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Abstract: Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of
viruses while little is known about the capacity of New World insects to transmit viruses to humans.
Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids
(NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The
Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described
were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are
transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis
genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2,
we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived
from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements
targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of
NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World.
These EVEs are shared by different sandfly populations in South America while none of the Old
World species studied presented the insertions.
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1. Introduction

Leishmaniasis, caused by parasites of the genus Leishmania, is a serious public health
problem. Parasites are transmitted through the bite of infected sandflies and can cause
different disease manifestations. Among these visceral leishmaniasis (VL) diseases is the
most severe form of the disease that can lead to death in untreated cases [1]. In the New
World, VL is mostly caused by Leishmania infantum [2], which is transmitted by the sandfly
Lutzomyia longipalpis. Lutzomyia, the most important New World sandfly genus in terms of
species diversity and medical importance exhibits a wide distribution area covering South
and Central Americas [3–5].

Sandflies are mostly known for transmitting leishmaniasis but can also harbor and
transmit viruses [6]. Although in Europe, these insects of the genus Phebotomus represent
important viral vectors [7], little is known about sandfly-borne viruses in the Americas. One
example is the vesicular stomatitis virus, which infects humans and domestic animals and is
widely endemic in the New World [8]. There are reports on the isolation of arboviruses from
sandflies in several areas of the Amazon [9,10]. In sandflies collected from Brazil, Colombia
and Guatemala, five different new phleboviruses were isolated [11]. In 2020, through in
silico analyses and RT-PCR experiments, a mitovirus was identified in L. longipalpis [12].

One of the consequences of viral infections is the possibility of partial or total integration
of the viral genetic material into the host genome. Until the last decade, it was believed that
this ability was exclusive to retroviruses. Retroviruses have a genome made up of positive
single-stranded RNA, which, during the infectious process, retrotranscribes its genome into
complementary DNA (cDNA), which, through an integrase enzyme, is incorporated into the
genome of infected cells. These retroviral sequences inserted into the host genome are known
as endogenous retroviruses (ERVs). ERVs are very common in vertebrate genomes, making
up about 8% of the human genome [13]. In 2010, Horie et al. identified viral elements of non-
retroviral origin in the genome of several mammals. After that, the integration of different
viruses into the genome of several eukaryotes, including invertebrates and plants, was
shown [14–18]. In silico studies identified the presence of endogenous viral elements (EVEs)
in arthropods used as a model organism or of medical interest. These studies were carried
out on the mosquitoes Aedes aegypti, Culex quinquefasciatus, the tick Ixodes scapularis and the
sandflies L. longipalpis, Phlebotomus duboscqi and Sergentomyia sp. Showing the occurrence of
fragments of rhabdovirus and other viruses integrated into the genomes [19,20]. In a study
in which the genomes of 48 different arthropods were analyzed, researchers observed that
EVEs were widely present in these organisms. The majority came from the integration of
unclassified single-stranded RNA (ssRNA) viruses and viruses from the Rhabdoviradae and
Parvoviridae families, and most of these EVEs were located in piRNA clusters transcribing
piRNAs [21]. The EVEs can be considered fossils of viral infections that occurred in the
past, which somehow remained in the genome of their hosts and descendants over time.
The integration of exogenous viral sequences in the genome can be deleterious, neutral, or
positive to hosts. The viral sequences integrations in the germ line cells with deleterious
effect to the host may be lost in a single host generation and only slight deleterious, neutral
or advantageous insertions may expand to the host population. In this way, EVEs can be
used as an element of phylogenetic analysis between different populations [19]. Some of
these EVEs that have even been conserved and selected over long evolutionary timescales
can confer new essential functions to their hosts. This phenomenon is known as exaptation,
when a molecule or structure evolves to a different function than it was originally designed
for. Increasing evidence in insects shows that most EVEs are transcriptionally active and
produce small interfering RNA sequences (sRNAs) [22]. Although the exact function
of EVEs is so far unknown, some studies suggest that EVEs may interfere with virus
replication by producing PIWI-interacting RNA sequences (piRNAs) that recognize and
degrade viral RNA sequences through sequence complementarity [23,24]. The exaptative
process involving EVEs is exemplified in these cases by the change in the function of
sequences that were previously related to the expression of viral proteins and that have
now become part of the host’s immune system.
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In the present work, we detected two viral RNA sequences coding for rhabdoviral
nucleocapsid proteins in L. longipalpis LL5 cells’ exosomes and in adults from our colony
formed by insects collected in Jacobina, BA, Brazil. Posteriorly, we determined that these
viral sequences were not derived from virus infection but were the product of the transcrip-
tion of viral elements inserted in intron regions of two putative protein-coding genes in the
L. longipalpis genome, being classified as endogenous viral elements (EVEs). These EVEs
were named NcP1.1 and NcP2. A subsequent in silico analysis showed the existence of a
third viral insertion, located in the same intronic region where NcP1.1 was located. This
new EVE was called NcP1.2. Pre-processing of the small RNA library revealed that NcP1.1
and NcP1.2 presented a profile consistent with elements targeted by primary piRNAs and
therefore could play a role in sandfly immunity. This profile was not identified for NcP2.
We also investigated whether other sandfly populations and species in the New and Old
Worlds shared these EVEs. We observed that diverse sandflies from different regions of
South America shared these EVEs. None of the Phlebotomus species from the Old World
studied here showed such EVEs.

2. Methods
2.1. Sandflies

L. longipalpis from our colony, originally collected in Jacobina (Bahia, Brazil), were kept
in our insectary at 26 ◦C and fed on 70% sucrose solution ad libitum. Females were fed
on anesthetized hamsters when needed. Sandflies collected in the field were immediately
added to a TRIzol® reagent (Invitrogen®, Carlsbad, CA, USA) for processing. Sandflies
from the Old World were kept as described in [25].

2.2. Lutzomyia Longipalpis Cell Lines

LL-5 and embryonic cells originally isolated from L. longipalpis from Lapinha, MG,
BR, were maintained in L-15 medium (Sigma-Aldrich Co., Spruce Street, St. Louis, MO,
USA) supplemented with 10% fetal bovine serum (FBS) (Laborclin, Pinhais, Brazil) and
10% tryptose phosphate broth (TPB) at 28 ◦C.

2.3. RNA and DNA Extractions

RNA and DNA were extracted using the TRIzol® reagent (Invitrogen®, Carlsbad, CA,
USA), according to the manufacturer’s instructions. RNA was stored at −80 ◦C and DNA
at −20 ◦C.

2.4. cDNA Synthesis

After RNA extraction, a possible contamination with genomic DNA was verified
and, when present, the samples were treated with the RNA-free DNAse TURBO DNA-
free Kit (Ambion, Austin, TX, USA). cDNA was synthesized using the SuperScript® III
First-StrandSynthesis System kit (Invitrogen®, Carlsbad, CA, USA), according to the manu-
facturer’s recommendations.

2.5. Polymerase Chain Reactions (PCR)

Primers (Table 1) were designed using the Oligonucleotide-BLAST (NCBI-NIH) and
AmplifX programs, available at: https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (ac-
cessed on 30 March 2023) and https://amplifx.Software.informer.com/1.7/ (accessed on
30 March 2023), respectively. The detection of viral sequences in cDNA samples was per-
formed by conventional PCR reactions using the following conditions: initial denaturation
at 95 ◦C for 5 min, followed by 35 cycles of denaturation at 95 ◦C for 30 s, annealing at 56 ◦C
for 30 s and extension at 72 ◦C for 30 s, followed by an additional extension step of 5 min
at 72 ◦C. The DNA reactions were conducted with the following temperature conditions:
initial denaturation at 95 ◦C for 5 min followed by 35 cycles of denaturation at 95 ◦C for
45 s, annealing at 57 ◦C for 45 s and extension at 72 ◦C for 1 min and 30 s and then an
additional extension step of 5 min at 72 ◦C.

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://amplifx.Software.informer.com/1.7/
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Table 1. Primers employed in PCR assays.

Name Sequence Amplicon Length (nt)

Histone forward 5′ GAAAAGCAGGCAAACACTC 3′ 500 pb
Histone reverse 5′ GAAGGATGGGTGGAAAGG 3′

NcP1.1 forward 5′ GGAACCCCAGAACGATACAA 3′ 319 pb
NcP1.1 reverse 5′ GACAGAGGCACGCGAAGTAT 3′

NcP2 forward 5′ TTCGAAGTGTCGCTTGCAGCC3′ 415 pb
NcP2 reverse 5′ GCAACCCCAAACTCCTACAA 3′

2.6. Agarose Gel Electrophoresis

Samples amplified by PCR were submitted to electrophoresis in 1.5% agarose gels
in Tris-acetate-EDTA (TAE) buffer at 1× concentration containing 0.5 µg/mL of ethidium
bromide at 110 mV.

2.7. Bioinformatics Tools

The genomic insertions identified in L. longipalpis were investigated in silico using the
BLAST tool (Basic Local Alignment Search Tool—https://blast.ncbi.nlm.nih.gov/Blast.cgi
v. 2.13.0) with the NCBI databases, VIPR (VirusPathogenResearch—https://www.viprbrc.
org/brc/home.spg?decorator=vipr v. 3.34.11) and VectorBase (https://vectorbase.org/
vectorbase/app release 67). (https://www.ncbi.nlm.nih.gov/tools/vecscreen/ 22-May-
2017 build 10.0). Multiple sequence alignments, visualization, and analyses were performed
using the Jailview program (http://www.jalview.org/getdown/release/ v. 2.11.3.2).

2.8. Alignment

The nucleotide sequences of EVEs NcP1.1, NcP1.2 and NcP2 were submitted as
probe for homology searches using the BlastX tool (Basic Local Alignment Search Tool—
https://blast.ncbi.nlm.nih.gov/Blast.cgi v. 2.13.0) against the NCBI databases (National
Center for Biotechnology Information (Bethesda, MD, USA)) The EVE-deduced amino
sequences obtained in BlastX were aligned with nucleocapsid proteins from rhabdovirus
using the ClustalW v. 2.1 multiple alignment tool [26].

2.9. Evolutionary Analysis by Maximum Likelihood Method

The evolutionary history was inferred by using the maximum likelihood method
with a JTT matrix-based model [27]. The tree with the highest log likelihood (−1932.07) is
shown. Initial tree(s) for the heuristic search were obtained automatically by applying the
neighbor-join and BioNJ algorithms to a matrix of pairwise distances estimated using the
JTT model and then selecting the topology with superior log likelihood value. The tree was
drawn to scale, with branch lengths measured in the number of substitutions per site. This
analysis involved 11 amino acid sequences. There was a total of 96 positions in the final
dataset. Evolutionary analyses were conducted using MEGA11 v. 11.0.13 [28].

2.10. Small RNA Analysis

Public L. longipalpis small RNA libraries were downloaded from NCBI SRA database
and the reads merged into one single file to increase depth. Pre-processing of the resultant
RNA library was performed as described [29]. Briefly, raw sequences were submitted to
quality filters and adaptor removal. Sequences with low Phred quality (<20), ambiguous
nucleotides and/or a length shorter than 15 nt were eliminated. Pre-processed reads
were aligned against reference sequences using the Bowtie program (v1.1) [30] accepting
1 mismatch. The putative Rhabdovirus sequences were compared against the reference
genome of the L. longipalpis reference genome, (Jacobina strain, version J1.2) downloaded
from the VectorBase website (www.vectorbase.com, accessed on 14 April 2022) using BLAST
software v. 2.12.0 [31] in its BlastN variation requiring e-value < 1 × 10−5. The analysis
of the small RNA size profile, 5′ base preference, density of coverage, and additional data
analysis were evaluated using in-house Perl and R scripts.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://vectorbase.org/vectorbase/app
https://vectorbase.org/vectorbase/app
https://www.ncbi.nlm.nih.gov/tools/vecscreen/
http://www.jalview.org/getdown/release/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
www.vectorbase.com
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3. Results
3.1. Determination of the Origin of RNA Sequences Coding for Viral Proteins in Exosomal Fraction
of LL5 Cells

In previous work, nucleic acid sequencing was performed on an exosomal pellet
from L. longipalpis LL5 embryonic cells. After alignments with databases, two partial RNA
coding sequences showing similarity to rhabdovirus nucleocapsid proteins with 477 and
459 nucleotides were identified and named NcP1.1 and NcP2, respectively (Figure S1).

The presence of RNA fragments coding for rhabdoviral nucleocapsid proteins in the
exosomal fraction of LL5 cells raised the question regarding their origin. These sequences
could be derived from an exogenous viral infection or from viral insertions in the insect
genome. Since members of the Rhabdoviridae family are negative single-stranded RNA
viruses, whose genome is never in the form of DNA, we performed PCR assays, using
DNA and cDNA samples from LL5 cells as templates to answer this question (Figure 1).
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Figure 1. PCR assays to amplify the NcP1.1 sequence using cDNA (A) and DNA (B) from LL5 cell
line as templates.

Both templates were positive, revealing that the sequences were derived from the
transcription of viral elements inserted in the genome of LL5 cells. These results were
confirmed by the analysis of the L. longipalpis genome data deposited on the Vector Base
and NCBI database sites using the BlastN tool v. 2.13.0.

3.2. Genomic Context of NcP1.1 and NcP2 in the L. longipalpis Genome

BlastN using the NcP1.1 and NcP2 sequences as bait against the Vector Base L. longi-
palpis deposited genome confirmed the result obtained with the PCR experiments, showing
that both sequences were present in the genome and located in intronic regions of two
deduced protein-coding genes. The EVE NcP1.1 is located between the nucleotides 63,562
and 64,974 of the supercontig JH689452. This region is in the intron of the unannotated
putative protein-coding gene LLOJ001560. Surprisingly, the BlastP analysis of the deduced
amino acid sequence encoded by this gene against the NCBI data bank showed homology
and 35% of identity with the viral capsid protein from Nebet virus Seq ID: QRW425091.
Furthermore, the BlastX tool analysis of the region where NcP1.1 is located revealed the
existence of another EVE with 950 bp, with homology to viral nucleocapsid protein, in the
intron of this putative protein-coding gene, localized between nucleotides 62,442 and 61,493
of the supercontig JH689452. This new EVE was named NcP1.2. Interestingly, NcP1.1 and
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NcP1.2 present different transcriptional orientations (Figure 2). NcP2 was located between
the nucleotides 58,124 and 59,430 of the supercontig JH689584, an intronic region of the
deduced protein-coding gene LLOJ004474. The BlastP analysis of the deduced amino acid
sequence encoded by this gene revealed homology with the hrp65 protein, which is related
to the transport of RNA from the nucleus to the cytoplasm of the cell (Figure 2). In addition
to confirming the result obtained with the PCR assays and the identification of another viral
insertion in the genome (Ncp1.2), the analysis using the BlastN and BlastX tools against
the L. longipalpis genome deposited on the Vector Base website revealed that the sequences
NcP1.1 and NcP2 were larger than previously identified. Ncp1.1 and NcP2 went from 477
and 459 bp to 1413 and 1307 bp, respectively (Figure S1).
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Figure 2. Graphical representation of the insertion sites and transcriptional sense of the EVEs NcP1.1,
NcP1.2 and NcP2 in introns of L. longipalpis genes. (A)—Localization and sense of transcription of
EVEs NcP1.1 and NcP1.2 (hatched arrows) in the intron of gene LLOJ001560 (double-dashed line).
(B)—Localization and sense of transcription of EVE NcP2 (hatched arrow) in the intron of gene
LLOJ004474 (double-dashed line). The EVEs’ transcription orientation is represented by the hatched
arrows orientation. Black arrows represent the gene exons.

The BlastN analysis using the sequences of NcP1.1, NcP1.2 and NcP2 against the
nucleotide database deposited at NCBI showed that NcP1.1 and NcP1.2 presented 100% of
identity with the uncharacterized mRNA LOC129786293 and NcP2 showed 99% identity
with four gaps in 1311 nucleotides, with the L. longipalpis hrp65 protein (LOC129793427),
transcript variant X2 mRNA. This same analysis revealed that all three EVEs were located
on chromosome I of L. longipalpis isolate SR_M1_2022. These results confirm what we
observed experimentally about NcP1.1 and NcP2 and reveal that the EVE NcP1.2 is also
transcribed in L. longipalpis.

3.3. Multiple Alignment and Phylogenetic Analysis of EVE-Deduced Proteins sequences

The sequences of NcP1.1, Ncp1.2 and NcP2 were translated and aligned with nu-
cleocapsid protein sequences from various rhabdoviruses. The alignment suggested all
of them were sequences from different rhabdovirus infections since they aligned in the
same region of the deduced proteins. A phylogenetic analysis comparing the EVEs NcP1.1,
Ncp1.2 and NcP2 with nucleocapsid sequences from modern rhabdoviruses revealed that
NcP1.1 and NcP2 were evolutionarily closer to each other than to nucleocapsid from current
rhabdoviruses. NcP1.2 also showed little proximity to the other modern rhabdoviruses
(Figure 3).
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Figure 3. (A)—Alignment of deduced amino acids sequences of NcP1.1, NcP1.2 and NcP2 with other
rhabdovirus nucleocapsid proteins. Regions with a gray or black background indicate similar or
identical amino acids, respectively. (B)—Phylogenetic tree showing the relationship among these
EVE-deduced (black rhombus) amino acid sequences and nucleocapsid protein sequences from
rhabdoviruses.
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3.4. Molecular Characteristics of Small RNA Sequences Derived from Rhabdoviral Sequences

It has been shown that the small RNA profile works as a proxy to determine the origin
of the viral sequence [29–32]. Pre-processing of the small RNA library was performed
as described [29] to determine whether the sequences NcP1.1, Ncp1.2 and NcP2 had
characteristics of viral elements inserted into the genome. Sequences NcP1.1 and NcP1.2
presented a profile consistent with elements targeted by primary piRNAs (accumulation
of RNA sequences in between 24 and 29 nt derived for only one strand) while NcP2 was
restricted to a degradation profile (low abundance of small RNA sequences of different
lengths). In addition, the density of small RNA sequences along the sequences were
discontinuous, with hotspots in specific regions and coverage concentrated in one strand
(Figure 4). Thus, since they presented most of the canonical features presented by EVEs in
insects, they could be classified as endogenous elements.
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3.5. Distribution of Rhabdoviral Sequences in Sandfly Populations

We investigated whether the EVEs NcP1.1 and NcP2 and their transcripts, identified in
the genome of L. longipalpis from Jacobina, BA and LL5 cells from L. longipalpis from Lapinha,
MG, BR, are found in different populations of sandflies from the New and Old Word.

A total of 61 insect samples, 58 from South America (53 from Brazil, 2 from Argentina
and 1 from Colombia) were investigated (Figure 5). Five samples of different species from
the Old World were obtained from insectary colonies. Either DNA or RNA, or both were
extracted from these samples. Samples not analyzed were noted as not determined (ND).
We observed that the EVEs NcP1.1 and NcP2 had a wide distribution, being present and
transcribed by sandflies populations from all regions studied (Figure 6). We also found
that Old World insectary specimens from the genus Phlebotomous, Phlebotomous arabicus,
Phlebotomous argentipes, P. papatasi, Phlebotomous sergenti and Phlebotomous schwetzi, found in
nature in Africa, Asia and Europe, did not present these EVEs in their genomes.
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Figure 6. Determination of the presence and transcription of EVEs NcP1.1 and Ncp2 in sandflies from
different populations of South America and the Old World. Green dark grey represents a positive
result, while light gray indicates a negative result. ND means the experiment was not performed.
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4. Discussion

The discovery of two RNA sequences coding for rhabdoviral nucleocapsid proteins
present in the exosomal fraction of the L. longipalpis cell line LL5 and PCR assays using
DNA and cDNA from this cell line as templates led us to search for these EVEs in the L.
longipalpis genome. In silico analyses confirmed the presence of the sequences in the genome
and revealed the existence of a third viral insertion.

Most EVE sequences so far identified were related to rhabdoviral elements. These seem
to be widespread in eukaryotic genomes, since these rhabdoviral elements can be found in
the genomes of many plants, insects and mammals [19,33–36]. More than 180 rhabdovirus
sequences were identified in the genome of different animals, mainly in A. aegypti and I.
scapularis [19], coding for nucleoproteins, glycoproteins and RNA-dependent RNA poly-
merases. These EVEs were acquired through evolution and serve as a record of previous
viral infections. In silico studies showed that the L. longipalpis EVEs here identified were
inserted into intronic regions of two putative protein-coding genes. The genes LLOJ004474,
which codify for a homologous of hrp65 protein and the gene LLOJ001560, which, despite
having a eukaryotic gene structure, putatively codifies for a protein with homology to a
viral capsid. Intronic regions of protein-coding genes are transcribed together with exons
and are subsequently edited and removed from mature mRNAs. The insertion of EVEs
in these regions might be responsible for their transcription. The fact that the sequences
described here are transcribed suggests an exaptative process, as reported [19].

The role of EVEs has been the subject of speculation and most evidence points to their
participation in defense mechanisms. Their possible involvement in antiviral immunity has
been shown for A. aegypti [37], where the presence of viral sequences integrated into the host
genome limited the replication of the cognate virus. Recent evidence indicates that EVEs can
function as models for the biogenesis of RNAs that interact with PIWI (piRNAs), P-element-
induced wimpy in Drosophila. PIWI proteins are highly conserved RNA-binding proteins
belonging to the Argonaute/PIWI family involved in RNA interference mechanisms present
in many organisms [38]. The participation of piRNAs derived from EVEs in the innate
antiviral immune response in mosquitoes have been demonstrated [39,40].

In our case, the analysis of small RNA sequences revealed that the derived small RNA
profile from EVEs NcP1.1 and Ncp1.2 was similar to those observed for endogenous ele-
ments in different mosquitoes, such as A. aegypti, A. albopictus and C. quinquefasciatus [30,34].
They presented a profile consistent with elements targeted by primary piRNAs and a dis-
form coverage. However, differently from Aedes mosquitoes that present a strong 5′ U base
enrichment, L. longipalpis EVE-derived small RNA sequences did not show such enrich-
ment. The lack of enrichment could be a specificity of EVEs in this vector or a common
profile for L. longipalpis small RNAs, since the 5′ base enrichment was also absent in other
virus-derived sequences [41]. Interestingly, the two EVEs identified as possible sources of
piRNA production in L. longipalpis are located in an intron of a putative gene that codes for a
protein with homology to a viral capsid protein. More studies will be needed to determine if
this region of the L. longipalpis genome may be a mini-piRNA cluster. NcP2 transcripts were
restricted to the degradation profile, presenting a low abundance of small RNA sequences
of different lengths. An important observation regarding the EVEs studied in this work
is that, as seen in Figure 3, they are substantially divergent of any possible cognate exoge-
neous virus, casting doubts about the role of these elements in the regulation of cognate
viruses’ replication through sequence-dependent sRNA pathways. On the other hand, the
identification of transcripts originating from the EVEs NcP1.1 and NcP2 in the exosomes of
L. longipalpis LL5 cells is quite intriguing, given that, exosomes are subcellular vesicles of
endosomal origin that participate in cellular communication processes. Exosomes from L.
longipalpis LL5 cells were previously identified as involved in a nonspecific interferon-like
antiviral response from these cells [42].

None of the Old World representatives investigated presented these EVEs. In contrast,
we identified NcP1.1 and NcP2 insertions and transcriptions in many sandfly populations of
South America and observed an impressive widespread presence of these sequences across
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geographical and genetic boundaries. This fact suggests that the event or events that led
to the incorporation of these viral elements into the genome was exclusive to New World
sandflies. Among the sixty-one samples, thirty-four were positive for NcP1.1 and eleven
for NcP2, nine of which presented both EVEs, twenty-four only had EVE NcP1.1, and three
only NCP2. Regarding the transcription of these EVEs, we observed that twelve transcribed
NcP1.1, eleven transcribed NcP2, and nine transcribed both. Three only transcribed NcP1.1
and two only transcribed NcP2. Populations of L. longipalpis from Jacobina, BA, Lapinha,
MG, Serra da Tiririca, RJ and Bogotá, COL, and Psychodopygus davisi from four different cities
from Rondônia State carried and transcribed both EVEs. On the other hand, populations that
do not present any of these insertions were also identified. With the exception of Nyssomyia
umbratilis from Manacapuru, which had NcP1.1, but did not transcribe it, none of the
sandflies detected in Amazonas presented NcP1.1 or NcP2. Populations of L. longipalpis as
distant as Jacobina in northeastern Brazil and Bogotá in Colombia, approximately 4000 km
apart in a straight line, and P. davisi, a sandfly species population of Rondônia State, separated
approximately by 1800 km from Bogotá and 2600 km from Jacobina, share and transcribe
both EVEs. Interestingly, L. longipalis captured in Bogotá, Colombia possesses and transcribes
both EVEs, a fact that does not occur in sandflies from Amazonas but occurs with insects
from Rondônia, which is further from Bogotá than Manaus. Another interesting aspect is
the fact that the majority of specimens from the states of Amazonas and Pernambuco in the
north and northeast of Brazil, respectively, do not present these EVEs. Thus, regarding the
presence of NcP1.1, the sandflies from Amazonas, in the northern region of Brazil, are closer
to the insects from the State of Pernambuco, located in the northeast of Brazil, than to the
sandflies from the State of Rondônia, also located in the north of Brazil and much closer to
Amazonas. A higher genetic relation proximity between sandfly populations in the states of
Amazonas and Pernambuco was also observed in other sandfly population genetics studies
using other markers [43,44].

All this indicates an ancient viral insertion event was transmitted and maintained
throughout evolution. The fact that different species of sandflies from South America
and none of the Old World species possess the EVEs NcP1.1 and NcP2 suggest that the
infections that led to the introduction of these viral sequences into their respective genomes
probably affected the germ cells of sandflies from South America before the speciation
processes that led to the existence of some of the sandflies species. Mechanisms related to
selective environmental pressures could be responsible for the maintenance or elimination
of these viral sequences in the sandflies of the same species but from different populations.

Determining the real role of these EVEs in the biology of sand flies demands new and
in-depth studies.
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