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Abstract: Chicken Parvovirus (ChPV) belongs to the genus Aveparvovirus and is implicated in enteric
diseases like runting–stunting syndrome (RSS) in poultry. In RSS, chicken health is affected by
diarrhea, depression, and increased mortality, causing significant economic losses in the poultry
industry. This study aimed to characterize the ChPV genomes detected in chickens with RSS through
a metagenomic approach and compare the molecular and evolutionary characteristics within the
Aveparvovirus galliform1 species. The intestinal content of broiler flocks affected with RSS was
submitted to viral metagenomics. The assembled prevalent genomes were identified as ChPV after
sequence and phylogenetic analysis, which consistently clustered separately from Turkey Parvovirus
(TuPV). The strain USP-574-A presented signs of genomic recombination. The selective pressure
analysis indicated that most of the coding genes in A. galliform1 are evolving under diversifying
(negative) selection. Protein modeling of ChPV and TuPV viral capsids identified high conservancy
over the VP2 region. The prediction of epitopes identified several co-localized antigenic peptides
from ChPV and TuPV, especially for T-cell epitopes, highlighting the immunological significance
of these sites. However, most of these peptides presented host-specific variability, obeying an
adaptive scenario. The results of this study show the evolutionary path of ChPV and TuPV, which are
influenced by diversifying events such as genomic recombination and selective pressure, as well as
by adaptation processes, and their subsequent immunological impact.

Keywords: Aveparvovirus; runting–stunting syndrome; viral metagenomics; phylogenetic analysis;
selective pressure; protein modeling; epitope prediction

1. Introduction

The genus Aveparvovirus belongs to the family Parvoviridae, subfamily Parvovirinae.
According to the latest release from the International Committee on Taxonomy of Viruses
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(ICTV), it includes four species: A. columbi1, A. gruiform1, A. passeriform1, and A. galli-
form1 [1]. Aveparvovirus galliform1 species comprises the two viruses that infect domestic
birds, Chicken Parvovirus (ChPV), and Turkey Parvovirus (TuPV).

Parvoviruses are small, icosahedral-shaped, non-enveloped viruses with a diameter of
19–24 nm and possess a single-stranded linear DNA genome. ChPV has a single-stranded
genome with a length of approximately 5 kb. Its genome is flanked by two inverted
terminal repeats (ITRs) and a coding region that includes the nonstructural protein (NS1),
the overlapping structural viral capsid proteins VP1 and VP2, and the auxiliary proteins
NP1 and NP [2–4]. The NS1 gene is conserved and is primarily used for Aveparvovirus
species determination and molecular detection by PCR and qPCR [2,5]. On the other hand,
the VP1 gene is responsible for the infectivity of the virus and the specificity of the host
determinant between chickens and turkeys, and it is also used for molecular genotyping
and the characterization of ChPV and TuPV [3,6].

Runting–stunting syndrome (RSS) is one of the most important enteric diseases in
chicken and turkey health [7,8]. RSS has many synonyms, such as infectious stunting
syndrome, pale-bird syndrome, malabsorption syndrome, malassimilation, and helicopter
disease, and affects birds of all ages, from one-day-old chicks to mature hens [7–9]. This
syndrome is composed of two aspects: runting and stunting. Runting refers to the reduced
growth rate and size of the affected birds falling short of the expected weight. Stunting
refers to the underdevelopment of various organs and systems in the bird’s body. This
includes the gastrointestinal tract, immune system, and skeletal system. Stunted birds
exhibit malformations, delayed maturation, and reduced function in these areas. In RSS,
these conditions come together, resulting in economic losses for poultry producers as
affected birds are less valuable and less productive. The principal externally observed signs
in affected birds by RSS include apathy, depression, ruffled feathers, cloacal pasting, and
diarrhea [7]. Regarding the etiology, RSS has been primarily associated with viruses, and
many of them have been detected in chickens exhibiting signs of enteric disease resembling
RSS [10,11].

ChPV and TuPV are associated with enteric diseases such as poult enteritis com-
plex (PEC), poult enteritis mortality syndrome (PEMS) in turkeys, and runting–stunting
syndrome (RSS) in broiler chickens [12]. ChPV primarily affects young chickens [13,14].
However, there have been many reports of ChPV infection in chickens of all ages [3,9,15].
The role of ChPV in RSS is still not well understood, primarily due to the difficulty of
isolation [16]. Experimental infection with the ABU-P1 strain has successfully reproduced
RSS, but no microscopic alterations were observed in the infected animals [14]. More
studies need to be performed to elucidate this syndrome [12].

ChPV has been detected in chicken flocks of several countries, in both healthy-
appearing birds and birds exhibiting signs of enteric disease, from one-day-old chicks
to birds several weeks old [3,9,11,16,17]. In addition, novel molecular approaches such as
genomics and metagenomics have been implemented to study and compare the role of
viruses in enteric diseases and RSS, with a frequent identification of ChPV [18–21].

This study aimed to characterize the ChPV genomes detected in chickens with RSS
through a metagenomic approach and compare the molecular and evolutionary character-
istics within the Aveparvovirus galliform1 species.

2. Materials and Methods
2.1. Clinical Samples and Viral Metagenomics

In this study, an analysis of intestinal content from a previously documented RSS inves-
tigation [15] was conducted. Sixteen pooled samples were subjected to viral metagenomics
protocols as described elsewhere [22,23].

Briefly, a 50 mg aliquot of the pooled sample was diluted in HBSS and transferred
to a tube containing lysing matrix C. The sample was homogenized and then centrifuged
at 12,000× g for 10 min. The supernatant was filtered through a 0.45 µm filter to remove
eukaryotic and bacterial debris.
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To precipitate viral particles, cold PEG-it Virus Precipitation Solution was added to
the filtrate, mixed gently, and incubated at 4 ◦C for 24 h. The mixture was then centrifuged
at 10,000× g for 30 min at 4 ◦C. The supernatant was discarded, and the viral pellet was
digested with a combination of nuclease enzymes at 37 ◦C for 2 h. Viral nucleic acids were
then extracted using a ZR and ZR-96 Viral DNA/RNA Kit.

cDNA synthesis was performed using AMV reverse transcriptase (Promega, Madison,
WI, USA). The second strand was synthesized with DNA Polymerase I Large (Klenow)
Fragment (Promega, Madison, WI, USA). A DNA library was constructed using a Nextera
XT Sample Preparation Kit (Illumina, San Diego, CA, USA) and labeled with dual barcodes.
Pippin Prep (Sage Science, Beverly, MA, USA) was used for size selection (200–400 bp) with
a target of 300 bp fragments. Deep sequencing was performed using Illumina sequencing
(MiSeq 2 × 250 bases) with a Nextera™ XT Sample Preparation Kit (Illumina, San Diego,
CA, USA).

Genomic assembly was followed by bioinformatics analysis following the strategy
of Deng et al. [24]. These sequences were searched using BLASTx to identify similarities
with viral proteins in the GenBank database. They were further compared against the
GenBank non-redundant databases using BLASTn and BLASTx. After viral identification,
full-length genomes were mapped against a reference sequence using Geneious R9 software
(Biomatters Ltd. L2, 18 Shortland Street Auckland, 1010, New Zealand).

2.2. Sequence and Phylogenetic Analysis

Sequence and phylogenetic analyses focused on the NS and VP1 genes. This anal-
ysis included 74 complete coding genomes of Aveparvoviruses retrieved from GenBank:
71 Aveparvovirus galliform1 strains (including two from this study) and 3 additional refer-
ence sequences from Aveparvovirus gruiform1 and Aveparvovirus passeriform1 species used as
outgroups. Sequence alignment was performed using the online MAFFT service [25]. The
optimal substitution model for the phylogenetic analysis was selected using ModelTest-NG
v0.1.7 [26] based on the Bayesian Information Criterion (BIC). The maximum likelihood
(ML) method was employed for tree reconstruction using PhyML [27]. Nodal support
values were estimated through 1000 bootstrap replicates. The resulting phylogenetic tree
was then visualized using iTOL [28]. Finally, sequence identity comparisons for the com-
plete NS1 and VP1 genes were conducted using an identity matrix generated in Geneious
R9 software.

2.3. Recombination Analysis

Screening for recombination signals and breakpoints was explored in 71 complete
genomes of Aveparvovirus galliform 1 strains using the Genetic Algorithm for Recombination
Detection (GARD) [29].

The complete genomes of the two Aveparvovirus galliform1 strains isolated in this
study were analyzed to identify potential recombination events using RDP5 (version 4.97)
as described by Martin et al. [30]. The employed methods included RDP, GENECONV,
BootScan, MaxChi, Chimaera, SiScan, and 3Seq. Any potential recombination event was
considered valid only if detected by five or more of these methods and had a p-value below
5 × 10−4.

2.4. Selective Pressure Analysis

To estimate the selective pressure on the entire gene as a unit, the Z test implemented
in Mega11 using the Kumar model (K2P) was used [31]. Additionally, the Branch-site
Unrestricted Statistical Test for Episodic Diversification (BUSTED) was used to detect
positive selection on the entire gene if it had undergone positive selection on at least one
site within at least one branch of the evolutionary tree [32]. The significance level for both
methods was set to p ≤ 0.05.

Furthermore, we analyzed site-specific selection pressure. Episodic diversifying selec-
tion, where positive selection acts on a limited proportion of sites throughout the phylogeny,
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was investigated using mixed effects models of evolution (MEME). Detecting pervasive
diversifying selection, which signifies sites consistently influenced by positive selection
across the evolutionary tree, was performed through fixed-effects likelihood (FEL), fast un-
constrained Bayesian approximation for inferring selection (FUBAR), and single-likelihood
ancestor counting (SLAC) methods. Analyses were performed via the Datamonkey web
server [32]. The significance level was set at p < 0.1 for MEME, FEL, and SLAC, while the
FUBAR method used a posterior probability threshold of 0.9.

2.5. Protein Modeling of Viral Capsid and B and T Epitope Prediction

Protein modeling was performed to compare the viral capsid proteins VP1 (minor cap-
sid protein) and VP2 (major capsid protein) as monomers, dimers, and trimers of ChPV and
TuPV, using the consensus amino acid sequences for both viruses. VP2 overlaps with VP1
and is located 143 amino acids downstream. The protein structures were constructed using
AlphaFold 3 [33]. The structures were then visualized and aligned using PyMOL [34]. The
results were compared using the UniProt database (ChPV: ID D3X6W9, TuPV: ID D3X6X7).

T-cell linear epitopes were predicted for MHC class I using NetMHCpan 4.1 and for
MHC class II using NetMHCIIpan 4.1 [35]. As proposed in a previous study [36], the best
human substitute alleles for the chicken MHC were chosen for epitope prediction: three
alleles for MHC class I (HLA*B 40:06, HLA*B 41:04, and HLA*B 41:03) and four DRB1
alleles for MHC class II (DRB1:1482, DRB1:1366, DRB1:1310, and DRB1:1445).

3. Results
3.1. Viral Metagenomics

Viral nucleic acids were enriched, amplified, and sequenced using Illumina MiSeq.
Following the assembly and filtering of viral sequences, 33,160 viral reads were obtained.
BLASTx analysis with an e-value threshold of 1 × 10−5 identified 37 distinct viral species
(details in Table S1). The five most prominent families were Parvoviridae (26.80%), Mimiviri-
dae (30.07%), Pithoviridae (9.48%), Retroviridae (18.63%), and Siphoviridae (7.19%). The
most frequent genera included Aveparvovirus (25.16%), Hokovirus (21.57%), Alpharetrovirus
(9.15%), Pandoravirus (1.63%), and Protoparvovirus (1.63%). The five most prevalent species
were Aveparvovirus galliform1 (25.16%), Hokovirus HKV1 (21.57%), Pithovirus LCPAC101
(8.50%), Avian leukosis virus (7.19%), and Avian endogenous retrovirus EAV-HP (6.54%).

Two near-complete Aveparvovirus galliform1 genomes were assembled from the filtered
reads and deposited in GenBank with accession numbers PP329606 (USP-574-A) and
PP329607 (USP-574-B).

3.2. Sequence and Phylogenetic Analysis

For these analyses, the two major Aveparvovirus genes were used: NS1 and VP1. The
phylogenetic analysis of the NS1 gene permitted the distinguishing of two clades, including
all sequences belonging to the Aveparvovirus galliform1 (Figure 1). One of them included
strains mostly isolated from chickens (Clade ChPV), while the other one included almost
all strains isolated from turkeys together with others isolated from chickens (Clade TuPV).
Brazilian strains of this study presented nucleotide identities of 98.5% between them, from
90.0% to 96.6% against clade ChPV and from 88.1% to 92.4% against clade TuPV (Table S2).
Phylogenetic analyses of the VP1 gene differentiated the sequences of TuPV and those of
ChPV, except for 10 ChPV sequences that are phylogenetically closer to TuPV (Figure 2).
In turn, the ChPV clade included three subclades defined as ChPV-1, ChPV-2, and ChPV-
3. The two sequences USP-574-A and USP-574-B presented in this study were included
in different subclades (ChPV-2 and ChPV-3). Brazilian strains of this study presented
nucleotide identities of 94.8% between them, from 80.7% to 96.0% against clade ChPV and
from 71.9% to 79.9% against clade TuPV (Table S3). In all phylogenetic analyses, clustering
by a year of isolation, country, or pathology was not observed.
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Figure 1. Phylogenetic analysis of 74 NS1 complete gene sequences of Aveparvovirus. The phylogenetic
tree was inferred using PhyML through maximum-likelihood analysis under the HKY + R4 nucleotide
substitution model with nodal support values based on 1000 bootstrap replicates. The color codes for
the Pathology, Host, and Country are represented in vertical bars on the right of the names and in the
legend. Aveparvovirus clades are colored and indicated in the legend. Brazilian strains USP-574-A and
USP-574-B of this study were highlighted in red.
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Figure 2. Phylogenetic analysis of 74 VP1 complete gene sequences of Aveparvovirus. The phylogenetic
tree was inferred using PhyML through maximum-likelihood analysis under the GTR + R nucleotide
substitution model with nodal support values based on 1000 bootstrap replicates. The color codes for
the Pathology, Host, and Country are represented in vertical bars on the right of the names and in the
legend. Aveparvovirus clades are colored and indicated in the legend. Brazilian strains USP-574-A and
USP-574-B of this study were highlighted in red.

3.3. Recombination Analysis

The initial recombination analysis performed with GARD allowed us to identify 12 in-
ferred breakpoints along the alignment of the complete genomes (Figure 3A). Among these,
four presented the best signals to be considered as recombination hotspots in Aveparvovirus
galliform1. Three of these sites are located in the NS1 gene and one in the VP1/VP2 gene
(Figure 3B).

The recombination analysis to identify potential recombinant strains permitted to
identify 77 recombination events among all the sequences included in the analysis (Table S4).
Specifically, potential recombination events explored for Brazilian strains from this study
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indicate that the strain USP-574-A underwent different recombination processes, with two
potential recombination events supported by six and seven statistical methods, respectively
(Table S4). The recombination regions were identified at positions 243–840 of the NS gene
and 2277–3903 of the VP1 gene (Figure 4).

Viruses 2024, 16, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 3. Recombination analysis of 71 VP1 complete genome sequences of Aveparvovirus galliform1 
performed with GARD. (A) Identification of inferred breakpoints along the multiple genome se-
quence alignment. Orange circles represent the best place of inferred breakpoints. (B) Localization 
of the inferred breakpoints along the complete genome and coding genes of Chicken Parvovirus 
reference genome ABU-P1 (NC_024452). 

The recombination analysis to identify potential recombinant strains permitted to 
identify 77 recombination events among all the sequences included in the analysis (Table 
S4). Specifically, potential recombination events explored for Brazilian strains from this 
study indicate that the strain USP-574-A underwent different recombination processes, 
with two potential recombination events supported by six and seven statistical methods, 
respectively (Table S4). The recombination regions were identified at positions 243–840 of 
the NS gene and 2277–3903 of the VP1 gene (Figure 4). 

Figure 3. Recombination analysis of 71 VP1 complete genome sequences of Aveparvovirus galliform1
performed with GARD. (A) Identification of inferred breakpoints along the multiple genome sequence
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Figure 4. Recombination events detected in Aveparvovirus galliform1 strain USP-574-A. (A) Bootscan
analysis of event 50 was performed with GX-CH-PV-21 (MG602511) strain as the major parent and
USP-574-B (PP329607) as the minor parent. (B) Bootscan analysis of event 50 was performed with
GX-CH-PV-18 (KX133425) strain as the major parent and USP-574-B (PP329607) as the minor parent.
Both images consider the vertical axis as the percentage of permuted trees and the horizontal axis as
the position on the polyprotein of the query sequence.

3.4. Selective Pressure Analysis

Initial analyses were performed on the entire genes as units to determine if these genes
were under positive or negative selection. The codon-based Z test estimated that genes NS1,
NP1, and VP1 evolved under purifying (negative) selection (dS > dN, p-value = 0.00), with
(dN − dS) values of −15.27, −4.07, and −13.41, respectively. In contrast, the dN−dS value
for gene NP was 0.38, suggesting potential evolution under positive selection, although
lacking significant p-value support (p-value = 0.36). On the other hand, BUSTED analyses
indicated that at least one site in NS1, NP, and VP1 experienced diversifying selection
events (Table 1).

Table 1. Sites under pervasive positive selection pressure in the Aveparvovirus galliform1 coding genes.

Gene Codon
Position

FEL
p-Value 2

FUBAR Probability
α < β Positive 2

SLAC
P-[dN/dS > 1] 2

NS1

131 — 0.006
331 — 0.042 —
349 — 0.020 —
534 0.0819 0.015 —
615 0.0182 0.006 0.0879

617 1 0.0940 — —
637 0.0098 0.000 0.0223
640 0.0018 0.000 0.0061
645 0.0044 0.000 0.0303
647 0.0003 0.000 0.0018
654 0.0133 0.006 0.0403

NP1
2 0.0872 0.934 —
6 0.0855 0.946 —
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Table 1. Cont.

Gene Codon
Position

FEL
p-Value 2

FUBAR Probability
α < β Positive 2

SLAC
P-[dN/dS > 1] 2

NP

6 0.0133 0.972 —
15 0.0737 0.956 —
16 — 0.948 —
31 — 0.904 —
35 0.0751 — —
45 — 0.917 —
58 0.0835 0.916 —
66 — 0.930 —
67 0.0822 — —
68 0.0887 — —
69 0.0045 0.995 0.0427

VP1

8 0.0360 0.918 0.0702
85 0.0777 — —

107 0.0342 0.904 0.0517
134 0.0724 0.918 —
187 0.0042 0.983 —
188 0.0416 0.916 0.0677
192 0.0261 0.940 0.0618
210 0.0657 — —
215 0.0056 0.983 0.0214

1 Detected only in TuPV. 2—: no signal detected.

Next, we performed an analysis of the individual sites of the complete genes to
determine the presence of episodic positive selection events (through MEME) and pervasive
positive selection events (through FEL, FUBAR, and SLAC). The number of pervasive
positive selection sites for NS1, NP1, NP, and VP1 was 11, 2, 11, and 9, respectively (Table 1).
On the other hand, the number of episodic positive selection sites for NS1, NP1, NP, and
VP1 were 27, 2, 9, and 50, respectively (Table S5). Sites under negative pressure for NS1,
NP1, NP, and VP1 were 352, 36, 8, and 486, respectively (Table S5). Considering the length
of the proteins, 15.94% of the codons presented pervasive positive selection for the NP gene.
In the case of NS1, NP1, and VP1, the percentages of positive selection sites were 1.56%,
1.96%, and 1.33%, respectively.

3.5. Protein Modeling of Viral Capsid and T and B Epitope Prediction

The results of the modeling with AlphaFold2 produced 5 models for each protein
analyzed (Figure S1, Table S6). In the case of VP1 of TuPV and ChPV, the overall quality
of the models was High, with the maximum value of 77.58 of the mean predicted local
distance difference test (pLDDT) for the best TuPV model and 74.62 for the best ChPV model.
pLDDT values were High or Very High throughout VP1, except for the first 170 amino acids.
In the case of VP2 of TuPV and ChPV, the overall quality of the models was High, with the
maximum value of 82.21 of the mean predicted local distance difference test (pLDDT) for
the best TuPV model and 82.59 for the best ChPV model. pLDDT values were High or Very
High throughout VP2, except for the first 30 amino acids. Due to this, the three-dimensional
representation in subsequent analyses was performed in reference to VP2.

The results of the Pan-specific binding of peptides to MHC class I proteins using
NetMHCpan-4.1 allowed for the identification of potential VP1 (and VP2) epitopes of 8-mer
to 11-mer length and with characteristics of strong binders (defined as having % rank <0.5)
(Table 2, Figure 5). The number of peptides predicted for ChPV was 16 and for TuPV was
15. Ten peptides correspond to the variants aligned at the same positions for ChPV and
TuPV. The only conserved peptide for both was KEFFKNHQGA.
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Table 2. MHC-I strong binder epitopes from VP1 (and VP2) protein predicted for Aveparvovirus
galliform1.

VP1 Position 1
Peptide Chicken MHC-I Substitute Alleles 2

ChPV TuPV HLA-B*40:06 HLA-B*41:03 HLA-B*41:04

47 ARKELTPQQKA — C — —
48 RKELTPQQKA KKELTAQQKA C + T — —
49 KELTPQQKA KELTAQQKA C + T C + T C
84 KEFFKNHQGA KEFFKNHQGA C + T — —
128 EEHPFNQEEL EEAPFNEQEL — C + T —
135 — NEQELEEAM — T —
202 RDMDQYKAI RDFDKYQAI T C + T C + T
221 SENQTQYF AENETQYF — C + T C + T
221 — AENETQYFGF — T T
301 QEGKYPRL — — — C
301 QEGKYPRLL QEGRYPRIL — C + T C + T
353 RESAFYCL — — C C
372 NEWETTFVF NEWQTSYEF C + T C + T C + T
378 — YEFPDSTP T — —
446 LENLANVAV — C C C
469 RPESDKDEYL RPETDKDEYL — C + T —
581 KESPGHIF KESPGHVF — C + T C + T
581 KESPGHIFV KESPGHVFV C + T C + T C + T
613 VEIEWELEP — C — —
615 — IEWELEHFT T — —

Total peptides 16 22 17
1 VP2 starts at position 143; 2—: not binding. C: ChPV. T: TuPV.

In the case of the Pan-specific binding of peptides to MHC class II proteins, the use
of NetMHCIIpan-4.0 allowed for the identification of potential VP1 (and VP2) epitopes
of 15-mer length with characteristics of strong binders (defined as having % rank <0.5)
(Table 3, Figure 6). The number of predicted peptides for ChPV was 19 and for TuPV was
13. Nine peptides correspond to the variants aligned at the same positions for ChPV and
TuPV. The only conserved peptide for both was RKRFFITQAQKNKKP.
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Table 3. MHC-II strong binder epitopes from VP1 (and VP2) protein predicted for Aveparvovirus
galliform1.

VP1 Position 1
Peptide Chicken MHC-II Substitute Alleles 2

ChPV TuPV DRB1:1310 DRB1:1366 DRB1:1445 DRB1:1482

5 APKGYVPSLPTTDEE PPKGYVPSLPTTDEE C + T — — —
6 PKGYVPSLPTTDEEA — C C — —

58 ERKRFFITQAQKNKK DRKRFFITQAQKNKK C + T — — —
59 RKRFFITQAQKNKKP RKRFFITQAQKNKKP C + T C + T — —
293 GTIQIFADQEGKYPR GTIQIFADQEGRYPR — — — C + T
295 — TIQIFADQEGRYPRI — — — T
403 LYDTWNVNGRGDDAK — C C — —
404 YDTWNVNGRGDDAKR — C C — —
405 DTWNVNGRGDDAKRG — C C — —
431 — GPYIYLSDTTAAGQQ — T — —
494 VRNSQIQVSTANKVQ — — — C C
495 RNSQIQVSTANKVQV — — — C C
496 NSQIQVSTANKVQVD — — — C C
497 SQIQVSTANKVQVDT — — — C C
498 QIQVSTANKVQVDTS — — — C C
585 GHIFVKVTPKPTGAA GHVFVKVTPKPTGAA — — C + T —
586 HIFVKVTPKPTGAAN HVFVKVTPKPTGAAN — — C + T —
648 DENGQYQVNVNSGDI DENGQYQINTTSADL C + T T — —
649 ENGQYQVNVNSGDIT ENGQYQINTTSADLA C + T C + T — —
650 NGQYQVNVNSGDITR NGQYQINTTSADLAR C + T C + T — —
651 — GQYQINTTSADLARL T T — —
661 DITRLYMTKRAPRTN — — — C —

Total peptides 17 13 10 8

1 VP2 starts at position 143. 2 —: not binding. C: ChPV. T: TuPV.
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4. Discussion

RSS is an enteric disease that causes significant economic losses in poultry farming.
Despite multiple studies carried out, the etiological agent remains uncertain. The present
retrospective study was carried out on samples of chickens affected with RSS using a viral
metagenomic approach to explore de viral diversity and, consequently, the evolutionary
characteristics on assembled Chicken Parvovirus genomes.

The outcomes of viral metagenomics revealed several viral families associated with
diverse hosts. The occurrence of these organisms is likely linked to environmental factors,
potentially introduced through sources like contaminated food or drink, or as components
of the natural gut microbiota [19,37,38]. Conversely, the prevalence of parvovirus reads
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substantiated previously obtained results through molecular approaches [15]. Additionally,
the presence of the avian leukosis virus was attributed to the endogenous (non-pathogenic)
subtype of this virus. Lastly, since the genus Aveparvovirus within the family Parvoviridae
exhibited a higher abundance, our focus was directed toward identifying the species within
this genus. As a result, we assembled two near-complete genomes of Chicken Parvovirus
(Aveparvovirus galliform1).

Our phylogenetic analysis for the major coding genes (NS1 and VP1) identified two
main clades within Aveparvovirus galliform1. In both cases, Brazilian strains of this study
clustered within the same branch, inside the ChPV clade, differentiating them from TuPV
strains. Nucleotide identity analysis confirmed the same classification, with higher values
against other strains from the ChPV clade. With this respect, the NS1 protein is pivotal
for parvovirus pathogenicity [13,39]. Following its critical role, we have confirmed the
minimal genetic variations among different ChPV strains as previously proposed [3,39],
indicating significant functional conservation crucial for the virus’s stability. Conversely,
the significant variability observed in VP1 underscores its pivotal role in facilitating adapt-
ability [17,40]. Given these insights, the VP1 gene emerges as a compelling candidate for
viral strain classification [3].

Genetic recombination plays a crucial role in the evolution and diversity of par-
voviruses [41]. The exploratory recombination analysis allowed us to identify the most
frequent breakpoint sites, highlighting four recombination hotspots, three of these in the
NS1 gene and one in VP1. The incidence of recombination at these sites has been previously
reported [17,39]. Then, with specific analyses, recombination events were identified in two
regions of the USP-574-A strain. The first event was in the NS1 gene, where the major
parent (MG602511) was related to China, and the associated RSS [17] was identified; the
minor parent was related to USP-574-B from this study. Similarly, the second event oc-
curred in the VP1 gene, with a major parent (KX133425) related to China and suspected of
RSS [17], and the minor parent was related to USP-574-B of this study. The results suggest
that the diversity gain in Aveparvovirus may be attributed to the frequent occurrence of
recombination processes in its genes, as shown previously [17,39,42].

The analysis of selective pressure permits us to infer how evolutionary forces have
influenced the extant genetic diversity from genomic sequencing data [32]. There are
no previous studies of selective pressure in the genus Aveparvovirus; however, previous
studies in other parvoviruses have described evolution under negative pressure in the
main genes and a greater abundance of these sites when compared to sites under positive
pressure [43–47]. Our analyses also revealed that most of the Aveparvovirus galliform1
genome has evolved under purifying (negative) selection, except for NP, which presented
proportionally more specific sites under positive selection. With this respect, NP is related
to the efficient replication of the viral DNA and expression of capsid protein [48], and the
incidence of positive selection could impact evolutionary adaptations.

The structural modeling of the viral capsid aligns with the classical architecture ob-
served in single jelly-roll viruses [49,50]. Notably, the region attributed to VP2, which
serves as the major capsid protein, demonstrated a higher degree of conservation, reflecting
its fundamental role in capsid formation [4,6]. The comparative analysis of capsid proteins
from ChPV and TuPV revealed a significant presence of strong T-cell epitopes, several of
these on the same sites, underscoring the immunological significance of these sites. Despite
co-localization, peptide sequences within these epitopes exhibited considerable diversity
between ChPV and TuPV, with only a single shared epitope among all potential predicted
T-cell epitopes. This immunological discrepancy may reflect and explain variations in host
specificity. Additionally, most of these critical epitopes were distributed across the capsid,
predominantly within the VP2 region, and several near the loops, consistent with previous
reports of parvoviruses [51–54]. It is important to note that, to date, no specific TuPV or
ChPV templates have been experimentally resolved or crystallized, which constitutes a
limitation of the present study. Consequently, the modeling approach and predictions are
approximations requiring subsequent experimental validation. Nonetheless, the compari-
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son of potential T-cell epitopes between TuPV and ChPV underscores potential differences
in the immune response to both viruses.

The results of the present study allow us to show the incidence and significance of
ChPV in the pathogenic virome in birds with RSS. However, the causal association between
ChPV and RSS in the present study cannot be established in the absence of experimental
infection studies. Furthermore, the coexistence of different strains of A. galliform1 or other
related parvoviruses may allow diversification through evolutionary mechanisms such
as genomic recombination and selective pressure, as is common in parvoviruses and
other avian viruses [17,42,47,54–57]. Although the majority of parvoviruses in diverse
environments evolve largely under purifying forces of selection (negative selection), it
is important to identify potential antigenic hot spots that more dramatically alter the
effects on evolution, diversification and distancing (ChPV and TuPV as an example), the
determination of host and tissue tropism, modulation and immunological escape, and the
subsequent influence on the pathogenic characteristics as has been reported in other cases
of viral infections [3,17,40,46,50,52,58–60].

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/v16091389/s1. Table S1. Assembled and filtered reads only
corresponding to viruses; Table S2. Identity matrix of nucleotide sequences from the complete NS1
sequences of ChPV strains used in this study; Table S3. Identity matrix of nucleotide sequences from
the complete VP1 sequences of ChPV strains used in this study; Table S4. Recombination events
of the complete coding genomes of Aveparvovirus galliform1 strains; Table S5. Selection pressure
results in the coding genomes of Aveparvovirus galliform1; Table S6. Results of protein modeling with
AlphaFold2 for VP1 and VP2 of TuPV and ChPV. Figure S1. AlphaFold3 prediction metrics of viral
capsid proteins of Aveparvovirus. (Left Side) Predicted Local Distance Difference Test (pLDDT) and
(Right Side) MSA Sequence Coverage of A) VP1 of TuPV; B) VP1 of ChPV; C) VP2 of TuPV; D) VP2
of ChPV.
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