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Abstract: In winter 2021–2022, H5N1 and H5N8 high-pathogenicity avian influenza (HPAI) viruses
(HPAIVs) caused serious outbreaks in Japan: 25 outbreaks of HPAI at poultry farms and 107 cases in
wild birds or in the environment. Phylogenetic analyses divided H5 HPAIVs isolated in Japan in the
winter of 2021–2022 into three groups—G2a, G2b, and G2d—which were disseminated at different
locations and times. Full-genome sequencing analyses of these HPAIVs revealed a strong relationship
of multiple genes between Japan and Siberia, suggesting that they arose from reassortment events
with avian influenza viruses (AIVs) in Siberia. The results emphasize the complex of dissemination
and reassortment events with the movement of migratory birds, and the importance of continual
monitoring of AIVs in Japan and Siberia for early alerts to the intrusion of HPAIVs.

Keywords: avian flu; high pathogenicity avian influenza virus; Japan; 2021/2022 season; phylogenetic
analysis

1. Introduction

The worldwide spread of H5 high-pathogenicity avian influenza (HPAI) viruses
(HPAIVs) has caused huge outbreaks and economic losses in poultry over the past few years
(World Organization for Animal Health: WOAH). Almost all recent H5 HPAIVs arose from
A/goose/Guangdong/1/1996_(H5N1) (Gs/Gd lineage), which was first detected in China
in 1996 [1,2] and evolved into multiple clades and subclades defined by hemagglutinin
(HA) genes [3]. H5 HPAIVs in clade 2.3.4.4 emerged in 2013–2014 and became dominant
among outbreaks worldwide [4]. In the evolution of this clade, N1 genes of the 2.3.4.4 H5
HPAIVs were replaced by various neuraminidase (NA) genes, such as N2, N3, N4, N5, N6,
N8, and N9 [5].

In Japan, the first outbreaks of influenza caused by Gs/Gd-lineage clade 2.5 H5N1
HPAIVs occurred in 2004 [6], and multiple introductions of various clades of H5Nx HPAIVs
were reported [7–15]. Clade 2.3.4.4b H5Nx HPAIVs were first reported in Japan in 2017 [16].
Japan experienced outbreaks caused by clade 2.3.4.4b H5N6 HPAIVs in winter 2017–2018,
simultaneous with those caused by the same subtypes in Europe, followed by the intrusion
of clade 2.3.4.4b H5N8 HPAIVs in the winter of 2020–2021 [17], which were further divided
into subclusters G1 (those that circulated in Europe in early 2020) and G2 (those that
circulated in Europe in late 2020) [18].

In 2021–2022 (July 2021–June 2022), numerous HPAI outbreaks caused by clade 2.3.4.4b
H5 HPAIVs occurred in Japan. In total, 25 cases in poultry were reported; this was the third
largest outbreak reported in Japan (following 84 cases in winter 2022–2023 and 52 in winter
2020–2021), and 1,890,000 birds were slaughtered to stamp it out
(https://www.maff.go.jp/j/syouan/douei/tori/r3_hpai_kokunai.html (accessed on 15
January 2024)). Phylogenetic analyses using the HA gene of representative Japanese isolates
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in 2021–2022 revealed that the viruses were descendants of H5 HPAIVs in the G2 cluster in
the winter of 2020–2021 and classified them into groups G2a, G2b, and G2d [19–22].

Here, we phylogenetically compared the full genomes of H5 HPAIVs that caused
all outbreaks and some of the cases in wild birds in Japan in 2021–2022. We inferred the
background of the dissemination of H5 HPAIVs in Japan, considering both the origins
of all genes of the Japanese H5 HPAIVs in the winter of 2021–2022 and the movement of
migratory birds.

2. Materials and Methods
2.1. Virus Isolation and Whole-Genome Sequencing

Tracheal or cloacal swabs collected at Japanese poultry farms with suspected HPAIV
infections were inoculated into embryonated chicken eggs for virus isolation at the diagnos-
tic laboratories of the livestock hygiene service centers in each farm’s prefecture. Allantoic
fluid inoculated with swab samples that showed HA activity against chicken red blood
cells and swab samples from dead wild birds in Hokkaido Prefecture were submitted to
the National Institute of Animal Health (Tsukuba, Japan) for diagnosis.

The whole genomes of the isolated viruses were obtained [17]. In brief, cDNA libraries
for next-generation sequencing were prepared with a NEBNext Ultra II RNA Library Prep
Kit for Illumina (New England Biolabs, Ipswich, MA, USA) and sequenced with a MiSeq
Reagent Kit v. 2 (Illumina, San Diego, CA, USA). Consensus sequences were generated
in CLC Genomics Workbench (v. 9.5.3, Qiagen, Hilden, Germany) and FluGAS software
(v. 2.2.5, World Fusion, Tokyo, Japan) [23]. The newly determined viral sequences have
been deposited in the GISAID database (http://platform.gisaid.org (accessed on 15 January
2024)) with the accession numbers listed in Table 1.

Table 1. Information on H5 HPAIVs isolated from poultries in this study.

Genotype Collection
Date Host Prefecture Area Subtype Representative isolate Accession No.

G2a 10/11/2021 chicken Akita Northern H5N8 A/chicken/Akita/1T/2021 EPI18720917
G2a 15/11/2021 chicken Kagoshima Kyushu H5N8 A/chicken/Kagoshima/B1C/2021 EPI18720919

G2b 13/11/2021 chicken Kagoshima Kyushu H5N1 A/chicken/Kagoshima/21A1T/2021 EPI18720695
G2b 17/11/2021 chicken Hyogo Western H5N1 A/chicken/Hyogo/1T/2021 EPI18720691
G2b 3/12/2021 chicken Kumamoto Kyushu H5N1 A/chicken/Kumamoto/21A4C/2021 EPI18720727
G2b 5/12/2021 chicken Chiba Central H5N1 A/chicken/Chiba/21A1T/2021 EPI18720718
G2b 7/12/2021 chicken Saitama Central H5N1 A/chicken/Saitama/21A2T/2021 EPI18720733
G2b 7/12/2021 chicken Hiroshima Western H5N1 A/chicken/Hiroshima/21A3T/2021 EPI18720753
G2b 12/12/2021 chicken Aomori Northern H5N1 A/chicken/Aomori/21A1T/2021 EPI18720743
G2b 31/12/2021 chicken Ehime Shikoku H5N1 A/chicken/Ehime/21A2C/2021 EPI18720767
G2b 4/1/2022 chicken Ehime Shikoku H5N1 A/chicken/Ehime/21B2T/2022 EPI18720769
G2b 4/1/2022 chicken Ehime Shikoku H5N1 A/chicken/Ehime/21C5T/2022 EPI18720778
G2b 13/1/2022 chicken Kagoshima Kyushu H5N1 A/chicken/Kagoshima/21C2T/2022 EPI18720780
G2b 19/1/2022 chicken Chiba Central H5N1 A/chicken/Chiba/21B2T/2022 EPI18720761
G2b 26/1/2022 duck Chiba Central H5N1 A/duck/Chiba/21C1T/2022 EPI18720794
G2b 13/5/2022 chicken Hokkaido Hokkaido H5N1 A/chicken/Hokkaido/21D1T/2022 EPI18720843

G2d 11/2/2022 chicken Iwate Northern H5N1 A/chicken/Iwate/21A1T/2022 EPI18720791
G2d 24/3/2022 chicken Miyagi Northern H5N1 A/chicken/Miyagi/21A11T/2022 EPI18720811
G2d 7/4/2022 chicken Aomori Northern H5N1 A/chicken/Aomori/21B3T/2022 EPI18720807
G2d 14/4/2022 chicken Aomori Northern H5N1 A/chicken/Aomori/21C14T/2022 EPI18720816
G2d 15/4/2022 chicken Hokkaido Hokkaido H5N1 A/chicken/Hokkaido/21A4T/2022 EPI18720826
G2d 16/4/2022 emu Hokkaido Hokkaido H5N1 A/emu/Hokkaido/21B11T/2022 EPI18720830
G2d 18/4/2022 chicken Akita Northern H5N1 A/chicken/Akita/21B1T/2022 EPI18720835
G2d 25/4/2022 emu Hokkaido Hokkaido H5N1 A/emu/Hokkaido/21C1T/2022 EPI18720866
G2d 11/5/2022 emu Iwate Northern H5N1 A/emu/Iwate/21B1T/2022 EPI18720867

2.2. Phylogenetic Analysis

In Japan in the winter of 2021–2022, a total of 132 HPAI reports were made, com-
prising 25 outbreaks at poultry farms and 107 positive identifications in wild birds or
in the environment. We used strains isolated from all 25 outbreaks at poultry farms

http://platform.gisaid.org
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and 32 detections in wild birds in Hokkaido, whose diagnosis is responsible in the Na-
tional Institute of Animal Health, for phylogenetic analysis. We downloaded the se-
quences of the avian influenza viruses (AIVs) from the NCBI (Influenza Virus Resource;
https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database)
and GISAID databases (accessed on 13 June 2022). The GISAID sequences were aligned
with those of AIVs stored at the National Institute of Animal Health in Japan in BioEdit
v. 7.2.5 [24] and MAFFT v. 7.490 [25] software. Removal of sequences with ambiguous
nucleotide bases left 100,361 sequences for genes for polymerase basic protein 2 (PB2),
98,773 for PB1, 103,136 for polymerase acidic protein (PA), 11,028 for H5, 105,489 for nucle-
oprotein (NP), 60,075 for N1, 5549 for N8, 108,555 for matrix protein (MP), and 109,352 for
nonstructural protein (NS) for the phylogenetic analyses. Maximum-likelihood trees based
on the aligned sequences were constructed in FastTree v. 2.1.10 software [26].

3. Results
3.1. Phylogenetic Analysis of Japanese H5 Isolates from the 2021–2022 Winter

Maximum likelihood analysis using the HA gene of the Japanese H5 HPAIVs isolated
in the winter of 2021–2022 placed the viruses in three clusters in clade 2.3.4.4b—G2a, G2b,
and G2d (Figure 1a)—which were previously named 20A, 20E, and 21E, respectively [21].
The average nucleotide sequence identity of the HPAIVs within a clade was >99.7%. That
between the HPAIVs in G2a and G2b was 98.6%, and that between both of those and G2d
was 97.9%.

G2a H5N8 HPAIVs isolated in November 2021 shared a common ancestor with
viruses that were isolated in Japan, Korea, and China in the 2020–2021 winter (December
2020–February 2021) (Figure 1b). While almost all strains in this cluster were identified as
H5N8, H5N6 isolates were also detected in humans in China during July to September
2021, implying the possibility of transmission from birds. G2a H5N8 HPAIVs were not
detected in the nine months following February 2020 and might thus have been retained in
the Asian continent and reintroduced into Japan in the 2021–2022 winter.

G2b H5N1 HPAIVs caused outbreaks from November 2021 to May 2022 (Figure 1c).
The H5 HA genes shared a common ancestor with European H5N8 HPAIVs in the 2020–2021
winter, and those of Japanese isolates were closely related to the H5N8 HPAIVs isolated in
the Novosibirsk region of Russia in August 2020 and May 2021.

G2d H5N1 HPAIVs caused outbreaks from February to May 2022 (Figure 1d). The H5
HA genes shared a common ancestor with European H5N1 HPAIVs in the 2021–2022 winter.
The H5 HA genes of Japanese and European G2d H5N1 HPAIVs branched from those of
H5N1 HPAIVs isolated in the Chelyabinsk, Novosibirsk, and Omsk regions of Russia during
August and September 2021 as well as an isolate from Bangladesh in December 2021.

3.2. Characteristics of the Outbreaks in Japan during 2021–2022

In Japan, 25 outbreaks due to H5N1 and H5N8 HPAIVs were reported across
12 prefectures between 10 November 2021 and 13 May 2022 (Table 1; Figure 2a). Around
the same time, 107 positive identifications in wild birds or in the environment were re-
ported across seven prefectures (Table S1). The three clusters of H5 HPAIVs isolated during
the 2021–2022 winter had different detection periods. G2a H5N8 HPAIVs caused only
two outbreaks, in Akita and Kagoshima, on 10 and 15 November, respectively, and none
have been detected in Japan since (Figure 2b). G2b H5N1 HPAIVs were first detected in
Kagoshima on 13 November and caused outbreaks throughout Japan (Table 1; Figure 2c).
With the exception of the one in Hokkaido, outbreaks caused by G2b H5N1 HPAIVs were
reported from November 2021 to January 2022. It is worth noting that the last case was
reported 3½ months after the others (Table 1). Outbreaks caused by G2d H5N1 HPAIVs
were reported in northern Honshu (Iwate, Miyagi, Aomori, and Akita) and Hokkaido
during February to May 2022 (Figure 2d). Out of nine cases caused by G2d H5N1 HPAIVs,
six were found in chickens and three in emus.

https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
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Figure 2. Geographic locations of prefectures where H5 HPAIVs were detected in Japan in the
2020–2021 winter. (a) Red, number of outbreaks; blue, number of detections in wild birds or in
the environment. (b–d) Outbreaks caused by (b) G2a (blue), (c) G2b (green), and (d) G2d (red)
H5 HPAIVs.

3.3. Gene Constellations of H5 HPAIVs Isolated in Japan in the 2021–2022 Winter

Phylogenetic analyses based on all RNA segments of the Japanese H5 HPAIVs revealed
that almost all HPAIVs had internal genes with the same relationship as the HA genes:
internal genes of the Japanese H5N8 HPAIVs formed a cluster with those of Asian and
Russian isolates in 2020–2021, those of G2b H5N1 HPAIVs formed a cluster with the H5N8
HPAIVs in the 2020–2021 winter, and those of G2d H5N1 HPAIVs formed a cluster with
the isolates that circulated in Europe in the 2021–2022 winter (Figures S1–S15, Table S2).
Exceptionally, G2b H5N1 HPAIVs that caused outbreaks in Ehime during late December
2021 to early January 2022 had PB1 genes that were phylogenetically distant from other
Japanese G2b H5N1 HPAIVs (Figures 3 and 4) but close to those of AIVs isolated in Siberia.
In addition, Japanese H5 HPAIVs had NA and internal genes that shared a common
ancestor with some non-H5 AIVs. N1 genes of Japanese G2b H5N1 HPAIVs were closely
related to that of the H1N1 AIV isolated in Novosibirsk in August 2020 (Figure 5), and
AIVs in Siberia had internal genes that were phylogenetically related to those of Japanese
G2b H5N1 HPAIVs (Figure 6).
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4. Discussion

In the winter of 2021–2022, three phylogenetically distinct types of H5 HPAIVs (G2a,
G2b, and G2d) intruded into Japan and caused serious outbreaks. Since the first case
of HPAI in Japan in 2004 [6], that of 2021–2022 was the longest (November 2021–May
2022). The migration of multiple groups of wild birds might have contributed to the
extended detection of H5 HPAIVs in 2021–2022. At the same time, at least two intrusions
of H5 HPAIVs contributed to the extended outbreak: G2a and G2b H5 HPAIVs intruded
around the start of November, and outbreaks caused by both were reported in northern and
southern Japan. G2d H5 HPAIVs started to be detected in February 2022, and they caused
outbreaks in limited areas in northern Japan. Along the East-Asia–Australian flyway
lap in Japan [27], wild birds are considered to migrate to Japan along four routes [28]:
the Kamchatka Peninsula—Kuril Islands, Sakhalin, Sea of Japan, and Korean Peninsula.
Thus, the dissemination of G2d H5 HPAIVs might correspond to the flyways through the
Kamchatka Peninsula—Kuril Islands and Sakhalin, resulting in their limited distribution.
G2b H5 HPAIV caused an outbreak in Hokkaido in May 2022 after no detection for 3½
months. Spring movement northward via Hokkaido to Siberia might also contribute to the
dissemination of viruses, resulting in the outbreak in spring.

Detection periods differed among clades: G2a H5 HPAIVs were detected only in
November, but the other two were detected over 3 months. These differences might
be due to the number of wild birds that are immunologically susceptible to G2a H5
HPAIVs. Phylogenetic analyses revealed that G2a H5 HPAIVs caused outbreaks in Asia in
2020–2021 [17,29–31] and were reintroduced in 2021–2022, while G2b and G2d H5 HPAIVs
were detected for the first time in 2021–2022. These results imply that the migratory birds
coming into Japan may have become more resistant to G2a H5 HPAIVs through previous
exposure, resulting in the prevalent circulation of G2b and G2d H5 HPAIVs in 2021–2022.
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Further studies on antibodies and the higher prevalence of individual H5 HPAIVs among
wild birds are needed to assess this explanation.

Several genes of H5 HPAIVs detected in Japan in 2021–2022 were phylogenetically
related to those of the non-H5 AIVs in wild birds, indicating that they emerged through
reassortment with AIVs. Notably, AIVs detected in Siberia had genes that were phylogenet-
ically closely related to those of Japanese isolates (Figures 4 and 5). These results suggest
that the reassortment events happen in migratory birds in Siberia, the summer breeding
range, and that the H5 HPAIVs are disseminated through southward migration, as reported
previously [32,33].

G2d H5 HPAIVs caused outbreaks on poultry farms in northern Japan, including three
emu farms. Full-genome analyses revealed that the G2d H5 HPAIVs isolated from emus
had lysine (K) at position 627 in the PB2 segment while isolates from chickens had glutamic
acid (E) at that position in the present study. The substitution E627K enhances replication
and the pathogenicity of H5 HPAIVs in mammalian hosts [34,35], and the amino acid at
position 627 in PB2 is reportedly exclusively glutamic acid in bird isolates and lysine in
human isolates [36,37]. Internal tissues and organs of emus co-express α-2,3 and α-2,6 sialic
acid receptors [38]. In the present study, emus are sensitive to avian-origin H5 HPAIVs
and selected viruses with the substitution E627K in PB2, which can enhance replication
in mammalian hosts, whereas our emu isolates had no substitutions that are deduced to
increase the preference for α-2,6 sialic acid receptors. These results suggest that emus
contribute to the emergence of new viruses with pandemic potential in humans. Further
experiments to test host range and replication activity in cells are needed.

In summary, phylogenetic analyses revealed that H5 HPAIVs of three H5 HA geno-
types caused influenza outbreaks in Japan during the 2021–2022 winter, each with a different
mode of dissemination. Full-genome sequencing analyses revealed a strong relationship
between viruses from Japan and Siberia, suggesting that the HPAIVs arose from reassort-
ment events with AIVs in Siberia. Our results emphasize the complex of dissemination
and reassortment events of HPAIVs with the movement of migratory birds and the impor-
tance of continual monitoring of AIVs in Japan and Siberia for early alerts to the intrusion
of HPAIVs.
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