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Abstract: Autophagy has emerged as an integral part of the antiviral innate immune defenses,
targeting viruses or their components for lysosomal degradation. Thus, successful viruses, like
pandemic human immunodeficiency virus 1 (HIV-1), evolved strategies to counteract or even exploit
autophagy for efficient replication. Here, we provide an overview of the intricate interplay between
autophagy and HIV-1. We discuss the impact of autophagy on HIV-1 replication and report in
detail how HIV-1 manipulates autophagy in infected cells and beyond. We also highlight tissue and
cell-type specifics in the interplay between autophagy and HIV-1. In addition, we weigh exogenous
modulation of autophagy as a putative double-edged sword against HIV-1 and discuss potential
implications for future antiretroviral therapy and curative approaches. Taken together, we consider
both antiviral and proviral roles of autophagy to illustrate the ambivalent role of autophagy in HIV-1
pathogenesis and therapy.
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1. Introduction
1.1. Regulation of Autophagy

Autophagy (coined from Greek: ‘auto’-self and ‘phagein’ eating) is an evolution-
ary highly conserved homeostatic and intricately regulated cytoplasmic catabolic path-
way [1–3]. There are three modes of autophagy: macroautophagy, microautophagy and
chaperone-mediated autophagy. The most common mode, macroautophagy (hereafter
called autophagy), is characterized by the formation of cytosolic double-membrane vesi-
cles (autophagic vesicle = autophagosome) that engulf cargo in the cytoplasm [4]. While
originally discovered as a nonselective bulk degradation pathway, it is now established
that autophagy can also target cargoes in a highly specific manner (‘selective autophagy’)
via dedicated autophagy receptors, such as Sequestosome-1 (SQSTM1/p62) that recruit
cargo earmarked, e.g., by ubiquitin [2]. As a stress response, autophagy is activated upon
extra- or intracellular stress, such as starvation, elevated temperature, osmotic pressure
or pathogen infection (Figure 1) [2,5]. A dedicated set of kinases controls the level of
autophagic flux, i.e., the turnover rate of autophagy. For example, activation of the stress
sensor 5′ AMP-activated protein kinase (AMPK) comprised of α-, β- and γ-subunits leads
to the phosphorylation and activation of the Unc-like kinase 1 complex (ULK1) consisting
of ULK1, Autophagy related (ATG) 13L, FAK family kinase-interacting protein of 200 kDa
(FIP200) and ATG101 [6]. Negative regulation is provided by two mechanistic targets of
rapamycin (mTOR) complexes (mTORC1 and mTORC2) or the heterotetrameric Casein
kinase II (CSNK2) complex (CSNK2α, CSNK2α′ and two CSNK2β subunits) that inhibit the
activity of the ULK1 complex [7,8]. The active ULK1 complex in turn stimulates the Class
III phosphatidylinositol 3-kinase (PI3KC3) complex I, comprised of Beclin-1, ATG14, the
kinase Vacuolar protein sorting (Vps) 34 and membrane-anchoring Vps15 [9]. The activity
of this complex results in a locally elevated production of Phosphatidylinositol 3-phosphate
(PI3P), which in turn recruits WD-repeat protein interacting with phosphoinositides (WIPI)
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proteins and Double FYVE-containing protein 1 (DFCP1), which is required especially for
selective autophagy [10,11]. Next, a double-layer membrane, the so-called phagophore, is
assembled in an ATG9-dependent manner with lipids mainly derived from the endoplas-
mic reticulum (ER) [12,13]. ATG8 proteins like GABA type A receptor-associated proteins
(GABARAP) or Microtubule-associated protein 1 light chain 3 (MAP1BLC3) isoforms (short
LC3A, LC3B, and LC3C) undergo ubiquitin-like modification during phagophore elonga-
tion [14]. For example, LC3 proteins are proteolytically processed by ATG4 to generate
LC3-I. Then, in a ubiquitin-like conjugation process, Phosphatidylethanolamine (PE) is co-
valently attached to LC3-I forming LC3-II. Here, ATG7 serves as an E1-like enzyme, ATG3
acts as the E2-like enzyme and the ATG5–ATG12–ATG16L1 complex represents the E3-
ligase-like protein ligase [15,16]. LC3-II is then inserted into the phagophore and earmarked
cargo is recruited via selective autophagy receptors (SARs) such as Neighbor of BRCA1
gene 1 (NBR1), Optineurin (OPTN) or SQSTM1/p62 [17,18]. In precision autophagy, target
recognition is achieved independent of protein tags and directly recognized and recruited
by specific receptors, e.g., Tripartite motif (TRIM) proteins [19–22]. During maturation, the
phagophore closes to form a double-membrane vesicle called the autophagosome. The tran-
sition of cytoplasmic LC3 (LC3-I) into its PE-conjugated version (LC3-II), which decorates
phagophores and autophagosomes, is a hallmark of autophagy [23]. Subsequently, fusion
of the autophagosome with a lysosome to form the autophagolysosome is promoted by the
PI3KC3 complex II, consisting of Beclin-1, UV radiation resistance-associated gene protein
(UVRAG), Vps34 and Vps15, several small Ras-associated binding (RAB) GTPases, Soluble
N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins (e.g.,
Syntaxin-17 (STX17), Synaptosomal-associated protein 29 (SNAP29), Vesicle-associated
membrane protein 7/8 (VAMP7/8)) and the Homotypic fusion and protein sorting (HOPS)
complex [24,25]. Subsequently, the cargo, the autophagy receptors and inner membranes
are destroyed by lysosomal hydrolase at low pH, and the debris are eventually recycled
as nutrients for the cell [2]. Due to its pivotal role in the turnover of damaged, misfolded
or obsolete proteins or organelles, autophagy is central to cellular homeostasis. Thus, it is
no surprise that dysfunction of autophagy is associated with a wide variety of diseases,
including cancer, neurodegenerative disorders and infectious diseases [5,26–30].
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Figure 1. Schematic overview of the autophagy pathway. (Left panel) Upon autophagy induction
AMPK activates ULK1. Negative regulation is provided by the mTORC1/2 and Casein kinase
II complexes. The activation of the PI3KC3 complex I promotes PI3P production at the endoplasmic
reticulum. PI3P assembles WIPI proteins and DFCP1 to promote initial phagophore formation.
To the phagophore, cytoplasmic cargo is recruited via selective autophagy receptors (SARs). LC3 is
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proteolytically cleaved by ATG4 to form LC3-I. A ubiquitin-like conjugation process mediated by
ATG 7, ATG3 and ATG5-ATG12-ATG16L1 attaches phosphatidylethanolamine (PE) to LC3-I to
generate LC3-II, which decorates the inner and outer membrane the phagophore. The phagophore
matures into the double-membrane vesicle termed the autophagosome. Mediated by RAB proteins,
SNARE proteins, the PI3KC3 complex II and the HOPS complex, the autophagosome fuses with
a lysosome, forming the autophagolysosome and leading to the degradation of the cargo, inner
membrane and SARs. Green arrows indicate positive stimulation; red arrows indicate negative
regulation. (Right panel) Core proteins of the complexes involved in autophagy.

Selective autophagy has an important role in targeting invading viruses as xenophagy,
a type of selective macroautophagy/autophagy that is used for eliminating invading
pathogens. Thus, autophagy is currently considered an integral part of the antiviral cell-
intrinsic innate immune defenses [30–32]. Pathogens, such as viruses, bacteria, fungi and
parasites or their components are recognized by SARs and targeted for lysosomal degra-
dation, thereby removing them from the cell [17,30,32–35]. In addition to its immediate
antiviral roles, autophagy is also known to promote recognition of viruses and activation
of other parts of the immune system [5]. For example, by exposing pathogen-associated
molecular patterns to pattern recognition receptors (PRRs), such as Toll-like receptor 7
located in the late endosomes, autophagy may facilitate sensing viruses [36,37]. In addition,
peptides generated from viral components upon autophagic digestion are presented on
antigen-presenting cells to promote antiviral adaptive immunity [38].

In summary, autophagy has emerged as a central player in innate immunity. Due
to this role, autophagy has been recognized as an integral defense mechanism against
viruses, including pandemic viruses, such as the severe acute respiratory syndrome virus 2
(SARS-CoV-2) and the human immunodeficiency virus 1 (HIV-1) [39–41].

1.2. Molecular Biology of HIV-1

HIV-1 is the causative agent of the acquired immune deficiency syndrome (AIDS)
pandemic [42,43]. HIV-1 originated from simian immunodeficiency viruses (SIVs) that were
introduced to the human population by several zoonotic transmission events throughout
the early 1900s [44]. Since the 1980s, HIV-1 has infected more than 75 million people
worldwide with approximately 39 million individuals currently (2022) living with the
infection [45]. In vivo, HIV-1 mainly infects CD4+ T cells and macrophages [46]. After an
acute phase of the infection, HIV-1 becomes latent in a fraction of usually long-lived CD4+
T cells, establishing a reservoir that has the proviral DNA HIV-1 genome integrated into
the host cell genome [47–49]. HIV-1 is one of the species of the genus Lentivirus and the
family of Retroviridae. The enveloped viral particle houses two identical copies of the
~10 kB positive sense RNA genome, which is packaged and protected by the nucleocapsid
protein (NP). In addition, it is associated with the viral reverse transcriptase, the integrase
and the protease. The cone-shaped capsid is assembled of p24 capsid protein subunits and
further protects the viral proteins and genome. The virion membrane envelope presents a
surprisingly low number of about 7–11 viral glycoprotein (gp) trimers (Env) made up of
gp120 and gp41 [46]. To infect the target cells, Env binds to the receptor of HIV-1, CD4, and
the co-receptors CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4),
defining the tropism of HIV-1 for CD4+ T-cells and macrophages. After Env-mediated
fusion between the viral and cellular membranes, the cone-shaped capsid is released into
the cytoplasm. Within the cone, reverse transcription of the viral single-stranded RNA
genome into linear double-stranded DNA takes place and the whole structure is imported
into the nucleus via nuclear pores and disassembled. Together with cellular co-factors, the
viral integrase and the proviral DNA form the pre-integration complex, and the proviral
DNA is eventually integrated into the host genome, preferably in chromosomal regions that
are actively transcribed [50,51]. After integration, the host-encoded machinery mediates
transcription of the HIV-1 mRNAs and their subsequent translation into the viral proteins.
The integrated provirus is flanked at each side by Long Terminal Repeats (LTR) serving as
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regulatory elements and promoters and codes for three larger polyproteins (Group-specific
antigens, Gag; Polymerase, Pol; Envelope, Env), two regulatory proteins (Tans-activator of
transcription, Tat and Regulator of expression of virion proteins, Rev) and four accessory
proteins (Viral infectivity factor, Vif; Viral protein R, Vpr; Viral protein U, Vpu and Negative
factor, Nef) (Figure 2). The Gag and Gag-Pol polyproteins are encoded by the full-length
HIV-1 RNA, whereas Env as well as the regulatory and accessory proteins result from the
translation of various subgenomic viral mRNAs.
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Figure 2. Schematic depiction of the genome of HIV-1. Group-specific antigens, gag. Polymerase, pol.
Envelope, env. Viral infectivity factor, vif. Viral protein R, vpr. Viral protein U, vpu. Negative factor,
nef. Regulator of expression of virion proteins, rev. Trans-activator of transcription, tat.

The main function of the accessory proteins is to manipulate the cellular environment
to favor HIV-1 replication and promote immune evasion [52]. For example, Vif promotes
the degradation of the host restriction factor Apolipoprotein B mRNA editing enzyme
catalytic polypeptide-like 3G (APOBEC3G); Vpu reduces Nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) signaling, modulates DNA repair and facilitates viral
release from infected cells by downregulating the restriction factor Tetherin; Vpr promotes
infection of macrophages and manipulates the cell cycle; and Nef ensures T cell activation
and downregulates CD4 surface expression [53–61]. The regulatory protein Tat promotes
the expression of the viral genes and genome, and Rev facilitates the nuclear export of
intron-containing viral mRNAs, including the full-length RNA genome. The structural
polyproteins Gag, Pol and Env, as well as the viral genome, assemble at the plasma
membrane, and immature HIV-1 virions are released. The polyproteins are autocatalytically
processed after budding of the virion, and the particles mature into fully infectious HIV-1
(For a more comprehensive overview see [62,63]).

Current antiretroviral therapy (ART) has transformed HIV-1 infection from a death
sentence into a manageable chronic condition. However, the latent HIV-1 reservoirs are
not eliminated by current ART regimens [64]. Thus, life-long treatment is still necessary.
Due to the high mutational variability of HIV-1, drug resistant strains of HIV-1 may readily
emerge [65]. Thus, combinations of drugs targeting various steps of the viral replication
cycle need to be used in combination [66]. Of note, using drugs targeting cellular virus
dependency factors would lower the possibility of drug-resistant strains emerging [67].
However, as seen for maraviroc, which targets the host CCR5 co-receptor, resistance may
still evolve in rare cases [68].

Several approaches that target the latent reservoir have been proposed. For example,
the so called “shock/kick and kill” strategy relies on latency reversing agents to push
HIV-1 out of hiding. Reactivated HIV-1 is then targeted for elimination, e.g., by immune
mechanisms [69–72]. Alternatively, a “block and lock” approach has been proposed [70,73]
that strives to permanently silence the integrated provirus locking it in the latent reservoir.
However, both strategies face obstacles such as the efficiency of latency reversal or “locking”
agents, treatment-induced side-effects and the need to eliminate virus-producing cells and
are thus still at early stages of development [70,72]. Of note, the “block and lock” approach
would still require life-long treatment.

To inspire novel curative treatments and complement ART but also to understand
the pathology and life cycle of HIV-1 better, it is crucial to understand its interplay with
antiviral innate immunity, such as autophagy.
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2. The Interplay between Autophagy and HIV-1

As part of the cell-intrinsic antiviral defense mechanism, autophagy is induced
upon HIV-1 infection [74,75]. Viral proteins such as Tat [76–79], Vpr [80] and p17 [81]
were reported to trigger autophagy (Table 1, Figure 3a). Viral particles as well as viral
proteins such as Vif [82,83], Gag [83,84] and Tat [85,86] are targeted by autophagy for
lysosomal degradation.

For instance, the host factor Histone deacetylase 6 (HDAC6) forms a complex with
APOBEC3G and promotes the autophagic-mediated clearance of Vif by binding Vif through
its C-terminal Binder of the ubiquitin zinc finger (BUZ) domain [82,83]. Moreover, HDAC6
was shown to promote autophagic degradation of HIV-1 polyprotein p55/Gag [83,84].
The Transactive response DNA binding protein 43 kDa (TDP-43) was recently reported
to stabilize HDAC6 expression and thereby support the HDAC6-mediated autophagic
degradation of Vif and Gag [84]. Another restriction factor that functions as a selective
autophagy receptor is the E3-ubiquitin ligase TRIM5α. Binding of TRIM5α to HIV-1 capsid
protein Gag p24 induces autophagy, facilitating the recruitment of major components of
the autophagic machinery such as ULK-1, Beclin-1, LC3 and p62. Eventually, this leads
to autophagic degradation of the HIV-1 capsid [20]. Studies by Sagnier et al. indicate
that autophagy targets HIV-1 Tat for lysosomal degradation by ubiquitin-independent
interaction with the autophagy receptor p62 in CD4+ T cells [85]. However, more recently,
it was also proposed that p62 binds and targets Tat marked with K63-polyubiquitination
via the ubiquitin interaction domain for lysosomal degradation [86]. Besides the selective
degradation of viral components from the cytosol and the resulting restriction of HIV-1
virion production, autophagy promotes further immune responses. Innate immune re-
sponses are promoted by the exposure of pathogen-associated molecular patterns (PAMPs)
during autophagy. In addition, adaptive immune responses benefit from the processing
of viral antigens by autophagy and presentation on Major histocompatibility complex
class II (MHC-II) molecules [87–89] (Figure 3a). However, it is not known yet whether au-
tophagy promotes PRR-mediated recognition of HIV-1 or whether HIV-1 derived peptides
are presented in an autophagy-dependent manner on antigen presenting cells.

Increasing evidence indicates a complex role of autophagy in HIV-1 infection, suggest-
ing modulation and manipulation of autophagy by HIV-1 on multiple levels. Depending
on the cell type and the phase of infection, autophagy was proposed to exert a pro- or
antiviral impact on viral spread [30,90]. Almost all HIV-1 proteins have been reported to
impact autophagy (Table 1, Figure 3b). However, Nef has emerged as the major negative
regulator/antagonist of autophagy. Nef is a multifunctional protein that counteracts au-
tophagy by inhibiting early as well as late steps of autophagy in several ways. For instance,
Nef recruits the E3 ubiquitin ligase Parkin (PRKN) to increase monoubiquitination of B-cell
lymphoma 2 (BCL2) in CD4+ T cells. In its post-transcriptionally modified form, BCL2
strongly associates with Beclin-1 and thus inhibits the PI3KC3 complex I, which prevents
autophagy initiation [91,92]. Moreover, Nef was shown to directly associate with Beclin-1
and promote mTOR activation and sequestration of pro-autophagic Transcription factor EB
(TFEB) in the cytosol of macrophages [93]. Further studies by Chang et al. showed, that Nef
additionally suppresses the autophagic maturation process in CD4+ T cells by inhibiting
PI3KC3 complex II [94]. Structural studies revealed that Nef mimics the class III PtdIns3K
complex II-binding domain (PIKBD) of Rubicon (RUBCN), an inhibitor of Beclin-1 [94].
Besides PI3KC3 complex II, the fusion of autophagosomes and lysosomes requires a com-
plex of SNARE proteins consisting of STX17, SNAP29 and VAMP7 or VAMP8 [95]. The
Immunity-related GTPase family M (IRGM) protein contributes to the assembly of SNAREs
by recruiting STX17 [96]. However, it has previously been reported that Nef interacts with
IRGM, leading to increased autophagosome levels [97]. In addition, Kumar and colleagues
suggested that Nef interferes with STX17-IRGM interaction in macrophages, indicating
an additional way by which Nef counteracts autophagic maturation [96]. Another essen-
tial function of Nef is the targeting of the host restriction factor HDAC6 for degradation,
thereby protecting p55Gag and Vif from HDAC6-induced autophagic clearance [83].
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Figure 3. The interplay between autophagy and HIV-1 proteins. (a), Autophagy conveys the degra-
dation of virions and viral proteins. For example, TRIM5α targets p24, Tat is degraded via p62
and HDAC6 targets the HIV-1 proteins Vif and p55 for autophagic clearance. Degradation of viri-
ons/viral components by autophagy provides PAMPs triggering PRR-dependent innate immune
activation. Viral antigens are processed via autophagy and loaded on MHC-II molecules. (b), HIV-1
proteins such as Vpr, Tat and p17 trigger autophagy in infected cells. Env as well as Tat modulates
autophagy in bystander cells. Tat induces autophagy via mediator PKM2-mTOR-AMPK. Vpr blocks
FOXO3-mediated transcription of autophagy genes. Nef inhibits the pro-autophagic TFEB, promotes
activation of BCL2, targets HDAC6 for degradation, inactivates the PI3KC3 complex II and interferes
with STX17-mediated fusion of autophagosomes with lysosomes. Gag associates with LC3-II to assist
its processing. Vpr triggers the degradation of SNAPIN. Tat inhibits autophagic maturation by inter-
acting with LAMP2. Vpu mediates Tetherin restriction and promotes HIV-1 budding. Green arrows
indicate positive stimulation; red arrows indicate negative regulation; Red crosses indicate inhibition.
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Besides Nef, the other accessory proteins of HIV-1 (Vpr, Vif, Vpu) were also reported
to modulate autophagy. For instance, after HIV-1 entry, virion-associated Vpr triggers
the degradation of the transcription factor Forkhead box protein O3a (FOXO3a) via the
ubiquitin-proteasome pathway resulting in decreased transcription of essential autophagy
proteins such as LC3 and Beclin-1 and the BCL2-interacting protein 3 (BNIP3) in CD4+ T
cells [98]. Phosphorylation of FOXO3 by AMPK was reported to promote nuclear translo-
cation of FOXO3 and lead to the upregulation of those autophagy-involved genes [98,99].
In addition, Vpr also hinders the late stage of autophagy by triggering the depletion
of the Synaptosome associated protein (SNAP)-associated protein (SNAPIN), a regula-
tor of lysosomal acidification [100]. Vpr increases the pH in lysosomes and prevents
autophagy-mediated degradation in neurons [101]. By targeting autophagosome forma-
tion, Vif associates with LC3 in CD4+ T cells independently of the presence of APOBEC3G
and inhibits autophagy [102]. Little is known about the impact of Vpu on the autophagy
process. Recently, it was proposed that the selective interaction of Vpu with LC3C in
concert with ATG5 and Beclin-1 mediates the removal of the restriction factor Tetherin
from budding sites [103]. The expression of the putative HIV-1 antisense protein (ASP) was
reported to stimulate autophagy in monocytes and other cell lines. It was suggested that
the cysteine-rich amino region of ASP mediates its multimer formation and subsequent
autophagy induction [104,105].

Of note, even the regulatory (Tat and Rev) as well as the structural proteins of HIV-1
(Gag, Pol and Env) modulate autophagy. As one of the early expressed proteins after HIV-1
infection, Tat blocks Interferon (IFN)-γ-induced autophagy in macrophages by inhibiting
the phosphorylation of Signal transducer and activator of transcription-1 (STAT1), result-
ing in decreased IFN-γ-induced expression of the autophagy gene LC3 and decreased
autophagosome levels [106]. Tat was also found to colocalize with autophagosome and
lysosome markers. This led to increased autophagosome but decreased LC3-II and p62
levels in neurons indicating enhanced autophagic degradation. The interaction of Tat with
Lysosome-associated membrane protein (LAMP2) was proposed to enhance autophago-
some and lysosome fusion to alter autophagic degradation [107]. Studies in TZM-bl cells
showed that Tat can further inhibit autophagy through activation of mTOR and suppressing
AMPK via the upregulation of the mediator Pyruvate kinase M2 (PKM2) [108]. Notably,
Tat can be secreted by infected cells [109], pass the blood-brain barrier [110] and enter
non-permissive cells like neurons via endocytosis [111]. The exposure of Tat to rodent
neurons or microglial cells inhibited autophagic degradation in those cells leading to neu-
ronal cell death and activation of microglial cells [112,113]. Thus, the impact of Tat on
autophagy in cells of the central nervous system may contribute to the development of
HIV-1 associated neurocognitive disorders (HAND), which is a significant clinical problem
despite administration of combination ART [114]. Autophagy initiation was reported to
promote optimal Gag processing [115]. Along these lines, Gag-derived proteins were found
to colocalize and interact with the autophagy marker LC3 in macrophages [115]. Of note,
Env was proposed to trigger autophagy in bystander macrophages and accumulation of
Beclin-1 in bystander CD4+ T lymphocytes [116]. Env bystander autophagy was shown to
be dependent on CXCR4 and speculated to contribute to T cell death, a hallmark of HIV-1
pathogenesis [116]. Finally, Env was proposed to inhibit autophagy in infected dendritic
cells by activation of mTOR [117].

Table 1. Interplay between HIV-1 proteins and autophagy.

Viral Protein Targeted by Autophagy Impact on Autophagy

Gag

HDAC6-mediated autophagic degradation of
p55 in transfected HEK293T [83,84].
Degradation of p24 by autophagy in a
TRIM5α-dependent manner in rhesus CD4+ T
cells and Langerhans cells [20,118].

• Association with LC3 and promotion of Gag
processing via autophagy in macrophages [115].

• Autophagy activation by p17 in lymph node-derived
lymphatic endothelial cells [81].
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Table 1. Cont.

Viral Protein Targeted by Autophagy Impact on Autophagy

Vif HDAC6-mediated autophagic degradation in
transfected HEK293T [82,84].

• Inhibition of autophagy by interaction with LC3 in
CD4+ T cells [102].

Vpr

• Autophagy activation in transfected macrophages [80].
• Inhibition of autophagic maturation by inducing

SNAPIN degradation in neurons [101].
• Inhibition of autophagic nucleation by inducing

FOXO3a degradation in CD4+ T cells [80,98].

Tat Degradation in a p62-dependent manner in CD4+
T cells, potentially ubiquitin dependent [85,86].

• Activation of autophagy in astrocytes, glial cells,
microglial cells and endothelial cells [76–79].

• Modulation of autophagic maturation by association
with LAMP2 in neurons [107].

• Inhibition of IFN-γ mediated autophagy in
macrophages [106].

• Inhibition of autophagy by activating mTOR in
TZM-bl [108].

• Inhibition of late steps of autophagy and triggering cell
death in rat neurons [112].

• Inhibition of mitophagy in mouse microglia [113].
• Activation of autophagy in bystander cells via the

AKT-STAT3 axis [119].

Vpu • Exploits components of the autophagic machinery to
mediate Tetherin restriction [103].

Env
• Activates autophagy in non-infected bystander CD4+

T cells [85,116,120].
• Activation of mTOR in infected dendritic cells [117].

Nef

• Inhibition of autophagy nucleation by inducing
ubiquitination of BCL2 in CD4+ T cells [91,92].

• Inhibition of autophagic nucleation by inducing
sequestration of TFEB in macrophages [93].

• Inhibition of autophagic maturation by mimicking the
class III PtdIns3K complex II-binding domain (PIKBD)
of RUBCN, an inhibitor of Beclin-1 in CD4+ T cells [94].

• Autophagic degradation of HDAC6 in Nef transfected
HEK293T [83].

• Inhibition of autophagic maturation by interference
with STX17-IRGM interaction in macrophages [97].

ASP • Autophagy induction in infected cells [104,105].

3. Cell-Type-Specific Effects

The main target cells of HIV-1 are CD4+ T cells and (to a lesser extent) macrophages [121].
In both of these cell types, autophagy—besides its role in the innate defenses—plays essen-
tial homeostatic functions. For example, autophagic flux is required for T-cell activation
and differentiation and macrophage differentiation (Figure 4) [122–127]. In infected CD4+ T
cells, autophagy has mainly antiviral roles, and activation of autophagy leads to decreased
viral replication, e.g., selectively degrading Tat (Figure 4) [85,115,120]. Similarly, inhibition
of autophagy in dendritic cells promotes HIV-1 replication, enhanced HIV-1 transfer to
CD4+ T cells and decreased MHC-II mediated HIV-1 antigen presentation to CD4+ T
cells [117]. In contrast, in infected glial cells and macrophages, autophagy seems to be
induced by HIV-1 to sustain cell survival [76,80] and was shown to be required for efficient
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HIV-1 production [115,120]. Here, Gag colocalizes with autophagosomes and it has been
suggested that autophagy is required for optimal processing [115,120].
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Figure 4. The proposed cell-type-specific role of autophagy in HIV-1 infection. In CD4+ T cells,
infection initiates a mainly antiviral autophagy response, which contributes to cell death of the
infected cells. Released Env triggers autophagy in bystander CD4+ T cells, causing apoptosis. In
infected macrophages, autophagy is activated and promotes HIV-1 replication. Secreted Tat modulates
autophagy in bystander macrophages.

Importantly, HIV-1 also modulates autophagy in a cell-type-specific manner not only
in the infected but also in bystander cells. Bystander autophagy induction by Env was sug-
gested to promote apoptosis in CD4+ T cells and may contribute to the loss of (bystander)
CD4+ T cells [85,116,120]. Of note, it was reported that Env-mediated bystander autophagy
is selective for CD4+ T cells [116,120,128,129]. In macrophages, bystander autophagy was
reported to be activated by Tat through AKT-STAT3 signaling [119]. Interestingly, despite
activating bystander autophagy, macrophages do not appear to be significantly depleted
during the course of an HIV-1 infection, unlike CD4+ T cells [130].

Altogether, emerging evidence suggests that autophagy may affect HIV-1 differen-
tially in both types of its main physiological target cells [90,120,130]. Whereas in T cells,
autophagy is predominantly antiviral, in macrophages autophagy seems to have a dual
role: it is required for optimal virus production/infectivity but degradation of the particle
by autophagic turnover needs to be avoided [90]. However, more research is needed to
dissect the cell-type and tissue-specific interplay of autophagy and HIV-1.

4. Autophagy Modulation as an Antiviral Approach

Considering the role of autophagy as part of the innate immune defenses, but also
as viral dependency mechanism, both therapeutic activation and inhibition of autophagy
may have an antiviral impact. Thus, targeting autophagy has been suggested to act as a
double-edged sword against viruses [30]. Therapeutic modulation of autophagy can be
achieved by a variety of compounds [131]. For example, the naturally occurring rapamycin,
which was isolated from Streptomyces hygroscopicus, inhibits mTORC1 and thus induces
autophagic flux [132,133]. Artificial analogs of rapamycin, such as temsirolimus (CCI-779),
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everolimus (RAD-001) and deforolimus (AP-23573), use the same targeting strategy [134].
To achieve a more stringent inhibition of the mTOR complex, i.e., targeting of both the
mTORC1 and mTORC2 subunit, ATP-competitive mTOR inhibitors (e.g., PP242, AZD8055,
WYE132) and the dual PI3K-mTOR inhibitor NVP-BEZ235 were developed [135]. Trehalose,
a naturally occurring sugar, was shown to induce autophagy in an mTOR-dependent and
mTOR-independent fashion by TFEB activation [136]. Metformin, an antidiabetic drug,
targets and inhibits AMPK upstream of the mTOR complex [137]. While compounds
activating autophagy are mainly limited to the AMPK-mTOR axis, autophagy inhibition
can be achieved by a wider variety of drugs. Early stages of autophagy are inhibited by 3-
methyadenine (3-MA), Wortmannin, LY294002 and PIK-III, while late stages are suppressed
by chloroquine (CQ), hydroxychloroquine (HCQ), or bafilomycin A1 that prevent fusion
of autophagosomes with the lysosomes. 3-MA, wortmannin, LY294002 and PIK-III all
target the class III PI3K (Vps34), whereas bafilomycin A1 and chloroquine prevent the
acidification of lysosomal compartment and/or formation of autophagolysosomes [138,139].
In addition, the ‘specific and potent autophagy inhibitor 1′ (Spautin-1) binds to ubiquitin-
specific peptidases (USP) 10 and 13 and promotes the ubiquitin-mediated degradation
of Beclin-1 [140].

Therapeutic modulation of autophagy has been extensively explored in cancer therapy [29].
However, activation of autophagic flux, e.g., by mTOR inhibitors as a monotherapy, has
turned out to be of limited efficacy. Combinatorial therapy with cytotoxic chemotherapy or
radiation therapy was shown to have a promising impact in vitro. Inhibition of autophagy
may promote cell death of highly proliferating tissue, thus enhancing tumor cell death
and complementing existing cytotoxic chemotherapy. Currently, several phase I/II trials
evaluate the combination of HCQ with cytotoxic drugs in patients with brain, lung, breast,
colorectal, pancreas, kidney and prostate cancers [29,141]. While already approved in
cancer therapy, there are currently no antiviral therapies based on autophagy modulation.

In vitro studies showed that despite inhibition of autophagy by several viral pro-
teins, pharmacological activation of autophagy can overcome these antagonists leading
to the autophagic-degradation of HIV-1 capsid proteins and a decrease in virion release
through an ATG5- and autophagy-dependent mechanism [142,143]. For example, HIV-1
is restricted by rapamycin-induced autophagy in ex vivo cultures [144]. Other mTOR
inhibitors like vorinostat, panobinostat, givinostat and romidepsin and the non-histone
chromatin modulating Bromodomain and extra terminal (BET) inhibitor JQ1, dactolisib
(NVP-BEZ235), and SF2523 were reported to decrease both intracellular and extracellu-
lar HIV-1 capsid protein in an autophagy-dependent manner [142,145,146]. Induction of
autophagy by an artificial Tat-Beclin-1 derived peptide restricts HIV-1 replication in an
autophagy-dependent manner [143]. The autophagy inducer trehalose was reported to
induce degradation of intracellular HIV-1 capsid proteins and an autophagy-dependent
reduction in HIV-1 release [147]. In addition, Second mitochondria-derived activator of
caspase (SMAC) mimetics were shown to promote autophagy-dependent apoptosis of HIV-
1-infected macrophages [148]. Recently, miRAB40, an autophagy-inducing miRNA upregu-
lated by Interleukin-27 was suggested to restrict HIV-1 via regulation of autophagy [149].
Similarly a non-silencing miRNA directed against HIV-1 Gag was suggested to induce
autophagic degradation of the virion [150]. Specific autophagy-related factors involved
in HIV-1 replication can also be therapeutically targeted. For example, it was suggested
that engineered HIV-1 restricting rhesus monkey TRIM5α could be introduced in gene
therapeutic approaches due to their ability to directly target components of HIV-1 for
autophagic degradation via precision autophagy [151,152]. Finally, activation of autophagy
is thought to not only limit the replication of HIV-1 but also prevent the initial infection. It
was reported that autophagy-enhancing drugs limit mucosal HIV-1 acquisition and sup-
press viral replication ex vivo [153]. Thus, autophagy activating compounds such as mTOR
inhibitors could be used as agents to complement ART. However, the in vitro efficiency as
well as the specificity of currently available drugs to modulate autophagy does not (yet)
match currently available HIV-1 therapeutics.
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However, the biggest challenges in HIV-1 therapy is the elimination of the latent
reservoir to achieve a cure. As autophagy does not impact transcriptionally latent HIV-1,
all strategies explored so far only target actively replicating or incoming HIV-1. However,
it has been suggested that autophagy modulation may complement strategies to target the
reservoir, thereby enhancing their efficiency [142]. A lipid-coated hybrid poly(lactic-co-
glycolic acid) (PLGA) nanoparticle loaded with the Tat-Beclin-1 peptide was reported to
preferentially induce cell death of latently infected CD4+ T cells via autophagic-cell death
induction (autosis) [143,154,155]. Similarly, autosis of latently infected cells was induced by
nanoparticle-encapsulated v-FLIP-α2 peptide [155,156]. Modulation of autophagy may also
enhance ‘shock and kill’ approaches, where latently infected reservoirs are first reactivated
and then eliminated. It was shown that in combination with agents that promote latency
reversal, selective killing of reactivated T cells can be achieved by autophagy inhibition via
chloroquine or SAR405 [157,158].

In summary, various strategies that activate autophagy have been shown to restrict
the replication of HIV-1, and autophagy inhibition may complement current efforts that
target the latent reservoir.

5. Concluding Remarks

As part of the innate immune defenses, autophagy contributes to the restriction of
HIV-1 [41,130]. However, similar to other successful human pathogens, HIV-1 evolved strate-
gies to circumvent and even exploit autophagy. Nef can be considered the main autophagy
antagonist encoded by HIV-1, inhibiting both initiation and autophagy turnover [91,94]. No-
tably, Nef targets two seemingly similar complexes (PIKC3-Complex I and II), which also
share components. However, two different mechanisms are employed: Activity of PI3K-CI
is inhibited by activating the autophagy inhibitor Bcl-2 [91,92]. To prevent activation of
the PI3KC3-CII, Nef uses molecular mimicry, adopting a structure similar to RUBCN,
an inhibitor of Beclin-1 [94]. However, Nef is by far not the only protein of HIV-1 that
manipulates autophagy. All accessory proteins and most structural and regulatory proteins
were reported to impact autophagy using various mechanisms (Table 1). Thus, multilevel
control of autophagy seems of high importance for HIV-1.

While the impact of HIV-1 on autophagy may seem ambivalent and complex, it
involves two basic strategies: (I) Preventing autophagic turnover to avoid lysosomal
degradation of virions or viral components and (II) exploitation of parts of the autophagic
machinery responsible for membrane rearrangements and trafficking functions to promote
replication. For example, Nef inhibits autophagy to reduce the degradation of viral protein
products [82,94,96]. In contrast, Vpu utilizes the autophagic machinery to counteract
Tetherin [103], and in macrophages, autophagy is exploited for Gag processing [115]. This
approach—inhibiting the antiviral function and hijacking useful parts—is also reflected
in the seemingly ambiguous roles of some HIV-1 proteins in autophagy. For example, the
matrix protein p17 was reported to induce autophagy but also suppress autophagy [81].
Of note, dual roles of viral proteins in autophagy may also be partially explained by
cell-type-specific effects. However, this requires future research.

Considering the anti- and proviral roles of autophagy, it has been proposed that
both activation and inhibition of autophagy may restrict HIV-1 [30]. Despite encoding
multiple inhibitors of autophagy, induction of autophagy overwhelms viral antagonism
of autophagy [145,151]. The virus may be most vulnerable towards autophagy induction
especially during the early steps of the infection, before the de novo expression of accessory
proteins that modulate autophagy. In contrast, broad inhibition of autophagy was reported
to increase the infectivity of HIV-1 [115]. Thus, despite occasionally seemingly proviral roles
of autophagy, inhibition of autophagic flux is per se not antiviral. However, components
of the autophagic machinery that are exploited by HIV-1, i.e., host-dependency factors,
could identify so far unexplored targets for therapy [152]. It has been proposed that
modulation of autophagy may also aid cure strategies [64,142,158]. Indeed, host-directed
autophagy-inhibiting drugs were shown to increase autosis (autophagic cell death) [154].
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In combination with latency reversal agents, this may improve viral reservoir targeting
as part of the “shock and kill” approach [142]. However, curative approaches involving
autophagy still face major obstacles as the drugs would need to reach potentially isolated
latent reservoirs (e.g., the brain), the efficiency and specificity of latency-inducing agents
and selectively autosis-inducing treatments need to be substantially improved as well.

Of note, modulation of autophagy may augment and complement existing ART
regimes. However, it needs to be noted that current drugs to activate autophagy are
less efficient against HIV-1 than currently approved drugs, judging from in vitro data.
Furthermore, activation of autophagy by the currently available compounds is not selec-
tive for infected cells. In addition to a direct antiviral impact, activation of autophagy
may promote the formation and/or maintenance of B and T cells [123–125,159] enhanc-
ing humoral and cellular anti-HIV adaptive immune responses. In addition, autophagy
has anti-inflammatory properties [5] and may serve as an auxiliary therapy to combat
inflammation that is often a complication of ART [160]. There may be a caveat though.
As HIV-1 mainly infects and perturbs signaling in immune cells, additional exogenous
manipulation of autophagy may have an unexpected impact on organismal cytokine and
inflammation homeostasis.

It is likely that HIV-1 targets non-canonical autophagy as well, such as LC3-associated
phagocytosis (LAP) [4,127]. For example, Vpu recruits LC3C at the budding site to remove
Tetherin by a non-canonical autophagy reminiscent of LAP [103,161]. However, future re-
search is needed to understand and clearly dissect the roles of canonical and non-canonical
autophagy in HIV-1 replication.

Manipulation of autophagy as a host defense mechanism against HIV-1 may extend
beyond the infected cells [116,119]. Env-mediated autophagy induction in bystander
CD4+ T cells was suggested to contribute to bystander cell death, despite autophagy
being a pro-survival mechanism [116,120]. Nevertheless, it is tempting to speculate that
HIV-1-mediated bystander autophagy manipulation is part of the efforts to create a viral
replication niche, i.e., favorable conditions for local replication and spread. However, the
experimental evidence for this, as well as broader implications, are currently unexplored.

Are autophagy and HIV-1 friends or foes? Certainly, a bit of both, but rather rivals
than lovers caught in an evolutionary dance. Future research is clearly needed to unravel
the interplay between autophagy and HIV-1 to answer the remaining questions: Can
the differential impact of autophagy in macrophages and T-cells be dissected? What are
the precise molecular mechanisms and impact of bystander autophagy? Can autophagy
modulation be part of curative strategies or improved to augment ART? Exploring these
questions will certainly improve our understanding of the molecular pathogenesis of HIV-1
and may inspire novel therapeutic approaches based on autophagy modulation.
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