not regulate IRF3 activation but instead appears to regulate a novel β-catenin-

dependent coactivator pathway. LRRFIP1 binds RNA or DNA and leads to phosphorylation of 

β-Catenin, which subsequently translocates to the nucleus where it associates with the p300 

acetyltransferase at the IFNβ1 promoter, leading to increased IFNβ production [101]. Although 

LRRFIP1 has been implicated in the recognition of both Listeria monocytogenes and VSV, further 

studies are needed in order to determine its role in sensing other viruses, particularly DNA viruses.  

3.8. IFI16 

While analyzing immune responses to a dsDNA region derived from the VV and HSV-1 genomes, 

Bowie et al. identified IFI16 as a DNA binding protein which interacted with these dsDNAs. IFI16 is a 

member of the PyHIN (pyrin and HIN200 domain-containing) protein family. The PHYIN family 

consists of 4 family members: IFIX, IFI16, MNDA and AIM2. All contain one or more HIN200 

domains, which recognize DNA as well as a pyrin domain. Knockdown of IFI16 or p204 (a member of 

the murine PYHIN family) led to a reduction in IFNβ responses to these dsDNAs while responses to 
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the RNA virus SV was unaffected. Although IFI16 is primarily nuclear in most cell types, in 

macrophages IFI16 also localized to the cytosolic compartment where it co-localized with dsDNA 

introduced via lipofectamine. Association of IFI16 with STING was required for the production of 

IFNβ in response to these DNA motifs. siRNA knockdown of IFI16, and its mouse homolog p204 led 

to a decrease in IRF3 and NF-κB activation and IFNβ gene induction following infection of cells with 

HSV-1 [102].  

3.9. DDX9 and 36 

Also in the family of DExD/H box RNA helicases, DHX9 and DHX36 have recently been shown to 

recognize and bind CpG-B and CpG-A DNA, respectively in plasmacytoid dendritic cells. Activation 

of DHX9 leads to IRF-7 activation and IFNα production, while activation of DHX36 leads to the 

activation of NF-κB and the production of IL-6 and TNFα. siRNA knockdown of DHX9 and DHX36 

inhibited cytokine production in response to the DNA virus HSV-1, while response to the RNA virus 

influenza A was unaffected [103].  

4. Inflammasomes 

Although the sensing of cytoplasmic DNA is linked to the transcriptional induction of type I IFN 

and other pro-inflammatory cytokines, cytosolic DNA has also been shown to trigger the  

caspase-1-dependent maturation of the pro-inflammatory cytokines IL-1β and IL-18 [104,105]. IL-1β, 

a close biological relative of TNFα, is involved in innate cell recruitment, activation of T-lymphocytes 

and induction of fever [106]. IL-18 increases the cytolytic activity and IFNγ production of natural 

killer (NK) cells and influences neutrophil recruitment and activation [106,107]. Growing evidence 

supports the importance of these cytokines in anti-viral defenses [108,109]. Mice lacking either  

one of these cytokines have demonstrated enhanced susceptibility to influenza A virus and HSV-1 

infections [110]. Moreover, pretreating mice with IL-18 protects them from subsequent HSV-1 and 

VV challenge [111,112].  

In contrast to type I IFNs and TNFα, the production of IL-1β is controlled at the level of 

transcription, translation, maturation and secretion [113,114]. Many cell stimuli including TLR-ligands 

activate the transcription of the pro-forms of IL-1β and IL-18. Unlike most other cytokines however, 

these pro-cytokines lack leader sequences and are retained in the cytoplasm rather than loaded into 

secretory vesicles. Maturation (i.e., the cleavage) of pro-IL-1β and pro-IL-18 is catalyzed by the 

cysteine protease caspase-1 (formerly known as IL-1 converting enzyme). In resting cells, caspase-1 

itself is present as an inactive zymogen pro-caspase-1 [115]. A large „inflammasome protein complex‟ 

controls the activity of the inflammatory caspase-1 [115]. Several protein complexes have been shown 

to form inflammasomes upon recognizing specific stimuli. NLRPs 2 to 14, which contain a C-terminal 

LRR-rich domain, a central nucleotide-binding NACHT oligomerization domain, and an N-terminal 

protein–protein interaction pyrin domain (PYD) associate with the PYD containing adaptor molecule 

apoptosis-associated speck-like protein (ASC; also termed pycard or TMS1) [116]. ASC links the 

NLRP‟s via its C-terminal CARD domain to the CARD domain of pro-caspase-1. This close 

association of pro-caspase-1 molecules is then believed to provoke self-cleavage into active caspase-1. 
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Active caspase-1 then cleaves pro-IL-1β and pro-IL18. ASC is critical for caspase-1 activation in 

response to many stimuli [106,107,115,117,118].  

4.1. AIM2 

Cytosolic dsDNA also triggers an ASC dependent activation of caspase-1 resulting in the 

maturation and secretion of IL-1β and IL-18. These findings suggested the existence of an 

inflammsome complex that can be triggered by DNA. Analysis of this response in macrophages 

lacking members of the NLRs revealed normal caspase-1 activation in these cells. Subsequent  

studies from several groups revealed that this response was instead dependent on AIM2 (Absent in 

melanoma-2), an interferon inducible protein that belongs to the same PYHIN family as IFI16 

[105,119–121]. AIM2 recognizes cytosolic dsDNA of self and nonself origin including viral DNA via 

its HIN200 domain in a sequence-independent manner. Contrary to other cytosolic sensors of DNA, 

the recognition of DNA by AIM2 triggers the assembly of an inflammasome complex. Upon DNA 

binding, AIM2 likely undergoes oligomerization and associates with ASC via homotypic pyrin-pyrin 

domain interactions, which in turn recruits pro-caspase 1. Published data has shown that the AIM2 

inflammasome is an integral component of innate sensing of DNA viruses [109]. AIM2 is essential for 

the activation of caspase-1 and proteolytic processing of IL-1β and IL-18 in antigen presenting cells in 

response to infection with MCMV and VV. Furthermore, AIM2-ASC dependent IL-18 secretion and 

NK-cell activation is critical in the early control MCMV infection in vivo [105,109]. In addition to 

viruses, AIM2 has also been shown to recognize Francisella tularensis and as observed for DNA 

viruses appears to be critical in early control of Francisella tularensis infection in vivo. Moreoever, 

AIM2 as well as NLRP3 and IPAF function in a redundant manner in the recognition of Listeria 

monocytogenes [109,122]. 

4.2. NLRP3 

In addition to the AIM2 inflammasome, a number of recent studies have shown that mice deficient 

in NLRP3 are more susceptible to virus infections, particularly RNA viruses [104,123,124]. Loss of 

NLRP3 was found to attenuate the normal IL-1β and IL-18 responses to influenza virus and was 

associated with diminished innate cell recruitment to the lung and increased pathology [123]. Further 

studies revealed that influenza‟s M2 protein, a proton-specific ion channel was needed to trigger the 

NLRP3 inflammasome [124]. Viral RNA has also been shown to trigger NLRP3 activation, although 

this is unlikely to be a direct RNA-NLRP3-interaction. The precise relationship between M2 and RNA 

in NLRP3 activation remains to be clarified. The NLRP3 inflammasome also plays a role in the 

response to adenovirus, a DNA virus [104]. Peritoneal macrophages isolated from NLRP3 or ASC 

deficient mice exposed to adenovirus are unable to secrete mature IL-1β [104]. When challenged  

in vivo, NLRP3 knockout mice had reduced levels of IL-1β, IL-6, CCL4 (MIP-1β) and CXCL10  

(IP-10) in the liver. Recently, a viral NLR homolog was identified in the dsDNA virus, KSHV. The 

KSHV tegument protein ORF63 appears to be an NLR homolog that can inhibit inflammasome 

activation by binding to NLRP1 and NLRP3 [58]. Inflammasome activation suppresses KSHV 

reactivation from latency, suggesting that inflammasome activation and IL-1 mediated signaling 

facilitates KSHV latency. These observations are consistent with a model whereby the KSHV 
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tegument ORF63 protein might bind NLRP3 and/or NLRP1 to block the detrimental effects of 

inflammasome activation.  

Intriguingly, a recent study has revealed a role for IFI16 in the recognition of Kaposi  

sarcoma-associated herpesvirus (KSHV) in endothelial cells. IFI16 is known to recognize viral DNA 

in the cytosol and drive type I Interferon production, as discussed above. In endothelial cells however, 

IFI16 in the nucleus can sense the KSHV DNA and form a complex with the inflammasome adapter 

molecule ASC. These findings suggest that IFI16 can form an inflammasome complex following 

recognition of nuclear DNA during infection with this virus [59]. Figure 2 portrays the cytosolic and 

nuclear receptors known to respond to viral pathogens and their downstream signal pathways. 

Figure 2. Cytosolic and Nuclear Pattern Recognition Receptors (PRRs). A multitude of 

DNA sensors, including IFI16, RNA Polymerase III, DAI, LRRFIP1, and DDX9/36 

recognize DNA and drive type I IFNs and cytokine production. RIG-I and MDA5 

recognize RNA in the cytosol. All of these molecules converge on STING in the case of 

DNA or MAVS in the case of RNA. STING and MAVS then engage either the  

TBK1-IRF3 or the IKKb-NFkB pathways, resulting in the activation of type I IFN 

responses and inflammatory cytokines, respectively. AIM2 (which binds to dsDNA) and 

NLRP3 (which can respond to viral RNA (probably indirectly)) act in the cytosol to 

promote the formation of a multiprotein inflammasome complex that contains the adaptor 

protein ASC, and caspase-1. IFI16 can also detect DNA in the nucleus during KSHV 

infection. Nuclear IFI16 engages ASC which then triggers caspase-1 in the cytosol. 

Activation of caspase-1 results in the proteolytic cleavage of pro-IL-1β and pro-IL-18 to 

IL-1β and IL-18, respectively. The mature cytokines can then be released from the cell. 

 

 

5. Conclusions and Future Perspectives 

Over the past decade our understanding of how the innate immune system detects viruses and 

triggers antiviral responses has increased immensely. Our knowledge of what constitutes a PAMP, 
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once limited to classical TLR activators such as LPS, has recently expanded to include nucleic acids.  

This has led to the discovery of a variety of cytosolic RNA and DNA receptors and their downstream 

signaling pathways. Although our grasp of TLR function has matured significantly over the past 

decade, a number of prominent questions remain regarding cytosolic and nuclear PRR signaling. First, 

many of the cytosolic sensors appear to play redundant roles in viral detection. Such overlapping 

defense strategies may have evolved in order to combat viral evasion mechanisms. Defining the 

function of newly identified PRRs in immune defense to viral infection is an important step in 

understanding their unique or ancillary contributions to pathogenesis.  

Secondly, it remains unclear how some nucleic acid sensors discriminate self from non-self. Just as 

RIG-I recognizes the 5‟ triphosphate moiety found principally on viral RNAs, a mechanism 

presumably exists allowing PRRs such as IFI16 to distinguish between virally derived and host DNA. 

Another question that must be addressed is how viral RNA and DNA is made accessible to PRRs. For 

instance, it is not well understood how nucleic acids are presented to cytosolic sensors in cases such as 

HSV infection where viral DNA is shielded by a capsid in the cytoplasm and replicates within the 

nucleus. As we explore these and other questions it is imperative that we apply our findings in human 

model systems. By encouraging cooperation between basic and clinical communities we can ensure 

that new discoveries are quickly translated into therapeutic strategies.  
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