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Abstract: The members of the filoviruses are recognized as some of the most lethal 

viruses affecting human and non-human primates. The only two genera of the Filoviridae 

family, Marburg virus (MARV) and Ebola virus (EBOV), comprise the main etiologic 

agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates 

ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated 

immune response to infection, very likely due to the virus targeting key host immune cells, 

such as macrophages and dendritic cells (DCs) that are necessary to mediate effective 

innate and adaptive immune responses. Despite major progress in the development of 

vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is 

still not available. During the last ten years, important progress has been made in 

understanding the molecular mechanisms of filovirus pathogenesis. Several lines of 

evidence implicate the impairment of the host interferon (IFN) antiviral innate immune 

response by MARV or EBOV as an important determinant of virulence. In vitro and in 

vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV), the best 

characterized filovirus, demonstrated that the viral protein VP35 plays a key role in 

inhibiting the production of IFN-/. Further, the action of VP35 is synergized by the 

inhibition of cellular responses to IFN-/ by the minor matrix viral protein VP24. The 

dual action of these viral proteins may contribute to an efficient initial virus replication and 

dissemination in the host. Noticeably, the analogous function of these viral proteins in 

MARV has not been reported. Because the IFN response is a major component of the 

innate immune response to virus infection, this chapter reviews recent findings on the 

molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection. 
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1. Introduction to Filovirus  

The filoviruses are members of the Mononegavirales with a non-segmented, negative-sense, single 

stranded RNA genome [1]. The Filoviridae, together with the Mononegavirales families 

Paramyxoviridae and Rhabdoviridae, replicate in the cytoplasm of infected cells and have a similar 

gene order that implies homologous function [2]. The only two genera in the Filoviridae, MARV and 

EBOV, contain species that cause severe hemorrhagic fever (HF) in human and non-human primates 

with case fatalities rates of 25 to 90% (Table 1). The genome of filoviruses is approximately 19,000 

bases and has seven genes, which are arranged sequentially from the 3’ leader as follows: NP 

(nucleoprotein), VP35 (phosphoprotein), VP40 (matrix protein), GP (spike glycoprotein), VP30 (minor 

nucleocapsid), VP24 (minor matrix protein) and L (RNA-dependent RNA polymerase). In EBOV 

species, a transcriptional editing event that results in the insertion of an additional adenosine is 

required for viral GP expression. Non-edited GP transcripts result in the expression of the soluble non-

structural GP protein (Figure 1).  

The outbreak of a severe HF among vaccine plant workers in Germany and former Yugoslavia lead 

to the identification of the first filovirus species, the MARV, in 1967 [3]. It is likely that MARV was 

already circulating in the African primate population before it was imported into the western 

laboratories unaware of its existence. The second filovirus infection, but the first in a natural setting, 

was reported almost 10 years later in two nearly simultaneous outbreaks in southern Sudan and Zaire 

(the present Democratic Republic of Congo, DRC). These outbreaks led to the discovery of the second 

genus of the Filoviridae family, EBOV, and the two new species of the genus, Sudan Ebola virus 

(SEBOV) and ZEBOV, respectively [4,5]. 

Table 1. Documented Filovirus infections/outbreaks since 1967. 

Virus No. Location Year Human Cases 

(deaths) 

CFR% 

Marburg 1 Germany (Marburg and Frankfurt), former 

Yugoslavia (Belgrade)  [6]. 

1967 31 (7) 23 

 2 South Africa (Johannesburg) [7]. 1975 3 (1) 33 

 3 Kenya (Mount Elgon National Park)  [6]. 1980 2 (1) 50 

 4 Kenya (Mount Elgon National Park)  [6]. 1987 1 (1) 100 

 5 DRC (Durba, gold mine village) [8]. 1998-2000 154 (128) 83 

 6 Angola (Uige Province)  [9]. 2004-2005 252 (227) 90 

 7 Uganda (mine workers in Kakasi Forest Reserve, 

Kamwenge District)  [6]. 

2007 3 (1) 50 

 8 Uganda (western tourists at Maramagambo 

Forest) [10]. 

2008 2 (1) 50 
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Table 1. Cont. 

Ebola-Zaire 1 DRC, formerly Zaire. (Yambuku and 

surroundings) [4]. 

1976 318 (280) 88 

 2 DRC, formerly Zaire (Tandala Hospital, 

Tandala) [11]. 

1977 1 (1) 100 

 3 Gabon (Makokou General Hospital and gold-

panning encampment) [12]. 

1994/1995 49 (29) 59 

 4 Gabon (outbreak began early February in the 

village of Mayibout 2, Gabon) [12]. 

1996 31 (21) 67.7 

 5 Gabon (outbreak started in a logging camp near 

Booué) [12]. 

1996/1997 60 (45) 75 

 6 DRC, formerly Zaire (outbreak centered in Kikwit 

and surrounding area) [13]. 

1995 315 (250) 79.4 

 7 South Africa (Imported case from Libreville, 

Gabon. Single fatality was the local nurse caring 

for the index case) WHO [14]. 

1996 2 (1) 50 

 8 Gabon and Republic of the Congo (Simultaneous 

outbreaks in La Zadié, Ivindo and Mpassa districts, 

Gabon, and Mbomo and Kéllé districts, 

Congo) [15]. 

2001/2002 

(25 

October to 

18 March) 

124 (97) 78 

 9 Republic of the Congo (outbreak was in Mbomo 

district, Congo, where two fatal cases migrated to 

Ekata village in Gabon) [15]. 

2002 (17 

May to 25 

July) 

11 (10) 91 

 10 Republic of the Congo (outbreak was mainly 

present in the Kéllé district with fewer cases in the 

Mbomo district) [16]. 

2002/2003 

(25 

December 

to 22 April) 

143 (128) 89.5 

 11 Republic of the Congo (Outbreak affected the 

Mbomo and Mbandza villages of the Mbomo 

district) [17]. 

2003 35 (29) 83 

 12 Republic of the Congo (outbreak was in the west 

part of the country, in the Cuvette Ouest Region, 

towns of Etoumbi and Mbomo) [18]. 

2005 (25 

April to 16 

June) 

12 (9) 75 

 13 Democratic Republic of Congo (outbreak was in 

Mueka & Luebo health zones, Province of Kasai 

Occidental. Reports started in September 2007 until 

official end declaration of the outbreak on 16 

February 2009) [18]. 

2007/2009 32 (15) 47 
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Table 1. Cont. 

Ebola-Sudan 1 Sudan (Towns of Nzara, Maridi and Tembura) [5]. 1976 284 (151) 53 

 2 England (Accidental laboratory inoculation) [19]. 1976 1 (0) 0 

 3 Sudan (Nzara and Yambio in Southern Sudan) [20] 1979 34 (22) 65 

 4 Uganda (Outbreak initiated in the Gulu district, 

then spread to Mbarara and Masindi districts) [21]. 

2000/2001 425 (224) 52.7 

 5 Sudan (outbreak occurred in Yambio county, 

southern Sudan) [22]. 

2004 (15 

April to 26 

June) 

17 (7) 41 

Ebola-

Reston 

1 USA (New EBOV in Reston, Texas, introduced 

with infected cynomolgus macaques from 

Philippines) [23]. 

1989 0 (0) 0 

 2 USA (Pennsylvania, serologic evidence of infection 

in 4 animal handlers) [24]. 

1990 0 (0) 0 

 3 Philippines (Ebola-like virus present at primates 

export facilities) [25]. 

1989/90 0 (0) 0 

 4 Italy (Ebola-like virus causing hemorrhagic fever in 

Macaques imported from Philippines) [26]. 

1992 0 (0) 0 

 5 USA (Outbreak in a Texas quarantine facility due 

to infected cynomolgus macaques imported from 

Philippines. Human seroconversion was not 

detected) [27]. 

1996 0 (0) 0 

 6 Philippines (A single primate export facility in the 

island group of Luzon appeared to be the source of 

infected primates in the USA) [28]. 

1996 0 (0) 0 

 7 Philippines (outbreak occurred in two farms located 

in Bulacan & Pangasinan provinces. First report of 

a filovirus infecting a non-primate mammal) [29]. 

2009 6 (0) 0 

Ebola-Ivory 

Coast 

1 Cote-d'Ivoire, central west Africa (a 39-year-old 

female was infected when she autopsied a dead 

chimpanzee) [30]. 

1994 1 (0) 0 

Ebola-

Bundibugyo 

1 Uganda (outbreak occurred in Bundibugyo district, 

western Uganda. A new Ebola virus species was 

identified as the cause of the outbreak) [31]. 

2007/2008 

(28 

November 

to 20 

February) 

149 (37) 25 

CFR=Case fatality rate. 

 

The third species of EBOV was identified during another inadvertent importation of infected 

macaques from the Philippines into a quarantine facility in Reston, Virginia, USA, in 1989 [23]. This 

novel virus, named Reston Ebola virus (REBOV), was able to infect humans, as assessed by serology, 
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but without apparent severe illness. In 1994, in Côte d’Ivoire, west-central Africa, after conducting the 

necropsy on a wild chimpanzee, a female researcher became ill with symptoms that included high 

fever, headaches, myalgia, cough, abdominal pain, diarrhea, vomiting, and macular rash [32]. The 

patient recovered and the fourth novel species of EBOV, Côte d’Ivoire Ebola virus (CIEBOV), was 

isolated from her blood on days 4 and 8 after the onset of the symptoms. Reports of a developing 

outbreak of HF in western Uganda, Bundibugyo district, in November 2007, lead to the identification 

of the fifth EBOV species, Bundibugyo Ebola virus (BEBOV) [31]. The initial serological 

identification of an EBOV as the etiology agent for the outbreak failed to be corroborated by the more 

sensitive real time reverse transcriptase-polymerase chain reaction (RRT-PCR) diagnostics. 

Sequencing of an amplicon obtained with a primer set that targeted filovirus L-gene showed sequence 

differences from known MARV or EBOV that explained the negative results obtained previously. 

Figure 1. MARV and EBOV genome organization. Black and red arrows indicate 

intergenic regions. Red arrows depict stop transcription site of an upstream gene (genomic 

sense) overlapping the start transcription site of a downstream gene. sGP: Non-structural 

soluble glycoprotein, product of a non-edited GP gene transcript in EBOV species. Adapted 

from reference  [1]. 

 
 

Since the first outbreak of ZEBOV, identification of the natural reservoir of filovirus proved to be 

elusive [33]. Recently, the development of more sensitive immunochemicals and molecular genetic 

diagnostics has permitted the detection of filovirus antigens, immunoglobulin G, and viral nucleic 

acids in at least four species of fruit bats [34,35]. Experimental infections revealed that fruit and 

insectivorous bats were able to support viral replication without apparent signs of illness when 

inoculated with ZEBOV [36]. Additionally, Towner et al. successfully isolated, for the first time, 

MARV from a cave-dwelling fruit bat (Rousettus aegyptiacus), possibly solving the long-standing 

enigma of the filovirus natural reservoir [37]. A recent outbreak of REBOV in pigs in the Philippines 

showed, for the first time, that Ebola HF can occur in a non-primate host [38]. These findings 
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complicate the picture regarding the role that pigs may have in the chain of transmission of filovirus to 

human and non-human primates. 

2. Filovirus pathogenesis 

All reported symptomatic filovirus infections result in a severe HF in humans, non-human primates, 

and, as recently discovered, also in domestic pigs [38,39]. Although recognized human filovirus HF 

outbreaks have not reached pandemic proportions since first recognized in 1967, filoviruses represent a 

major public health concern for the following reasons: lethality, increase in outbreak episodes, 

emergence of new strains, lack of an approved vaccine, and potential development as a bio-weapon. 

The viral HF caused by members of the Filoviridae family, as well as members of Arenaviridae and 

Bunyaviridae, occurs largely in developing countries where detailed epidemiological and 

immunological accounts of disease onset are difficult to obtain [40]. Additionally, the high level of 

biological containment required to work with these viruses presents a major obstacle in the 

understanding of the pathogenesis of filovirus HF in humans. Despite these difficulties, several studies 

have gathered key clinical and immunological data on natural human infections of EBOV. The clinical 

signs of Ebola HF (EHF) include a combination of symptoms such as fever, abdominal pain, asthenia, 

diarrhea, headaches, arthralgia, and myalgia [13,41]. Among these, bilateral conjunctival injection, 

maculopapular rash and sore throat, with odynophagia, are suggestive of EHF [41]. Poor prognosis for 

the disease is associated with bleeding of the mucosa, anuria, hiccups, and tachypnea that lead to a 

state of stupor with polypnea and renal failure before death [41,42]. Further analysis of the humoral 

responses to EBOV infection in patients that succumbed or survived in an outbreak setting generated a 

unique set of data that helped our understanding of EHF pathogenesis. The initial study that 

characterized serum levels of cytokines in EBOV-infected patients showed increased levels of IL-2, 

IL-10, TNF-, IFN-, and IFN- associated with fatal outcomes of EHF compared with survivors or 

non-infected control samples [42]. A closer look at the immune response to EBOV infection showed 

that survivorship was associated with timely production of pro-inflammatory cytokines, anti-

inflammatory cytokines, and activation of T cells [43,44]. An inverse relationship was observed 

between the levels of viral antigen and virus-specific IgGs in the plasma of EBOV-infected patients. 

Early appearance of specific IgG antisera, or lack of it, characterized survival versus fatal outcomes, 

respectively [43,44]. Interestingly, antisera of symptomatic and asymptomatic EBOV infected patients 

were directed largely against the viral NP, followed by the matrix protein, and then the 

phosphoprotein [43,45]. IgG against the viral spike glycoprotein was not detected. Nevertheless, 

promising recombinant vaccine vectors against filoviruses are based mainly on the expression of the 

viral surface glycoprotein [46,47]. Although the presence of specific antisera is a good prognosis for 

EHF patients, protection from EBOV in experimentally infected model animals, assessed by passive 

transfer of heterologous hyperimmune serum or with monoclonal antibodies, has given mixed 

results [48-51]. When protection was attained in these experiments, anti-serum was administered 

before or soon after infection. These results imply that other humoral and cellular factors triggered 

during the initial infection are key to determining the disease outcome in nature. In agreement with this 

assumption, an experimental whole blood transfusion from convalescent EHF patients conferred 

protection to seven out of eight symptomatic-phase EHF patients [52]. However, a recent experiment 
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in a non-human primate model for EHF showed that whole blood transfusion from a convalescent-

phase EHF monkey did not protect naïve monkeys when challenged with EBOV [53]. This last study 

underscores the importance of an effective innate immune response to infection; it will set the tone for 

a balanced production of stimulatory and inhibitory signals, leading to a specific cellular control of 

viral infection. This notion agrees with studies of inflammatory responses to EBOV infection in 

symptomatic survivors and asymptomatic cases. In these studies, a common pattern of early (within a 

week or so from infection) production of pro-inflammatory cytokines and chemokines, such as IL-1, 

IL-6, TNF-, MIP-1, MIP-1 and MCP-1, was followed by increasing levels of the anti-

inflammatory molecules IL-1RA, sTNF-RI, sTNF-RII, and IL-10 and the T cell activation markers 

CD28, CD40L, CTLA4, Fas, FasL, and perforin [43-45,54]. This chain of immunological events is 

likely disrupted in fatal cases of filovirus HF by MARV and EBOV targeting host dendritic cells, 

which are key antigen presenting cells (APC) that modulate innate and adaptive immune 

responses [55-57]. Indeed, a delayed adaptive immune response, as assessed by the formation of CD8+ 

specific T cells, was observed in a lethal mouse model of EBOV infection. Although these EBOV-

specific CD8+ T cells did not protect infected animals, they underwent expansion when adoptively 

transferred into EBOV-challenged naïve mice; these mice were protected  [58]. Filovirus infection 

may affect signal integration through the receptor-like protein tyrosine phosphatase CD45, an 

important regulator of signaling thresholds in immune cells [59,60]. Additionally, innate antiviral 

cellular responses, mediated by natural killer (NK) cells, were also impaired in a mouse model of 

EBOV infection [61]. Activation of NK cells, as assessed by cytokine production and cytolysis of 

suitable targets including filovirus-infected dendritic cells (DCs), was only attained by filovirus-

derived virus-like particles (VLPs). Exposure to live or inactivated filovirus did not stimulate the 

antiviral effects of NK cells [61,62]. Taken together, these data reinforce the view of an early 

disruption of host innate immune responses during filovirus infection.  

3. Evasion of interferon response by Filovirus 

The molecular mechanisms of viral pathogenesis are poorly understood for most members of the 

family Filoviridae. During the last ten years, a steady increase in filovirus research has unveiled 

important virulence factors and signaling pathways that may explain the immunosuppressive 

characteristic of filovirus infection. Several potential mechanisms contributing to filovirus virulence 

have been reviewed [39,63]. These mechanisms include cytotoxicity of the viral GP, the production of 

pro-inflammatory cytokines, and the dysregulation of the coagulation cascade due to the production of 

tissue factor [64-68]. Each of these processes, however, likely occurs as a result of active replication of 

the virus. Thus, the ability of the virus to counteract early antiviral responses likely plays an important 

role in virulence of ZEBOV, the best characterized filovirus [39]. At the center stage of the cellular 

antiviral innate immune response are the IFN-/ cytokines [69,70]. IFN-/ are multifunctional 

cytokines that regulate the innate and adaptive immune responses by affecting, among other things, the 

function of key immune cells like DCs [71]. Several studies have demonstrated the ability of EBOV 

infection to block cellular responses to IFN [72-74] and the IFN system plays a role in preventing 

EBOV disease in mice [75]. Because the activation of the IFN system is a central component of the 

host response to viral infection, it is not surprising that EBOV has evolved mechanisms to evade its 
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activation. Indeed, the EBOV protein VP35, which also functions as a viral polymerase co-factor and a 

structural protein, has IFN antagonist activity [55,76,77]. VP35 was initially identified as an IFN-

antagonist protein because ectopic expression of it rescued the impaired growth of an influence A virus 

mutant lacking the interferon antagonist protein NS1 (delta NS1 virus) [77]. Furthermore, ectopic 

expression of VP35 inhibited activation of an interferon stimulated response element (ISRE)-

containing promoter when either transfected dsRNA or viral infection was used as the activating 

stimulus [77].  

A more detailed study of the mechanism by which VP35 influenced the host IFN response showed 

that the initial steps of IFN production, and not IFN signaling from the IFN-/ receptor, were 

impaired by VP35 [76]. The ability of VP35 to block IFN-/ production correlated with its ability to 

inhibit the phosphorylation, and thus activation of, interferon regulatory factor 3 (IRF-3) [76]. 

SUMOylation of IRF-7 mediated by VP35 was recently described as an additional mechanism of 

repression of transcription of IFN genes [78]. IRF-3 and IRF-7 are transcription factors at the center of 

the cellular antiviral program [79,80]. IRF-3 is constitutively expressed in many tissues and is located 

in the cytoplasm of unstimulated cells [81,82]. IRF-7 is expressed at low levels in somatic cells and 

DCs, but at high levels in plasmacytoid dendritic cells (pDCs) [83]. Upon viral infection, IRF-3 and 

IRF-7 are phosphorylated at their carboxy-termini (C-terminus), which leads to dimerization, nuclear 

translocation, and association with other trans-activator proteins. Activated IRF-3 triggers the 

expression of IFN-/ and IFN-/-inducible genes, leading to the establishment of an antiviral 

state [81,84]. Signal amplification is attained by an IFN feedback loop that upregulates IRF-7 

expression and activation of IFN- genes [79]. Activation of IRF-3 and IRF-7 requires the non-

canonical kinases IKK and TBK-1 [85-87]. In pDCs, activation of IRF-7 requires IL-1 receptor-

associated kinase (IRAK)-1 [88]. Interestingly, EBOV VP35 protein was shown to interact with IKK 
and TBK-1, implying a mechanism for its IFN antagonist function [89]. Further, an in vitro kinase 

assay showed that VP35 was a substrate for IKK and TBK-1, and increasing ectopic expression of 

VP35 in cells transfected with IKK resulted in reduction of phosphorylation of a C-terminus IRF-3 

recombinant protein. Consistent with the kinase assay results, both VP35 and IRF-3 interacted with the 

IKK kinase domain; additionally, increasing ectopic expression of VP35 was able to impair IRF-3-

IKK kinase domain interaction [89]. More important, preliminary data from the same group showed 

that IKK, and to a lesser extent TBK-1, was able to phosphorylate VP35 in the context of a T7-driven 

minigenome system. Strikingly, minigenome reporter activity was enhanced by IKK, but only a 

marginal effect was observed with TBK-1; these results correlate with the observed VP35 

phosphorylation patterns (C. Basler, personal communication). 

IKK and TBK-1 are key components of the viral-activated kinases that lead to IRF-3 and IRF-7 

activation [85,86]. Although TBK-1 is ubiquitously distributed, IKK is expressed mainly in the 

thymus, spleen, and peripheral blood leukocytes [90,91]. TBK-1 deficient embryonic fibroblasts have 

impaired IFN-/ responses to virus infection. However, residual IKK may partially compensate for 

the loss of TBK-1. In contrast, TBK-1 was completely dispensable for IFN-/ responses to virus 

infection in mouse bone marrow derived macrophage (BMM), where IKK was 

predominant [87,92,93]. As mentioned before, DCs, together with monocytes/macrophages, are the 

primary targets for EBOV and MARV infections [55-57,67,74,94]. EBOV VP35 was shown to impair 

murine DC maturation induced by virus and lipopolysaccharide. VP35 prevented expression of surface 
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markers and production of cytokines, including IFN-/, by DCs, which resulted in poor CD4+ T cell 

activation [95]. A useful strategy to establish infection in different host tissues can be to block the 

downstream signaling of the IRF kinases. Indeed, EBOV VP35 protein is able to block IFN- reporter 

gene activation by TBK-1 or IKK [96]. Thus, it seems that EBOV exploits VP35 as a decoy substrate 

for the kinases. It will be of interest to determine whether IKK phosphorylation of VP35 modulates 

EBOV polymerase function.  

The search for the IRF-3 inhibition domain of EBOV VP35 identified a basic amino acid-rich motif, 

similar to the N-terminal dsRNA-binding motif of the influenza A NS1 protein, which suggested an 

IFN-antagonist function based on the dsRNA-binding capability of VP35 [97]. Mutation of key 

residues in this region diminished the ability of VP35 to block viral-induced IFN- production; 

however, these forms of VP35 maintained the ability to support viral replication as assessed by a 

minigenome system or by rescuing recombinant virus [98]. A closer look at the putative dsRNA-

binding motif of the VP35 protein showed that VP35 was able to bind dsRNA-type molecules and that 

the individual mutations R312A and K309A abolished this activity [96]. Consistent with its dsRNA-

binding properties, VP35 was shown to block protein kinase R (PKR) activation [99,100] and function 

as a RNA silencing suppressor [101]. The crystal structure of the C-terminus IFN inhibitory domain of 

VP35 revealed a fold consistent with dsRNA-binding [102]. However, assessment of the IFN-

antagonist function of the VP35 R312A and K309A mutants revealed that these mutations retain an 

important inhibitory function, as measured by reporter gene activation with Sendai viral infection, 

retinoic acid-inducible gene I (RIG-I), and the CARD-containing mitochondrial protein IPS-I [96]. 

These data suggest there is an alternative mechanism for VP35 IFN-antagonist function.  

The evidence suggests that EBOV VP35 protein targets IKK and TBK-1 to control the innate 

immune response of the host. In agreement with this, VP35 was able to block reporter gene activation 

by the cytoplasmic viral RNA sensor RIG-I [103]. RIG-I, along with melanoma differentiation 

associated gene-5 (MDA-5) and the laboratory of genetics and physiology-2 (LGP2), belongs to a 

family of RIG-I like receptors (RLR) that function as cytoplasmatic sensors of viral RNA upstream of 

IRF-3 activation [104]. Ebola VP35 was also able to impair reporter gene activation by ectopic 

expression of IPS1/MAVS/VISA/Cardif and disrupted protein-protein interactions with 

IKK [89,96,105-108]. These results imply that Ebola VP35 protein disrupts downstream signaling 

from IKK and TBK-1 and upstream signalosome interactions (Figure 2). 

Several signaling pathways have been shown to activate IRF-3 and induce IFN-/ production. 

Toll-like receptors (TLR) 3 and 4 are pathogen associated molecular pattern receptors that can 

specifically lead to IRF-3 activation and trigger the transcription of genes involved in the defense 

against viral infection [109]. TLR3 is activated by poly (I:C), a synthetic dsRNA analog; bacterial 

lipopolysaccharide (LPS) is the ligand for TLR4 [110,111]. TLR signals are transduced to target genes 

through the interaction of the Toll-interleukin-1 receptor (TIR) domains found in the cytoplasmic tails 

of TLRs with TIR-containing adapter proteins. Currently, there are four TIR adapters with defined 

functions in mammalian TLR signaling: MyD88, TIRAP, TRIF, and TRAM [112,113]. Although 

MyD88 has been implicated in signaling by all TLRs, TRIF and TRAM are involved in MyD88-

independent signaling by TLR3 and TLR4, leading to IRF-3 activation [114-117]. TRIF is involved in 

signaling to IRF-3 from both TLR3 and TLR4 [86,114,116]. TRAM, which interacts with TRIF, is 

required in addition to TRIF for TLR4-induced activation of IRF-3 [86,115]. A recent report showed 
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that engagement of TLR4 by the EBOV GP on VLPs led to the secretion of pro-inflammatory 

cytokines and suppressor of cytokine signaling 1 (SOCS1) in a human monocytic cell line and 

HEK293 cells stably expressing a TLR4/MD2 complex [118]. Interestingly, SOCS1 was reported to 

regulate the IFN-dependent pathways by reducing IFN- production and STAT1 

phosphorylation [119]. Human DCs stimulated with EBOV VLPs induced the activation of NF-B and 

ERK1/2 signaling pathways, resulting in the production of several pro-inflammatory cytokines [120]. 

Figure 2. Model of ZEBOV VP35 and VP24 inhibition of host IFN-/ responses. 

 
 

The observed pattern of activation was very similar to the pattern observed with LPS treatment, and 

thus likely to involve TLR4. It has also been reported that EBOV VP35 can inhibit the IRF-3-

dependent reporter gene activation induced by ectopic expression of TRIF or TRAM in HEK293 

cells [121]. Moreover, activation of reporter gene by the co-expression of TRIF and TRAM was 

greatly impaired by VP35. These results agree with the observation that ectopic expression of VP35 in 

U373 cells was able to block reporter gene activation induced by LPS (Figure 3). At this point, it is 

unclear what benefit EBOV gains by inhibiting the TRIF/TRAM arm of TLR4 signaling, but we can 

speculate that activation of signaling through TLR4 by EBOV GP can induce the production of pro-

inflammatory cytokines and chemokines that contribute to EHF pathogenesis [118]. Viral replication 

can proceed, possibly by VP35 blocking the TRIF-TRAM arm of IFN- activation, thus evading the 

antiviral function of this cytokine. Indeed, EBOV VP35 protein was shown to impair murine DCs 

maturation induced by LPS, an agonist of TLR4 [95]. TLR1 upregulation was observed in EBOV- and 

MARV-activated neutrophils, but the pathogenic importance of this event has not yet been 

established [122]. 
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Figure 3. Ebola VP35 blocks TRIF and TRAM signaling arm of TLR4. 

 
 

Recently, a new mechanism of ZEBOV IFN-antagonist function has been described. In addition to 

the well-known inhibition of IFN- and -4 production by ZEBOV VP35 protein, the minor matrix 

protein VP24 inhibits IFN-signaling through the JAK-STAT pathway [123]. Therefore, it seems that 

ZEBOV is well-equipped to antagonize both arms of the IFN antiviral innate immune response; this 

ability correlates with the high fatality rates associated with EHF outbreaks. A well-characterized set 

of experiments showed that the inhibition of IFN signaling mediated by VP24 was associated with the 

impediment of phosphorylated STAT-1 (PY-STAT1) movement to the nucleus. By specifically 

recruiting karyopherin -1, VP24 blocked the interaction of PY-STAT-1 with this nuclear transport 

protein; karyopherin -1 stayed in the cytoplasm, effectively inhibiting transcription of IFN-stimulated 

genes. Inhibition of PY-STAT1 nuclear translocation would impair both Type I and Type II IFN 

signaling. VP24 appears to compete with PY-STAT1 for the karyopherin -1 C-terminus region [124]. 

Furthermore, VP24 proteins from mouse-adapted strains of ZEBOV and REBOV were also able to 

block PY-STAT1 nuclear translocation, suggesting a conserved mechanisms of VP24 IFN-antagonist 

function among EBOV species. Mutational analysis of VP24 identified two regions necessary for IFN-

signaling antagonist function and karyopherin -1 binding [125]. Individual amino acid changes at 

W42A or K142A resulted in VP24 partial loss of binding to karyopherin -1 and in its ability to inhibit 

IFN--induced gene expression; however, generation of a W42A/K142A double mutant was necessary 

for at complete loss of binding to karyopherin -1 and a strong reduction in its IFN-antagonist 

function [125]. Unfortunately, attempts to rescue a recombinant EBOV that incorporated diverse VP24 

mutations were not possible. 

The other member of the Filoviridae, MARV, provoked a general suppression of the antiviral 

immune response in hepatoblastoma cells treated with IFN. As with members of the EBOV, host 

STAT-1 appears to be the target for the IFN-antagonist signaling function. But, contrary to EBOV, 
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MARV appeared to inhibit STAT-1 and STAT-2 phosphorylation [126]. The last outbreak of MARV 

in Angola, Africa, clearly indicated that this filovirus can be as deadly as EBOV [9]. Despite the 

lethality of MARV, identification of the IFN-antagonist proteins analogous to the EBOV counterpart 

has not been reported yet.  

4. Conclusions 

Filovirus disease represents a public health concern. The last Angola outbreak of an unsuspected 

MARV underscored the importance of understanding the molecular mechanisms of filovirus 

pathogenesis. Despite the efforts that working with this Category A pathogen demand and the political 

and social constraints in gathering important clinical information in an outbreak setting, there is a good 

amount of high quality research that has already allowed us to think about protective vaccines and 

chemotherapeutic strategies. The parallel development of high impact research on the basic innate 

immune components, interactions, and modulators that are required to mount an effective antiviral 

response in mammals has also helped us to identify possible targets that may explain the mechanisms 

of immune suppression during filovirus infection. Additionally, productive collaboration among 

filovirus researchers has supported the rapid development of the field. 
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