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Abstract: Most human emerging infectious diseases are zoonotic, originating in animal
hosts prior to spillover to humans. Prioritizing the surveillance of wildlife that overlaps
with humans and human activities can increase the likelihood of detecting viruses with
a high potential for human infection. Here, we obtained fecal swabs from two fruit bat
species—Eidolon helvum (n = 6) and Epomophorus wahlbergi (n = 43) (family Pteropodidae)—
in peridomestic habitats in Nairobi, Kenya, and used metagenome sequencing to detect
microorganisms. A near-complete genome of a novel virus assigned taxonomically to the
Coronaviridae family Betacoronavirus genus and Nobecovirus subclade was characterized from
E. wahlbergi. Phylogenetic analysis indicates this unique Nobecovirus clade shares a common
ancestor with Eidolon/Rousettus Nobecovirus subclades isolated from Madagascar, Kenya,
and Cameroon. Recombination was detected across open reading frames, except the spike
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protein, in all BOOTSCAN analyses, indicating intra-host coinfection and genetic exchange
between genome regions. Although Nobecoviruses are currently bat-specific and are not
known to be zoonotic, the propensity of coronaviruses to undergo frequent recombination
events and the location of the virus alongside high human and livestock densities in one
of East Africa’s most rapidly developing cities justifies continued surveillance of animal
viruses in high-risk urban landscapes.

Keywords: East Africa; urban bat-borne coronavirus; peridomestic habitat; Betacoronavirus;
metagenomics; Nobecovirus; wildlife–livestock–human interface; Eidolon helvum

1. Introduction
Infectious diseases are a major threat to human, wildlife, and livestock health and are

a significant burden on global public health and economic systems. Efforts to elucidate the
environmental, epidemiological, and ecological factors that drive zoonotic viral emergence
specifically have increased our understanding of the detrimental and complex role of
land-use change in spillover [1,2] while exposing the expansive knowledge gap on host–
virus associations driven by unknown viral diversity [3]. A recent estimate posits that
10,000 viruses with zoonotic potential circulate in non-human mammals [3], the continued
discovery of which greatly improves our understanding of global viral emergence patterns.

Several studies have examined whether taxonomic animal groups have predictable
patterns in the number of zoonoses they host [4–6]. If certain host groups contribute
disproportionately to the zoonotic potential of virus species [4], efforts toward zoonotic
discovery and outbreak preparedness and response could be strategically prioritized to-
ward those groups. Bats (Mammalia: Chiroptera) specifically have been hypothesized
to be a “special” reservoir host based on immunological mechanisms that allow bats to
tolerate viral infection [7–9] and due to the links between bat-derived coronaviruses and
human epidemics, including severe acute respiratory syndrome (SARS-CoV), Middle East
respiratory syndrome-related coronavirus (MERS-CoV) [10], and the ongoing SARS-CoV-2
pandemic—whose ancestral genome relates to bat Sarbecoviruses [11,12]. Alternative
hypotheses have been proposed to predict which host species will likely harbor the next
human-infecting virus, including an animal order’s evolutionary divergence from hu-
mans [4]; the life history strategies of taxonomic groups, such as rodents, that facilitate
sympatry with humans [6]; and more recently, that the abundance of human-infecting
viruses are linked to the number of viruses maintained by each reservoir group, predicted
by a group’s species richness [5,13]. Although these hypotheses are still being debated,
they serve as a guide for key factors to consider when conducting viral surveillance of
wildlife reservoirs.

Urbanization is a key driver of zoonotic disease emergence, as anthropogenic distur-
bances from land conversion alter contact between humans, animals, and pathogens and
can result in pathogen spillover across novel interfaces. It is critical to monitor the viral
diversity circulating in urban reservoir hosts considering the role of urban development in
driving zoonotic emergence and because subsequent pathogen spread through human pop-
ulations in an urban landscape may occur at a higher frequency than in natural and rural
landscapes. Bats and rodents frequently share habitats with humans and human-dominated
landscapes, such as in cities, and represent the richest mammalian orders globally [14].
Further, the Afrotropical region (Africa south of the Sahara with Madagascar) hosts 31%
of mammal diversity across the tropics globally [15], with approximately 20% of all recog-
nized bat species occurring in continental Africa [16]. Over 100 species of bats are found in
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Kenya alone [17,18]. With diverse bat species occupying habitats that overlap with rapid,
often unplanned urbanization, Nairobi, Kenya, is an ideal location for the surveillance of
urban bats. Further, novel interactions and microbial exchanges between wildlife reservoirs,
livestock, and humans were previously documented in Nairobi, flagging it as a potentially
high-risk landscape for pathogen spillover [19]. Prior work has identified a range of viruses
in Kenyan bat species, including adenoviruses, astroviruses, caliciviruses, coronaviruses,
rhabdoviruses, rotaviruses, paramyxoviruses, and filoviruses [20–26].

Members of the family Coronaviridae are enveloped, positive-sense RNA viruses that
infect four of the seven classes of vertebrates: mammals and birds (Orthocoronaviruses),
amphibians (Letoviruses), and bony fish (Pitoviruses) [27]. In the subfamily Orthocoron-
avirinae, four genera are recognized, where Alphacoronavirus and Betacoronavirus are
primarily associated with bats as hosts. The Betacoronavirus genus can be further broken
down into subgenera: Sarbecovirus (hosted by bats in the family Rhinolophidae), Merbe-
covirus (hosted by bats in the family Vespertilionidae), Nobecovirus (hosted by bats in the
family Pteropodidae), and Hibecovirus (hosted by bats in family Hipposideridae) [28–31].
Another subgenus, Embecovirus, is primarily associated with rodents and bovids, though a
few bat hosts have been described. Here, we utilized metagenome sequencing to ensure
unbiased pathogen screening of bat-derived samples and to characterize the genome of
the novel Betacoronavirus we detected in an urban fruit bat. This work provides integral
information on the complex epidemiology of coronaviruses in wild animal populations,
especially those adapted to anthropogenically dominated landscapes with high densities of
humans and livestock.

2. Materials and Methods
2.1. Study Area and Bat Sampling

Between June and August 2023, bat samples were obtained from E. wahlbergi and
E. helvum at eight households in Nairobi, Kenya (Figure 1). Individual households were
selected based on suitable habitats present for fruit bat foraging (e.g., fruiting trees), the
presence of flyways (e.g., in riverine vegetation), and recent eco-epidemiological data that
indicated the presence of E. wahlbergi and E. helvum in the neighborhood [32].
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Figure 1. Regional map of East Africa with Nairobi County highlighted. Within Nairobi County
(right), we trapped foraging fruit bats in west and central Nairobi where suitable peridomestic habitats
were found. Blue points indicate households where E. helvum and E. wahlbergi were trapped and
sampled, and green points represent households where only E. wahlbergi was trapped and sampled.
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Bats were captured using two to three mist nets that were set up before sunset at
flyways within the residential property and checked every 15 min. Only E. wahlbergi and E.
helvum were retained for processing, while all other species were released at capture points.
One trap night was conducted at each site and took place between the hours of 17:00 and
24:00 or until 9 targeted bats were trapped and sampled. Bats were placed in separate clean
cloth bags to prevent cross-contamination and processed in order of capture. During bat
handling, individuals were identified with species using published keys [17]. We recorded
the body weight and forearm length of each bat and collected oropharyngeal and rectal
swabs, whole blood, and fecal and urine samples when available (IACUC #SI-22051 and
research permit WRTI-0247-11-22). All samples were directly stored in DNA/RNA Shield
(Zymo Research, Irvine, CA, USA) for sample preservation and transferred to a −80 ◦C
freezer within 24–48 h from field collection. Bats were released following sample collection
from the processing area near the mist nets where individuals were trapped.

2.2. Sample Processing and Library Preparation

Swabs were individually processed for total nucleic acids, as described in detail in the
protocol in [33]. Briefly, the samples were lysed in Proteinase K and ATL Lysis Buffer with
Reagent DX (Qiagen, Valencia, CA, USA) with 0.1 mm zirconium oxide beads using a Bullet
Blender (Next Advance, Troy, NY, USA). The lysate was centrifuged, and the supernatant
was extracted using the IndiMag Pathogen Kit (Indical Bioscience, Leipzig, Germany)
with the KingFisher™ Flex Purification System (ThermoFisher Scientific, Waltham, MA,
USA). Nucleic acid concentrations were measured using a Qubit 4 Fluorometer following
manufacturer instructions.

Oxford Nanopore Sequencing (ONS) cDNA libraries were prepared using NEBNext
Ultra II RNA First Strand and Non-Directional RNA Second Strand Synthesis modules,
utilizing random primer mix (New England Biolabs, Ipswich, MA, USA), following DNase
treatment, as previously described [34]. Subsequently, double-stranded cDNA libraries
were generated using the NEBNext Ultra II End repair/dA-tailing Module and Quick
Ligation Modules (New England Biolabs), as well as a Ligation Sequencing Kit SQK-LSK109
(Oxford Nanopore Technologies, Oxford, UK). Cleanup and quantification were carried
out using Agencourt AMPure XP reagent (Beckman Coulter Biosciences, Indianapolis,
IN, USA) and a Qubit dsDNA HS Assay Kit (ThermoFisher Scientific). Samples were
individually barcoded with the Native Barcoding Expansion 96—EXP-NBD 196 (Oxford
Nanopore Technologies) and combined for sequencing. Sequencing libraries containing
24 barcoded pools were loaded on a single ONT R9.4.1 flow cell and run on a MinION
Mk1C device (Oxford Nanopore Technologies) for 48 h.

2.3. Data Processing and Phylogenetic Analysis

Base calling and demultiplexing were accomplished on the device with MinKNOW
operating software v21.11.7 (Oxford Nanopore Technologies) and Guppy v5.1.13 [35].
Raw reads were trimmed with Porechop to remove adapter sequences and then filtered
with NanoFilt to remove reads with q-scores ≤9 and read lengths ≤100 bp [35,36]. Bat
genomes were further removed using Minimap2 v2.24 and Samtools v1.9 [37,38]. The
processed data were aligned to the National Center for Biotechnology Information (NCBI)
non-redundant (NR) database using DIAMOND v2.0.14 and visualized using MEGAN6
(v6.25.9) [39,40]. The Flye assembler, developed for long single-molecule sequencing reads,
was used for de novo assemblies [41]. Sequences were handled using Geneious Prime
(v.2024.0.4) (Biomatters Ltd., Auckland, New Zealand). The BLASTn (2.13.0) and BLASTp
(2.13.0) algorithms were used for similarity searches in the NCBI database [42]. CLUSTALW
(2.0.11) was used for sequence alignment and pairwise comparisons [43]. Protein domain



Viruses 2025, 17, 557 5 of 13

and motif searches were performed using the NCBI conserved domain search tool and
MOTIF Search in the PFAM database [44,45].

Phylogenetic analysis was performed on sequences using IQ-TREE 2 and MEGA [46,47].
In IQ-TREE, the optimal evolutionary models and partitioning schemes were deter-
mined for amino acid sequence alignment using the automatic model selection tools
(-mMFP+MERGE). Amino acid models were restricted to those designed for viral se-
quences (-msub viral). A 70% majority-rule consensus tree was constructed by maximum
likelihood using 1000 replicates from the ultrafast bootstrap approximation approach (UF-
Boot) [48]. The UFBoot support values are more unbiased than normal bootstrap support,
and significant clade support is considered at ≥95% [48,49]. Standard bootstrap analysis
was carried out using MEGA v11.0.13 [47] for 500 replicates. The optimal analysis models
were selected using the built-in “Find Best DNA/protein-substitution model” tools. Maxi-
mum likelihood trees based on nucleotide sequences were constructed using the General
Time Reversible (GTR) model with a discrete Gamma distribution (+G) (ORF1a) and the
General Time Reversible (GTR) model with a discrete Gamma distribution and invariant
sites (+G+I) (ORF1b). Potential genetic exchange and recombination events were assessed
using the RDP, GENECONV, BOOTSCAN, MAXCHI, CHIMAERA, SISCAN, and 3SEQ
tools in automated and manual analyses with default settings [50]. BOOTSCAN plots were
generated using SimPlot (version 3.5.1) [51].

3. Results
A total of 49 rectal swabs were processed from two fruit bat species, Wahlberg’s

epauletted fruit bats (E. wahlbergi, 43/49, 87.7%) and straw-colored fruit bats (E. helvum,
6/49, 12.2%). Viral contigs were generated by de novo assembly from a single E. wahlbergi
sample (1/49, 2.0%). Through the remapping of reads to assembled contigs and producing
alignments, a single virus contig was generated that revealed the identities of several
Nobecoviruses from Africa in BLAST queries.

3.1. Genome Annotation and Phylogenetic and Recombination Analyses

The virus contig (referred to as NRB24) comprised 21,973 nucleotides, covering 75–76%
of bat Nobecovirus genomes. Seven open reading frames (ORFs) were identified, includ-
ing partial ORF1a (1−7099) and complete ORF1b (7099–15,114), spike (S) glycoprotein
(15,086−18,910), ORF3 (18,911–19,609), envelope (E) protein (19,609−19,836), membrane
(M) glycoprotein (19,841−20,509), and nucleocapsid (N) protein (20,564−21,973, Figure S1).
As observed in coronaviruses, ORF1a and ORF1b partially overlap in NRB24, where ORF1b
is in the −1 reading frame relative to the ORF1a stop codon (7097−7099), enabling the
expression of ORF1b-encoded protein expression by cis-acting RNA elements that direct a
fraction of elongating ribosomes to slip (programmed ribosomal frameshifting) [52].

Pairwise comparisons of individual ORFs with Nobecoviruses from Africa revealed
identities of up to 77.6% and 91.9% in nucleotide and putative amino acid sequences,
respectively (Table S1). Maximum likelihood analysis based on complete putative ORF1a
and ORF1b nucleotide and amino acid sequences showed that NRB24 formed a separate
subclade, distinct from previously described Nobecovirus clades, with strong bootstrap
support (Figures 2 and S2) [53]. Similar tree topologies were observed in maximum like-
lihood trees constructed using S, ORF3, and N putative amino acid alignments as well
(Figure S3). In each tree, NRB24 remained distinct, sharing a common ancestor with the
African Nobecovirus clade, which includes all geographically related virus genomes. More-
over, a comparable tree topology was observed during the analysis of a shorter nucleotide
fragment encoding for virus RNA-dependent RNA polymerase (RdRp) (Figure 3), which
was documented to delineate major Nobecovirus clades [53]. However, the separate group-
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ing of NRB24 was not apparent in the maximum likelihood trees based on putative E and
M amino acid alignments, presumably due to their relatively limited sizes (Figure S3).
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Figure 3. The maximum likelihood consensus tree of the coronavirus RNA-dependent RNA poly-
merase (RdRp) sequences (256 nucleotides). The trees were constructed using 1000 replicates.
Branches achieving ≥95% bootstrap support are annotated with red dots. Viruses are indicated
by GenBank accession, name, and isolate identifier. Previously described Nobecovirus clades [53] are
marked. SARS-CoV-2 Wuhan-Hu-1 (Sarbecovirus) and bat coronavirus Zhejiang2013 (Hibecovirus)
were included as outgroups.
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We carried out further in silico analyses of complete ORF sequences to detect potential
recombinations in Nobecoviruses from Africa, including NRB24. Probable recombinations
involving multiple spots were detected using all tools. In the BOOTSCAN plot, recombi-
nation signals were observed to involve all ORFs but the S protein (Figure 4), suggesting
coinfections and intra-host genetic exchange driving genome diversification.
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Figure 4. BOOTSCAN plot of African bat Nobecovirus genomes. The alignment encompasses
15096 positions with the corresponding ORFs plotted on top. The plot was prepared within a sliding
window of 200 bp, wide-centered on the position plotted, with a 20 bp step size, for 1000 replications
(GapStrip: on, neighbor-joining, T/t: 2.0), with the bat coronavirus CMR704-P12 genome (NC048212,
Eidolon helvum, Cameroon) as the query. Refer to Table 1 for a description of genomes in groups
labeled Kenya2024 (NRB24), Kenya2006, Madagascar2018, and Cameroon2013.

3.2. Analysis of Putative Viral Proteins

We examined the putative amino acid sequences of ORF1a (2365), ORF1b (2579),
S glycoprotein (1274), ORF3 (232), E protein (75), M glycoprotein (222), and N protein (469).
The ORF1a protein was partially identified with the virus non-structural protein (Nsp), and
3–10 conserved domains were identified (Table S2). Similarly, the complete ORF1b revealed
conserved motifs of the RdRp catalytic core, as well as Nsp13–16, with various functions
required for virus replication. The domains of the main coronavirus structural proteins, S,
E, M, and N were further observed in the NRB24 contig (Table 1).

In coronaviruses, the S protein is critical for host range and virulence, as it mediates
target cell attachment and the membrane fusion required for virus entry [27]. We identified
the S1-S2 subunits, the S1/S2 and furin cleavage sites, the fusion peptide region, and
associated motifs in NRB24 (Figure 5). Like other Nobecoviruses, NRB24 lacked the SARS-
CoV-2 receptor binding motif and shared S1/S2 and furin cleavage sites and fusion peptide
markers with Nobecoviruses.
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Table 1. Comparative topology and conserved domains identified in complete regions in NRB24 and closely related virus genomes.

Host Epomophorus
wahlbergi

Eidolon
helvum

Rousettus
aegyptiacus Eidolon helvum Rousettus madagascariensis

Location, Year Kenya, 2024 Kenya 2006 Kenya 2006 Cameroon, 2013 Madagascar, 2018

Isolate NRB24 KY24 KY06 CMR900 CMR66 CMR891-892 CMR705-P13 CMR704-P12 MIZ178 MIZ240

GenBank Accession PQ179293 HQ728482.1 HQ728483.1 MG693169.1 MG693170.1 MG693171.1 MG693172.1 NC_048212.1 OK067320.1 OK067321.1

ORF1b

Size 2579 2579 2588 2579 2588 2579 2579 2579 2579 2579
Catalytic core—RNA
polymerase (477363) 1–823 1–823 1–823 1–823 1–823 1–823 1–823 1–823 1–823 1–823

Nsp13—zinc-binding
domain (cl41714) 824–918 824–918 824–918 824–918 824–918 824–918 824–918 824–918 824–918 824–918

Nsp13—stalk (cl41715) 922–969 922–969 922–969 922–969 922–969 922–969 922–969 922–969 922–969 922–969
Nsp13—1B domain (cl41715) 973–1051 973–1051 973–1051 973–1051 973–1051 973–1051 973–1051 973–1051 973–1051 973–1051

Nsp13—helicase domain (cl41748) 1074–1413 1074–1413 1074–1413 1074–1413 1074–1413 1074–1413 1074–1413 1074–1413 1074–1413 1074–1413
Nsp14 (cl40464) 1428–1950 1428–1951 1428–1952 1428–1951 1428–1952 1428–1951 1428–1951 1428–1951 1428–1951 1428–1951

Nsp15—N terminal
domain (cl40469) 1954–2014 1954–2014 1955–2015 1954–2014 1955–2015 1954–2014 1954–2014 1954–2014 1954–2014 1954–2014

Nsp15—M domain (cl41717) 2018–2146 2018–2146 2019–2143 2018–2146 2019–2143 2018–2146 2018–2146 2018–2146 2018–2146 2018–2146
Nsp15—endoribonuclease domain (cl41718) 2144–2292 2144–2292 2141–2289 2144–2292 2141–2289 2144–2292 2144–2292 2144–2292 2144–2292 2144–2292
Nsp16—methyltransferase (461919, cl41719) 2297–2578 2323–2537 2297–2578 2323–2537 2297–2578 2323–2537 2323–2537 2323–2537 2297–2578 2323–2537

S

Size 1274 1264 1278 1273 1278 1271 1269 1269 1256 1265
S1—N terminal domain (cd21627) 30–323 33–318 36–327 33–326 36–327 33–325 31–322 31–322 34–312 42–321
Receptor binding domain (cl09656) 367–521 362–516 371–521 370–528 371–521 369–523 366–524 366–524 356–511 365–519

S1/S2 cleavage + S2 fusion domain (cd22381) 538–1268 533–1258 538–1273 545–1267 538–1272 540–1265 541–1263 541–1263 528–1250 536–1259

ORF3 Size 232 238 220 238 220 238 239 239 238 238

E
Size 75 75 75 75 75 75 75 75 75 75

Envelope protein (cl40474) - - - - - - 4–63 4–63 4–63 4–63

M
Size 222 221 222 221 223 221 221 221 221 221

Matrix protein (cl40475) 11–222 5–222 7–222 8–221 7–223 5–221 10–221 10–221 8–221 8–221

N
Size 469 467 468 468 468 467 470 470 467 467

Nucleocapsid protein (cl47612) 53–396 53–374 54–375 54–375 54–395 54–375 54–375 54–375 53–374 53–374

Locations are provided according to the individual viral proteins. NCBI accessions are provided in parentheses.
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Figure 5. Alignment of domains involved in receptor binding of coronavirus S (spike) protein. Amino
acid positions are provided according to the SARS-CoV2 Wuhan-Hu-1 strain. Conserved residues are
highlighted (RBD domain, S1/S2 cleavage site, and fusion peptide: yellow; receptor binding motif
and furin cleavage site: cyan).

4. Discussion
Here, we report a partial Betacoronavirus genome representing a distinct Nobecovirus

subclade related to African Nobecoviruses, detected in a rectal swab from a Wahlberg’s
epauletted fruit bat (E. wahlbergi) from Nairobi, Kenya. Tentatively named NRB24, the par-
tial viral contig—covering >75% of Nobecovirus genomes—was generated by untargeted
metagenome screening. The contig encompassed viral structural proteins (S, E, M, and N),
as well as regions encoding for the core replication enzymes and main co-factors encoded
by ORF1a and ORF1b. In phylogenetic analyses, it emerged as a novel Nobecovirus sub-
clade, sharing a common ancestor with the Eidolon/Rousettus Nobecovirus subclade from
Africa. We detected several functional domains on the NRB24 putative structural and non-
structural proteins. Further analysis of the S protein revealed shared markers and cleavage
sites with Nobecoviruses. We did not detect RNA derived from NRB24 in oral swabs from
the same individual bat, suggesting probable tropism for gastrointestinal tissue.

Zoonotic capacity in particular subgenera, such as Sarbecoviruses (including SARS-
CoV and SARS-CoV-2) and Merbecoviruses (including MERS-CoV) has been documented
and caused spillover events with a significant health impact [28,29]. So far, no zoonotic
potential has been recognized in Nobecoviruses, which are described exclusively in fruit
bats of Pteropodidae [27,31]. Moreover, scarce information is available on Nobecovirus
cell receptors and target cells. Compared to other bat-associated Sarbecovirus and Mer-
becoviruses, Nobecoviruses have been observed to infect fewer bat host species, which
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might indicate host specificity toward Rousettus and Eonycteris fruit bats (family Pteropo-
didae) [31,53]. Importantly, our findings describe another Pteropodidae species that can
harbor Nobecoviruses.

All Pteropodidae species are distributed in tropical and subtropical areas of the Old
World and have been documented to harbor zoonotic viruses, including the Ebola, Mar-
burg, Hendra, and Nipah viruses [31,54]. Despite a lack of direct evidence of Nobe-
coviruses, examples of virus spillover to humans and recombination events have been
documented [55,56], highlighting the potential of viruses hosted by Pteropodidae species.
In this study, we documented potential recombination events among various Nobecoviruses
of African origin, including the newly described NRB24, despite lacking the S protein,
which is crucial for the host range. As exemplified by SARS-CoV and MERS-CoV, re-
combinations facilitate direct bat-to-human spillover and cross-species emergence via
intermediary bridge hosts [28,29,57]. The potential of Nobecovirus to gain zoonotic po-
tential through recombinations should not be underestimated, particularly when fruit bat
hosts share habitats with potential intermediate hosts like livestock, as with our sites. It
is imperative to continue active surveillance of fruit bat species in the Afrotropics and
tropical and subtropical regions of Southeast Asia for emerging corona- and other viruses
and to better understand their diverse virome. Despite challenges in identifying adequate
bat habitats on private properties in a city environment, limiting our sample size, this
study provided novel viral sequences obtained in a non-invasive manner from urban bats,
contributing to our knowledge of Nobecoviruses and their bat host associations.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/v17040557/s1: Figure S1: NRB24 genome annotation of
seven open reading frames and genome coverage. Figure S2: Maximum likelihood tree of coron-
aviruses ORF1a (7472 nucleotides) and ORF1b (8033 nucleotides). Figure S3: Maximum likelihood
consensus tree of coronavirus S (3949 amino acids), E (75 amino acids), ORF3 (266 amino acids), M
(215 amino acids), and N (477 amino acids) sequences. Table S1: Pairwise comparison of nucleotide
and deduced amino acid sequences of NRB24 and related Nobecovirus ORFs. Table S2: Conserved
domains identified in NRB24 partial ORF1a putative amino acid sequence (n = 2365).
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