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Abstract: In Australia, Soldier flies (Inopus spp.) are economically significant pests of sugarcane
that currently lack a viable management strategy. Despite various research efforts, the mechanisms
underlying the damage caused by soldier fly larvae remain poorly understood. Our study aims
to explore whether this damage is associated with the transmission of plant viruses during larval
feeding. We also explore the larval transcriptome to identify any entomopathogenic viruses with
the potential to be used as biocontrol agents in future pest management programs. Seven novel
virus sequences are identified and characterised using de novo assembly of RNA-Seq data obtained
from salivary glands of larvae. The novel virus sequences belong to different virus families and are
tentatively named SF-associated anphevirus (SFaAV), SF-associated orthomyxo-like virus (SFaOV),
SF-associated narna-like virus (SFaNV), SF-associated partiti-like virus (SFaPV), SF-associated toti-
like virus (SFaTV-1 and SFaTV-2) and SF-associated densovirus (SFaDV). These newly identified
viruses are more likely insect-associated viruses, as phylogenetic analyses show that they cluster
with other insect-specific viruses. Small RNA analysis indicates prominent peaks at both 21 nt and
26–29 nt, suggesting the activation of host siRNA and piwiRNA pathways. Our study helps to
improve understanding of the virome of soldier flies and could identify insect viruses for deployment
in novel pest management strategies.

Keywords: soldier fly virome; transcriptome analysis; next-generation sequencing; insect-specific viruses

1. Introduction

Australia exports more than AUD 1.5 billion of sugar annually, making it the third
largest exporter of this commodity globally. Sugarcane is vulnerable to insect pests and
diseases and its susceptibility is increased by the extended growth time required for crops
to reach maturity. Canegrubs (Order: Coleoptera) and soldier flies (Order: Diptera) are
major insect pests, and they cause significant yield losses in some sugarcane regions in
Australia. Soldier flies represent a species complex that comprises at least six endemic
species that are economically important pests of sugarcane [1]. The most well-studied
species, Inopus rubriceps Macquart (Diptera: Stratiomyidae) extends throughout eastern
Queensland and New South Wales and populations have established in New Zealand
and California, USA [2]. The focus of this study is on I. flavus (James) which is known
to have a limited and localised distribution in eastern central Queensland, [3] but the
damage that they cause has become more obvious in recent years [4]. Little is known about
more recently discovered species and their distributions; the damage that they cause and
their susceptibility to pathogens needs to be understood [5]. Managing soldier fly pests in
sugarcane crops is challenging due to their cryptic feeding behaviour, the ineffectiveness
of insecticides; the lack of access to tolerant sugarcane varieties adds another layer of
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difficulty for pest management. To develop improved pest management strategies, a better
understanding of the relationship between soldier flies and their natural enemies is required
and this could be the basis for novel future control strategies.

Generally, our knowledge of the prevalence and biodiversity of insect-specific viruses
in insect populations is very limited; this is particularly the case for those viruses that infect
agricultural pests. To date, most research on viruses for insect pest control has focused
on baculoviruses (arthropod-specific DNA viruses) [6,7] and the benefits offered by other
viruses in this context has received little attention or recognition. When deployed as biolog-
ical control agents, insect-specific RNA viruses are capable of causing significant reductions
in the field populations of agricultural and forestry pests [8] and aerial applications of
tetraviruses and picorna-like viruses have been especially successful against leaf-eating
caterpillar pests in oil palm and coconut tree plantations [9,10]. There is also a growing
body of evidence which shows the potential use of insect-specific RNA viruses to geneti-
cally engineer crops for pest control [8,11]. For example, transgenic plants expressing insect
picorna-like viruses can be generated and tomato plants engineered with the Norwalk virus
capsid protein (NVCP) to assemble virus-like particles (VLPs) [12].

The advent of next-generation sequencing (NGS) technology has created a great
opportunity for novel virus discovery, and it enables investigations into their biodiversity.
These novel viruses could be insect pathogens that kill their hosts or affect their performance
and development through sub-lethal effects. Other viruses might be plant pathogens which
use insects as vectors and are transferred during feeding. In either case, the viruses are
worthy of investigation, to determine if they damage crops or if they have the potential for
development as biological control agents.

In this study, we used total RNA sequencing to investigate the virome of soldier fly
larvae. Previously, employing this approach, we described the identification of a novel
dicistro-like virus [13] and a novel jingmenvirus [14] in our RNA-Seq data. Subsequently,
we expanded our analysis to further explore the presence of additional viral sequences.
In our current study, the evidence of persistent infection for some of these viruses was
provided by small RNA read profiling and it allowed us to investigate the small RNA
responses across these diverse virus families. This study sheds light on the diversity of
viruses present in soldier fly salivary glands. Further investigation of the impact of these
newly identified viruses on soldier fly populations in different regions will enhance our
understanding of the potential interactions between insect-specific viruses and their hosts.
Such insights could potentially lead to the identification of new biological control agents
for one of the most significant pests of sugarcane.

2. Material and Methods
2.1. Sample Collection and RNA Extraction

Sugarcane yellow soldier fly (Inopus flavus) larvae were collected from an infested
sugarcane field near Hay Point, Queensland (21◦18′5′′ S, 149◦14′7′′ E). Sugarcane stools
were excavated from the ground and large larvae were manually collected from the roots
and associated soil. Larvae were transported to the University of Queensland’s laboratory
for viral discovery based on next-generation sequencing. This is considered an unbiased
approach, as no attempt was made to enrich viral particles through filtration, centrifugation
or nuclease treatment. Total RNA samples were extracted from the salivary glands of
root-exposed and starved larvae as previously described in Etebari et al., 2020 [4]. Briefly,
the larval body surfaces were disinfected by soaking in 75% ethanol for 30 s and rinsed
in phosphate-buffered saline (PBS) before dissecting out the salivary glands. The salivary
glands (SG) were extracted by pulling out the head capsule and removing all other tissues,
such as fat body droplets. The SG tissue from 20 larvae (representing one biological
replicate) were pooled together and transferred to Qiazol lysis reagent for RNA extraction
according to the manufacturer’s instruction (QIAGEN; Cat No.: 79306). After DNase
treatment and checking the RNA quality, total RNA from six samples (three biological
replicates for root-exposed larvae, three biological replicates for starved larvae) were
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submitted to the Australian Genome Research Facility (AGRF) for next-generation RNA
sequencing. The PCR-based cDNA libraries were prepared using the Illumina TrueSeq
cDNA library construction kit. cDNA from both sets of samples were sequenced using
Illumina HiSeq 4000 paired read (75 × 75 bp) technologies with an average fragment size
of 350 bp and insert size of 230 bp. Deep sequencing raw data have been deposited in
the National Centre for Biotechnology Information’s (NCBI’s) Gene Expression Omnibus
(GEO) and are accessible through GEO series accession number GSE127658.

2.2. Transcriptome DATA Analysis and Virus Discovery

In this study, the CLC Genomics Workbench version 20.0.1 (Qiagen, Hilden, Germany)
was used for bioinformatics analyses. All libraries were trimmed from any remaining
vector or adapter sequences. Low-quality reads (quality score below 0.05) and reads with
more than two ambiguous nucleotides were discarded. All reads were mapped to black
soldier fly, Hermetia illucens, as the proxy genome reference (GCF 905115235.1) to remove
host-derived reads, and unmapped reads were retained for de novo assembly and virus
discovery. The contigs were constructed with kmer size 45, bubble size 50, and a minimum
length of 500 bp, then corrected by mapping all reads against the assembled sequences
(minimum length fraction = 0.9, maximum mismatches = 2). The generated contigs were
compared to the NCBI viral database using local BLAST and BLASTx algorithms. The
e-value was set to 1 × 10−10 to maintain high sensitivity and a low false-positive rate. To
detect highly divergent viruses, domain-based searches were performed by comparing
the assembled contigs against the Conserved Domain Database (CDD) version 3.14 [15]
and Pfam v32 [16] with an expected value threshold of 1 × 10−3. Sequences with positive
hits to virus polymerase (RNA-dependent RNA polymerase (RdRp) domain: cd01699)
were retained and further checked against a non-redundant (nr) protein database. Contig
sequences with a high degree of similarity to viral proteins were then checked for complete
open reading frames (ORFs). ORFs with a minimum length of 150 aa were detected in
NCBI’s ORFfinder (accessed in January 2024) [17] by using standard genetic code. Putative
virus sequences were re-mapped to RNA-Seq data to inspect for sufficient coverage and
possible mis-assembly. The CLC Genomic Workbench’s RNA-Seq function (min. length
fraction = 0.9, max. mismatches = 2, insertion cost = 3, deletion cost = 3) on a non-strand-
specific option was used. TPM (Transcripts Per Kilobase Million) and Trimmed Mean of M
values (TMM) normalisation was used to apply effective library sizes. As the full genome
of the host is not available at the moment, we did not include Endogenous Viral Elements
(EVEs) in this study.

2.3. Phylogenetic Analysis

The deduced amino acid sequence of predicted ORF regions of newly identified
viruses were used to estimate their phylogenetic relationship with other respective mem-
bers of each family. Closely related viruses from BLASTp analysis of the NCBI non-
redundant protein database were downloaded. Multiple amino acid sequence alignments
with relevant reference sequences were performed with the multiple alignment tool MAFFT
(version 7) [18]. The maximum likelihood phylogenetic trees were inferred in IQ-TREE
(version 2.2.2.6 released in May 2023) [19] using a JTT substitution matrix and assuming a
discretised gamma rate distribution with four rate categories and with 1000 bootstraps in
the ultrafast bootstrap analysis parameter. An appropriate outlier group was selected for
each tree.

2.4. Viral Derived Small RNA Analysis

For analysis of the host RNAi response to identified novel viruses, a small RNA library
was generated from one of the pools of 20 individuals (starved) using the NEBNext®

Multiplex Small RNA Library Prep Kit for Illumina® at the Novogene Genomics Singapore
Pte Ltd. The purified cDNA libraries were sequenced on a Novaseq 6000 (SE50), and raw
sequencing reads were obtained using Illumina’s Sequencing Control Studio software. Raw
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data were stripped of adapters, and reads with a quality score above 0.05 and fewer than
two ambiguous nucleotides were retained. Reads without 3′ adapters and also reads with
fewer than 16 nt were discarded. The clean reads were mapped to each of the recently
identified viruses. We examined both the size distribution of the viral-derived RNA
fragments as well as “hot-spot” genomic locations for each identified virus.

3. Results and Discussion

We prepared the RNA-Seq libraries of six pools of salivary gland tissues from 20 soldier
fly larvae per pool, collected from north Queensland, Australia. Three RNA-Seq libraries
were sequenced from specimens under starvation stress and three libraries corresponded
to specimens fed by sugarcane roots. Our data show that starvation stress did not mean-
ingfully change the number of viral-derived reads in soldier fly larvae (Table 1). Overall,
between 44% and 58% of total RNA reads mapped to identified viral sequences. With
these reads, we identified several RNA virus sequences from the Narnaviridae, Totiviridae,
Partitiviridae, Orthomyxoviridae and Xinmoviridae families in soldier fly salivary glands. We
also identified viral sequences from the Dicistroviridae and the currently unclassified flavi-like
jingmenvirus genus in our datasets (Table 1), but these have been reported previously [13,14].
In addition, we found the full genome sequence of a non-enveloped single-stranded DNA
virus from the Parvoviridae family. Identifying a viral sequence through a metagenomic
survey does not necessarily determine the host for those novel viruses. Typically, viruses
found in insects through next-generation sequencing can include viruses of plants, fungi,
and protozoa. We chose “soldier fly-associated viruses” to name our newly identified virus
sequences due to a limitation of this approach: the challenge of accurately assigning hosts
to novel virus sequences.

3.1. Soldier Fly-Associated Anphevirus

The virus family Xinmoviridae includes 12 genera, one of which is the Anphevirus
genus [20,21]. Members of this family have −ssRNA genomes of approximately 12 kb in
length and their structure has yet to be elucidated [22]. The only member species listed
according to the International Committee on Taxonomy of Viruses (ICTV) report is the
Xincheng mosquito virus (Anphevirus xinchengense) [20]. Xinmoviridae family members
are known to have arthropod hosts and anpheviruses have been isolated worldwide
from mosquitoes [22–24]. In this study, we discovered a novel anphevirus sequence from
soldier fly larvae salivary glands, and tentatively named it Soldier fly-associated anphevirus
(SFaAV). The predicted SFaAV genome encodes for a 1981 amino acid-long RNA-dependent
RNA polymerase. It also encodes for a 643 aa glycoprotein and a 438 aa nucleoprotein
(Figure 1a).

We used BLASTp to determine the most closely related previously reported virus
sequences. The most similar sequence (40.6% identity) was from an unclassified virus
named Medvezhye Haematopota Xinmo-like virus (WQM60682.1), detected in Haematopota
pluvialis flies (Table 2).

The phylogenetic analysis of SFaAV and other anphevirus RdRp sequences groups
SFaAV with other insect-associated anpheviruses, including the sequence identified with
BLASTp, as well as Hangzhou cletus punctiger xinmovirus 1 (UHK03158.1) detected
from Cletus punctiger (Hemiptera: Coreidae), Odonatan anphe-related virus OKIAV59
(YP010800574.1) detected in Cordulegaster boltonii (Odonta: Cordulegastridae) and Hangzhou
zicrona caerulea xinmovirus 1 (UHK03222.1) detected in Zicrona caerulea (Hemiptera: Pen-
tatomidae) (Figure 1b).
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Table 1. Virus derived RNA read of the recently identified soldier fly-associated viruses.

Virus Name Accession Code Length (bp) Average Coverage
Starved (Total Read Count) Control (Total Read Count)

C1 C2 C3 SG1 SG2 SG3

SF dicistro-like virus * MW357714 9838 387,130.38 53,083,305 61,949,103 37,296,313 52,683,814 62,908,664 43,691,654
SF jingmenvirus VP1-3 * OM869462 2467 191,049.43 4,796,829 6,845,413 7,003,458 5,323,116 7,967,414 6,487,326
SF jingmenvirus NSP2 * OM869461 2540 115,895.32 3,815,562 4,258,375 4,661,773 3,434,878 4,790,021 3,078,249

SF jingmenvirus NSP1seg 1 * OM869459 2874 68,432.92 2,121,801 3,155,956 3,392,545 2,100,399 3,569,391 1,826,863
SFaAV PP410010 12,420 26.12 4013 14,297 179 8514 264 174

SFaOV (PB1) PP410013 2496 8.37 111 855 169 198 365 118
SFaOV (PB2) PP410014 1755 5.92 98 209 135 185 298 79

SFaOV (polymerase PA) PP410015 2336 5.86 176 320 172 246 360 148
SFaOV (nucleocapsid protein) PP410016 1718 102.67 1554 2302 1988 5018 2705 936

SFaOV (hemagglutinin) PP410017 1568 21.26 259 361 207 644 1033 306
SFaNV PP410020 2909 6.98 428 212 157 386 280 282
SFaPV PP410019 1820 7.07 231 115 73 288 296 184

SFaTV-1 PP410011 5870 10.69 88 540 75 946 2984 659
SFaTV-2 PP410012 7153 15.11 403 569 776 3725 2729 1353
SFaDV PP410018 3613 40.29 415 331 402 512 11,497 448

Viral read in the library (%) 51.27 58.00 46.34 48.32 51.06 44.41

* These viruses were previously reported by Asselin et al. (2021) [13] and Colmant et al. (2022) [14].
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3.2. Soldier Fly-Associated Orthomyxo-like Virus

The most common species of the Orthomyxoviridae family are the influenza viruses
containing four genera: Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus and
Deltainfluenzavirus. Aside from these, the family includes the genera, Mykissvirus, Sardi-
novirus, Isavirus, Thogotovirus and Quaranjavirus. While the influenza viruses have primarily
human hosts, thogotoviruses and quaranjaviruses have arthropod hosts [25,26]. Orthomyx-
oviruses have a segmented −ssRNA genome which usually contains 6–8 segments, each
encoding a different protein [27].

We were able to identify five segments of a novel orthomyxo-like virus sequence,
tentatively named Soldier fly-associated orthomyxo-like virus (SFaOV) (Figure 2b–e). The
sequences identified correspond to three segments coding for the peptides composing
the RdRp: polymerase basic segment 1 (PB1), polymerase basic segment 2 (PB2) and
polymerase acidic segment (PA), as well as a nucleocapsid (NC) and a hemagglutinin
segment (HA). Each of these segments was found to encode a single protein. With the
exception of the PA segment, which had a theoretical isoelectric point of 5.31, all the
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other segments had a basic pI of >9, suggesting differences in the transport activity of
the proteins produced by each segment. All segments show sequence similarity with
unclassified members of the Orthomyxoviridae. The most closely related sequences to
the SFaOV segments are sequences from Arthropod orthomyxo-like virus (WPR17589.1),
detected in Oribatida mites from New Zealand (44.39% and 28.27% identity respectively),
according to the BLASTp results and phylogenetic analysis (Table 2 and Figure 2f). SFaOV
segment sequences also cluster with Soybean thrips quaranja-like virus 1 (QPZ88432.1),
Bactrocera correcta orthomyxo-like virus isolate Bl (UPT53725.1) and Bactrocera tryoni
orthomyxo-like virus (UPT53749.1) detected in Bactrocera fruit flies as well as Coleopteran
orthomyxo-related virus OKIAV196 (QMP82407.1), all detected in arthropods (Table 2 and
Figure 2f) [28].

The average read coverage for the nucleocapsid protein segment of this virus was
around 102, which is higher than other segments (Table 1). The small RNA read coverage
graphs also indicated notably low coverage for the virus sequences, and was particularly
noticeable in the PB2 segment (Supplementary File S1). This suggests the possibility
that, despite the clustering of this novel orthomyxo-like sequences with other arthropod-
associated virus sequences, there may not be active replication of this virus in the salivary
glands. Further investigation is necessary to explore tissue tropism for this novel virus
in soldier fly larvae and to determine its ability to infect and replicate within specific cell
types or tissues in this species.

3.3. Soldier Fly-Associated Narna-like Virus

Viruses belonging to the Narnaviridae family have a +ssRNA genome with a single
ORF encoding for a single large protein, the RdRp. Their genome is around 3 kb long and is
’naked’, meaning the virus has no viral envelope or capsid [29,30]. Typically, narnaviruses
are associated to fungal hosts, but recently they have also been discovered in insects.
Indeed, a recent study reported the detection of a narnavirus replicating in a Culex tarsalis
cell line, free from any fungal or bacterial contamination, by small RNA sequencing [31].
Another narnavirus has been detected in Aedes japonicus mosquitoes, by metagenomics [23].
Recent articles report the detection of narnavirus sequences in Forcipomyia taiwana (Diptera:
Ceratopogonidae) biting midges [32], horse flies (Diptera: Tabanidae) [33] and parasitoid
wasps (Order: Hymenoptera) [34].

Here, we report the identification of an SF-associated narna-like virus (SFaNV) 2909 bp
long genome sequence, with a single ORF encoding for a 948 aa RdRp with a 106.3 kDa
molecular weight (Figure 3a). The most closely related sequences to SFaNV are the RdRp
of Hangzhou hydrellia griseola narnavirus 1 (UHK02995) (Table 2), Bactrocera dorsalis
narnavirus (UPT53655) and Meagle narna-like virus (QIJ70070), with over 48% identity
according to BLASTp. These three virus sequences were discovered from insect-derived
samples [28] and cluster with SFaNV by phylogenetic analysis as well (Figure 3b).

The number of RNA-Seq reads mapped to this viral sequence varies between 157 and
428, with an average assembly coverage of 6.98 (Table 1). This suggests that the newly
identified virus is less prevalent across all RNA libraries as compared to the total and small
RNA read coverage of the previously found jingmenvirus and dicistro-like virus from the
same dataset. This indicates the presence of fewer copies of the SFaNV genome in the
salivary glands of soldier fly. Since exact tissue tropism of narnavirus in insects is unknown,
it can be assumed that salivary glands may not be the site of active replication. Indeed,
larvae may have ingested fungus carrying SFaNV; in that case, any ingested virus would
primarily be found in the midgut rather than the salivary glands of the insect. Further
research is required to elucidate the role of SFaNV in soldier flies.
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Table 2. Similarity analysis of novel soldier fly (SF)-associated viruses with closest related viruses using BLASTp.

Name of Virus ORF Virus Family Genome Query Size (aa) Identity (%) Accession Closest Hit

SFaAV 1 Xinmoviridae −ssRNA 1981 40.62 WQM60682.1 RdRp [Medvezhye Haematopota Xinmo-like virus]
3 438 26.99 WQM60679.1 ORF1 protein [Medvezhye Haematopota Xinmo-like virus]
5 643 35.97 WQM60677.1 putative glycoprotein [Medvezhye Chrysops Xinmo-like virus]

SFaOV (PB1) 1 Orthomyxoviridae −ssRNA 805 44.39 WPR17589.1 PB1 [Arthropod orthomyxo-like virus]
SFaOV (PB2) 1 567 28.05 UPT53724.1 PB2 [Bactrocera correcta orthomyxo-like virus isolate Bl]
SFaOV (PA) 1 641 28.27 WPR17586.1 PA protein [Arthropod orthomyxo-like virus]

SFaOV (Nucleocapsid) 1 516 29.4 QMP82373.1 nucleocapsid protein [Lepidopteran orthomyxo-related virus]
SFaOV (Hemagglutanin) 1 481 25.11 UPT53725.1 hemagglutinin [Bactrocera correcta orthomyxo-like virus B1]

SFaNV 1 Narnaviridae +ssRNA 948 48.78 UHK02995.1 RdRp [Hangzhou hydrellia griseola narnavirus 1]
SFaPV 1 Partitividae dsRNA 469 67.81 APG78199.1 RdRp [Wuhan insect virus 24]

SFaTV-1 1 Totiviridae dsRNA 1050 28.49 UPT53760.1 hypothetical protein 1 [Bactrocera zonata toti-like virus]
3 840 44.65 UPT53761.1 hypothetical protein 2 [Bactrocera zonata toti-like virus]

SFaTV-2 2 Totiviridae dsRNA 715 36.77 UPT53705.1 hypothetical protein 2 [Zeugodacus cucurbitae toti-like virus]
3 1487 25.77 YP_009333169 hypothetical protein 1 [Hubei toti-like virus 19]

SFaDV 2 Parvoviridae ssDNA 467 35.55 QTZ83188.1 non-structural protein 1 [Motacilla cinerea Iteradensovirus]
6 358 36.49 WAY26506.1 hypothetical protein [Parvoviridae sp.]
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Figure 2. Genome organisation of all segments of SFaOV: PB1 (a), PB2 (b), PA (c), Nucleocapsid
(d) and Hemagglutinin (e). For phylogenetic analysis (f), the amino acid sequence of PB1 segment of
SFaOV (highlighted in red and indicated with arrow) is shown along with aligned reference sequences.
Maximum Likelihood tree is constructed with 1000 bootstrap replicates and JTT substitution matrix
with four gamma-variable sites. The scale bar refers to the number of amino acid changes per site.
Bootstrap support values > 50% are shown at the nodes. ML trees of remaining segments of SFaOV
are given in Supplementary File S1.

3.4. Soldier Fly-Associated Partiti-like Virus

Partitiviridae have a bipartite 3–5 kb long dsRNA genome, with each genomic segment
encapsidated separately. One segment encodes the RdRp, with a reverse transcriptase
domain, while the other encodes the coat protein [35,36]. Similarly to narnaviruses, they
are known to primarily infect fungi and plants. Recent studies show that partitiviruses
can also replicate in arthropods [37,38], and even be transmitted vertically from parent to
progeny Drosophila melanogaster or Aedes aegypti [39]. Reports by Xu et. al., (2020 and 2022)
have demonstrated the lethality of partitiviruses in lepidopteran hosts [37,38]. As the name
indicates, the partitivirus genome is made of bisegmented dsRNA which is separately
encapsidated.
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We identified the partial sequence of a novel SF-associated partiti-like virus (SFaPV),
with one segment encoding a 469 aa long ORF predicted to be the RdRp, with a 53.75 kDa
molecular weight and an approximate isoelectric point at 9.46, including the expected
reverse transcriptase domain (Figure 4a). The second segment encoding the coat protein
was not identified. According to BLASTp and the phylogenetic analysis, SFaPV is most
closely related (>67% identity) to insect-associated partitivirus sequences: Wuhan insect
virus 24 (APG78199.1) (Table 2), unclassified Riboviria sp. (QVG74789.1), unclassified
Partitiviridae sp. (UCD53714.1), Hubei partiti-like virus (APG78249.1) [40] and Jalime
partitivirus (QVU40013.1) [41] (Figure 4b).
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Figure 4. Genome organisation of SFaPV (a) showing single ORF encoding RdRp. For phylogenetic
analysis of RdRp (b), the amino acid sequence of SFaPV (highlighted in red and indicated with arrow)
is shown along with aligned reference sequences. Maximum Likelihood tree is constructed with
1000 bootstrap replicates and JTT substitution matrix with four gamma-variable sites. The scale bar
refers to the number of amino acid changes per site. Bootstrap support >50% are shown at the nodes.

From a pest control point of view, it is important to note that a partitivirus related to
SFaPV, Drosophila male-killing partitivirus, was found to encode a gene which favours
female selection by elimination of males [42]. These new findings indicate that male
killing by these viruses may be prevalent among insect species and could be potentially
utilised to suppress host population. This avenue could be explored for SFaPV in soldier
flies. In addition to the male-killing effect observed in Drosophila, other closely related
partiti-like viruses have been reported from the African armyworm, Spodoptera exempta
and S. frugiperda [37,38]. In S. frugiperda, these viruses had detrimental effects on larvae.
Subsequently, these viruses were found to infect the Egyptian armyworm, Spodoptera
littoralis, leading to larval and pupal mortality [38].

The average assembly coverage of SFaPV is around 7, with between 73 and 296 RNA
reads mapped to this viral sequence (Table 1). This indicates that these viruses are among
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the less abundant SF viruses, characterised by low mapping coverage and small RAN
profile (Supplementary File S1).

3.5. Soldier Fly-Associated Toti-like Virus

Members of the five genera of the Totiviridae family have encapsidated 4.6–7 kb long
dsRNA genomes [43,44]. Totiviruses were traditionally associated with fungal hosts such
as Saccharomyces cerevisiae, as Saccharomyces cerevisiae virus L-A is the type species of the
Totivirus genus. In recent years, novel totiviruses have been detected in arthropods from
Europe [23], Australia [45,46], Asia [47] and South America [48]. Totiviruses have also been
detected in plants worldwide, notably in Australia [49], China [50] and Ecuador [51].

In this study, we detected two novel toti-like virus sequences tentatively named
SF-associated toti-like viruses (SFaTV). The assembled sequences for SFaTV-1 and SFaTV-2
were 5870 nt and 7153 nt long, respectively. Both SFaTV-1 and SFaTV-2 sequences contain
two ORFs (Figure 5a,b); the larger ORF (SFaTV-1: 1050 aa; SFaTV-2: 1487 aa) encodes for
the nucleocapsid and the smaller ORF (SFaTV-1: 840 aa; SFaTV-2: 715 aa) encodes for the
RdRp. The translation of SFaTV-1 ORFs involves -1 ribosomal frameshifting as previously
seen in totiviruses [43].

Based on BLASTp results, SFaTV-1 is most closely related to Bactrocera zonata toti-like
virus (UPT53760.1), while SFaTV-2 is most closely related to Zeugodacus cucurbitae toti-like
virus (UPT53705.1), both detected in fruit flies (Table 2). Interestingly, while both sequences
are grouped with insect-associated totivirus sequences, they did not cluster together in the
phylogenetic analysis, despite originating from the same samples (Figure 5c).

3.6. Soldier Fly-Associated Densovirus

Densoviruses are small, non-enveloped ssDNA viruses belonging to the sub-family
Densovirinae of family Parvoviridae which contains 11 genera [52,53]. Mosquito denso-
viruses belong to the Brevidensovirus and Ambidensovirus genera of the Densovirinae sub-
family and are known to exclusively infect invertebrates and to have the potential to be
lethal when actively replicating in the midgut of their mosquito hosts [54,55]. Mosquito
densoviruses have previously been used as a mosquito population management tool [56,57],
including in combination with Bacillus thuringenesis toxins [58] and as a larvicidal [59].
These strategies could be investigated to manage soldier fly larvae populations, as we have
detected a densovirus sequence in our soldier fly larvae-derived samples, named Soldier
fly-associated densovirus (SFaDV).

The 3616 nt long genome we obtained contained two ORFs (Figure 6a): ORF1 coding
for a 467 aa long non-structural protein (NS1, molecular weight 54.0 kDa and pI 9.23) and
ORF2 coding for a 358 aa long capsid protein (VP1). SFaDV NS1 contains the conserved
helicase of superfamily 3 domain, common to all Parvoviridae, and VP1 contains a phos-
pholipase A2-like domain often found on the N-terminal region of Parvovirus VP1 [60,61].
These findings satisfy the demarcation criteria to be included in the Parvoviridae family:
having a large coding region of a non-structural (NS1) protein containing an SF3 helicase
domain along with the coding region of a viral capsid (VP) protein [52].

In addition, according to BLASTp, the closest relatives of SFaDV are the two iteradenso-
viruses: Motacilla cinerea iteradensovirus (QTZ83188.1) detected in birds, and Helicoverpa
armigera densovirus (HaDV) detected in Lepidoptera (YP_004678721.1), depending on the
ORF (Table 2). Phylogenetic analyses of NS1 and VP1 cluster SFaDV with parvoviruses
detected in birds, such as Periparus ater Parvoviridae sp. (PaPV) (QTE03714.1) (Figure 7).
Identifying insect-specific viruses in insectivorous birds is a common occurrence. Despite
being isolated from the cloaca of birds, Motacilla cinerea iteradensovirus (QTZ83188.1)
and PaPV are more likely to be insect viruses. It has been hypothesised that these birds
potentially feed on infected fruit flies (Drosophila erecta), indicating that they are not likely
avian viruses [62]. However, further investigations are necessary to confirm host specificity
for this newly identified SFaDV.
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Figure 5. Genome organisation of SFaTV-1 (a) shows two overlapping ORFs encoding Nucleocapsid
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3.7. Virus-Derived Small RNA Profile

To generate a small RNA profile and analyse the length and position distributions
of small RNAs in the viral genome, a small RNA library was constructed from a pool
of 20 larvae. These larvae had previously undergone Total RNA-Seq analysis for virus
discovery. We explored the virus-derived small interfering RNAs (vsiRNAs) profile for
all solider fly new virus sequences (Figure 7 and Supplementary File S1). We retained
the small RNA reads from 18–31 nt after trimming the adapters, and size distributions
were generated.

The small interfering RNA of around 21 nt is created by the cleavage of viral RNA
by the RNase-III endonuclease Dicer-2. An RNA-induced silencing complex (RISC) is
formed by loading of the cleaved siRNA onto Argonaute-2 protein [63]. These vsiRNAs
are loaded into the RISC target RNA molecules through complementarity, reducing virus
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gene transcription and ultimately virus replication. This mechanism has previously been
described for many insect RNAs [23,64,65] and DNA viruses [4]. For most insect viruses,
the vsiRNAs display a sharp peak at 21 nt and are symmetrically distributed throughout
the viral genome [28,66]. This signifies a strong antiviral response by the host against all
regions of the viral genome, which in turn indicates active replication of virus in the insect
host [23].
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Figure 6. Genome organisation of SFaDV (a) showing two ORFs encoding NSP-1 and viral capsid
protein. For phylogenetic analysis of NS1 (b), the amino acid sequence of SFaDV (highlighted in red
and indicated with arrow) is shown along with aligned reference sequences. Maximum Likelihood
tree is constructed with 1000 bootstrap replicates and JTT substitution matrix with four gamma-
variable sites. The scale bar refers to the number of amino acid changes per site. Bootstrap support
values >50% are shown at the nodes.
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read distribution, read count on Y-axis is in millions.

The length distribution of the viral small RNA profile created by the soldier fly RNAi
pathway showed a prominent peak at 21 nt (proportionally higher compared to read count
at other lengths for the same virus) in SFaAV and SFaNV (Figure 7). Based on this, it can
be theorised that these viruses are actively replicating, thus triggering the host siRNA
pathway. The virus-derived small RNA profile for all segments of SFaOV (except the HA
segment) showed peaks at both 21 nt and the 26–29 nt range (Figure 7). Peaks at 26–29 nt
indicate the activity of piwi-interacting RNAs (piRNAs). Orthomyxoviruses are known to
elicit both siRNA and piRNA antiviral responses [28,67]. It is possible that the required
recognition and conformational changes for siRNA pathway activation did not occur in the
SFaOV hemagglutinin segment. This could be due to the low and uneven distribution of
the HA segment (Supplementary File S1), which needs to be investigated further. Generally,
piRNAs cleave some viruses in insect hosts, although their main function is silencing
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of transposons using the ping-pong pathway [68]. These piRNAs are primarily derived
from transposable elements (TEs). Given that the novel viruses exhibit piRNA activity,
it is possible that their genomes may complement those of the TEs that generate these
piRNAs. A report by Nigg et al., (2020) [68] shows EVEs derived from Diaphorina citri
densovirus (DcDV) produce piRNA which specifically target DcDV, a DNA virus, and no
other naturally infecting RNA viruses. However, exclusive piRNAs activity is observed
in both SFaDV (a DNA virus) and SFaPV (an RNA virus); this occurrence of EVE-derived
piRNA can also be studied for soldier fly viruses, especially for SFaPV, which shows very
low small RNA reads coverage (Supplementary File S1) and a partial genome.

Interestingly, the pattern of small RNA read distribution for the two newly identified
totiviruses differs. SFaTV-1 does not display the typical RNAi response profile with a peak
at 21 nt, unlike SFaTV-2, where RNA silencing is likely active (Figure 7). However, the
pattern of small RNA reads mapping to the entire viral genome in both of these totiviruses
does not exhibit a symmetric pattern. For example, more reads have been mapped to the
positive strand of SFaTV-1 and to the negative strand for SFaTV-2 (see Supplementary File
S1). The majority of total RNA reads used to assemble SFaTV-1 are derived from only one
library (Table 1), suggesting that this virus may not be highly prevalent in the population,
and the RNAi pathway may not be active against it. Additionally, it can be speculated that
there is piRNA activity against SFaTV-1, similar to that observed in the other dsRNA virus,
SFaPV. It has been previously reported that piRNA exhibits a coding strand bias [69], which
may account for the 25–27 nt peaks observed only in SFaTV-1 and not SFaTV-2. The total
assembly coverage for SFaTV-1 and SFaTV-2 is 10.69 and 15.11, respectively. High read
counts were recorded for SFaTV-2 in all control libraries (ranging from 1353 to 3725 reads),
while the total read count for samples subjected to starvation stress noticeably decreased
to a range of 403 to 776 reads (see Table 1). All these differences in their small RNA read
profiles can be correlated with the fact that they do not cluster together in the phylogenetic
tree. The distinct small RNA profiles observed for SFaTV-1 and SFaTV-2, as well as their
differing mapping patterns and phylogenetic relationships, emphasise the necessity for
further investigation to comprehend the complexity of viral interactions within the soldier
fly population.

4. Conclusions

The Inopus genus has been extensively studied for its significant impact on the sugar-
cane industry, but the mechanism of damage remains poorly understood. We investigated
the virome of larval salivary glands to identify any potential pathogenic plant viruses,
as we hypothesised that this damage may be linked to the transmission of plant viruses
during larval feeding. In this study, we did not identify any known pathogenic plant
viruses. However, we report the discovery of seven novel virus sequences belonging to
specific virus families Xinmoviridae, Parvoviridae, Narnaviridae, Partitiviridae, Totiviridae and
Orthomyxoviridae. The virus-derived small RNA reads profile show peaks at both 21 nt and
26–29 nt, implying an effective host RNAi response against a variety of viruses.

The sugarcane industry has yet to identify an effective method for controlling soldier
flies. However, in other agricultural sectors, viruses have been used as biocontrol agents
with notable success. Baculoviruses, in particular, have been applied successfully in many
agricultural settings, while there is optimism regarding the potential future use of denso-
viruses and partitiviruses in pest management. In this study, we were able to successfully
identify viruses with a potential for use as biocontrol agents in pest management of soldier
fly. Further research and continuous monitoring of the insect, plant and fungal virome can
aid in better understanding of complex co-evolutionary processes between viruses and
their insect hosts and help in designing effective control strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v16040516/s1, Supplementary file S1: The distribution of 21nt-long
viral-derived sRNA mapped back to the virus positive (Blue) and negative (Red) sense
nucleotide sequences.
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