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Abstract: Most plants have developed unique mechanisms to cope with harsh environmental condi-
tions to compensate for their lack of mobility. A key part of their coping mechanisms is the synthesis
of secondary metabolites. In addition to their role in plants’ defense against pathogens, they also
possess therapeutic properties against diseases, and their use by humans predates written history.
Viruses are a unique class of submicroscopic agents, incapable of independent existence outside
a living host. Pathogenic viruses continue to pose a significant threat to global health, leading to
innumerable fatalities on a yearly basis. The use of medicinal plants as a natural source of antiviral
agents has been widely reported in literature in the past decades. Metabolomics is a powerful research
tool for the identification of plant metabolites with antiviral potentials. It can be used to isolate
compounds with antiviral capacities in plants and study the biosynthetic pathways involved in viral
disease progression. This review discusses the use of medicinal plants as antiviral agents, with a
special focus on the metabolomics evidence supporting their efficacy. Suggestions are made for the
optimization of various metabolomics methods of characterizing the bioactive compounds in plants
and subsequently understanding the mechanisms of their operation.
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1. Introduction

The continuous emergence of viral diseases as a major challengeto global health warrants
an intensified effort from a combined team of researchers and healthcare professionals. Con-
tinuous or regularly occurring pathogenic viral infections of pandemic proportions account
for millions of deaths annually [1]. Although the development of conventional antiviral drugs
is a significant stride toward curbing this trend, in the last decade, limitations have become
increasingly conspicuous. The limitations include issues such as drug resistance [2], a narrow
spectrum of efficacy [3], costs [4], and adverse side effects [5]. This has led to a resurgence
of interest in the exploration of alternative treatment modalities from health stakeholders.
Numerous chemical compounds found in natural sources are exclusive to plants, microbes,
and marine life [6]. They provide important leads for drug discoveries and can potentially
contribute to antiviral treatment/drug development [7–9]. Compounds derived from nat-
ural sources play a crucial role in drug discovery and the development of new antiviral
treatments [7,10]. Medicinal plants have emerged as a promising frontier in the search for
innovative antiviral therapies [11].

Throughout history, different cultures have sought healing in the potency of plants
for the alleviation of pain and diseases. Their use in traditional medicine systems globally
underscores their potential as a source of valuable antiviral compounds.

Plants respond to biotic and abiotic stress by synthesizing a large array of secondary
metabolites with complex chemical combinations [12–14]. Although numerous studies
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have reported the activities and potentials of plants against viruses [15,16], it is important
to validate traditional remedies through clinical trials [17,18].

The application of advanced analytical techniques to modern scientific research
presents an opportunity for the exploration of plant-based compounds for their thera-
peutic effects. Metabolomics has emerged as an indispensable tool for the identification
of different classes of antiviral secondary metabolites from plants over the last decade.
These include various flavonoids, terpenoids, alkaloids, and polyphenols, each of which
exhibit various therapeutic effects during different stages of the viral cycle (e.g., viral attach-
ment, entry, viral replication, and release) [19]. These identified antiviral plant metabolites
account for about a quarter of all drugs developed and used today [20,21].

The interplay between medicinal plants, viral infections, and metabolomics offers a
multifaceted view of the potentials inherent in plants for the development of new antiviral
therapeutics. This review highlights the role of metabolomics in the discovery and devel-
opment of new antiviral bioactive compounds from medicinal plants. It also identifies
the obvious gaps in current knowledge and offers comprehensive suggestions to future
research directions.

2. Overview of Viral Infections

Viruses have been part of life since time immemorial. They are the smallest known
agents of human infections, with a diameter that ranges between 20–200 nanometers [22].
Viruses are ubiquitous and can be found in animals, plants, humans, and other living organ-
isms. All viruses are referred to as obligate intracellular pathogens since they cannot com-
plete their life cycle without a living host [23]. Many of them are benign, non-pathogenic,
and can even save lives. Bacteriophages, for instance, have been used as natural predators
for therapeutic purposes, either exclusively in cases of failed conventional antibiotic ther-
apy or in conjunction with antibiotics with satisfactory outcomes [24–26]. Some, however,
do contribute to a considerable number of infections in humans [27,28]. Viral infections
present a significant public health concern. Over the last few decades, many new viruses
have emerged, with a significant number of them having deleterious effects on human
health [29]. There are reportedly 26 virus families implicated in human diseases, with each
exhibiting a different genomic structure, physiochemical properties, molecular processes,
and morphology [30].

Viral infections are diverse and include: (1) sexually transmitted infections, including
hepatitis B, HIV, herpes simplex virus (HSV), and human papillomavirus (HPV); (2) gas-
trointestinal infections, which lead to gastroenteritis caused by noroviruses, rotaviruses,
adenoviruses, and sapoviruses; (3) zoonotic infections, caused by viruses that can be hosted
by both animals and humans, e.g., Ebola, rabies, and hantaviruses; (4) hepatic infections,
which can result in hepatitis, e.g., hepatitis A, B, C, D, and E and others including yel-
low fever and the Epstein-Barr virus; (5) Respiratory infections such as the common cold
(caused by rhinoviruses), flu (caused by influenza viruses), COVID-19 (caused by the
SARS-CoV-2 virus), and the respiratory syncytial virus (RSV) [30–32].

The most common of these viral diseases are those that affect the respiratory sys-
tem [33]. A collaboration between researchers from several institutions and countries
reported that respiratory diseases were the third leading cause of death worldwide be-
tween the years 1990 and 2019, beneath only cancer and cardiovascular diseases [34]. The
influenza virus, which is the causative agent for the acute respiratory infection seasonal
flu, remains one of the biggest threats to public health according to the World Health
Organization (WHO). The organization gave an estimate of 290,000–650,000 flu-related
deaths annually [35]. SARS-CoV-2 accounted for at least 14.9 million deaths directly or
indirectly at the height of COVID-19 pandemic (between the years 2020 and 2021) according
to WHO [36].

Viral infections are risk factors for other medical conditions, since they have the
potential to weaken the immune system and induce an inflammatory response from the host
cell [29,37]. Recent studies confirmed that oncogenic viruses implicated in the development
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of some cancers account for about 10% of all global cancer burden [38], and may also
be responsible for long-term persistent infections [39]. Viral infections can also result in
secondary bacterial infections, a condition in which infected patients are predisposed to
health complications from bacterial sources due to a weakened immune system [40–42]. In
the past, cardiovascular diseases have also been linked to viral infections [43]. In 1932, [44]
reported that the peak period of an influenza pandemic in the United States was in direct
proportion to an increase in heart diseases. Also, in the wake of the COVID-19 pandemic,
there were many reports of heightened cases of cardiovascular diseases linked to the
SARS-CoV-2 virus [45,46].

The unique nature of viruses and their ability to rapidly mutate, leading to an emerging
pathogenesis and drug resistance, makes the current range of therapeutic and prophylactic
options available for treating viral infections increasingly smaller [2,47–49]. Plants have
been used for centuries as part of traditional medicine in the treatment of a variety of
diseases, including various viral infections. Since the first attempt to screen over 200 plants
for anti-influenza activity some seven decades ago [50], many additional studies have
shown the vast potential of an enormous array of various medicinal plants across diverse
geographical locations. Plants display antiviral activities and potentials for antiviral drug
development, which can be used as a standalone treatment or as complementary therapeutic
agents to conventional antiviral medicines [51–56].

Metabolomics, which is the study of all metabolites present in a biological system at a
given time, has become a valuable tool for the identification and quantification of possible
new therapeutic compounds from plants. A combination of techniques including Nuclear
Magnetic Resonance (NMR) and advanced hyphenated mass spectrometry, are now central
to metabolomics studies and are routinely applied to new biomarker identification.

3. A Brief History of the Use of Medicinal Plants against Viral Infections

Medicinal plant use against a variety of viral infections across various cultures dates to
the dawn of human civilization. Traditional Chinese medicine, the Eber papyrus of Ancient
Egypt, and the Ayurveda of India are among the oldest cultures practicing medicinal plant
use with well documented manuscripts available for such [57–59]. Ancient traditional
Chinese medicine has a history of about 3000 years or more. Writings based on this practice
describing the use of plants for healing purposes are among the oldest medical writings of
any culture [60]. Examples of plants used to treat viral infections in ancient China include
ephedra (Ephedra sinica) for the treatment of the common cold [61], Andrographis paniculata
for treating coughs, colds, and influenza [62], Camellia sinensis (green tea) which has
confirmed efficacy against herpes, hepatitis B and C, and Epstein-Barr viruses [63–65]. The
Egyptian papyrus contains descriptions of plant and natural product preparations against
a plethora of diseases, including various viral infections [66]. One of the plants discussed is
garlic (Allium sativum) [67], used for the treatment of respiratory catarrh, influenza, and
recurring colds [68]. Echinacea (Echinacea purpurea), also described in the papyrus, has
been reported to have efficacy against respiratory viral infections [69]. Ayurveda, a natural
system of medicine with historical roots in India dating back three millennia, describes the
plants Aegle marmelos, Ficus religiosa, and Azadirachta indica, among others, to have efficacy
against a variety of viruses [57,70–72]. European herbal medicine and traditional African
medicine also have long histories of using plants to combat various illnesses, including
viral infections. Elderberry (Sambucus nigra), for instance, has been used in Europe for
many years as a remedy for colds and flu [73], while plants like Sutherlandia frutescens and
Artemisia afra, native to Africa, have reported potency against various viral infections [74,75].
The last few decades have seen a resurgence in the use of medicinal plants as an alternative
source of treatments for various viral infections [76]. This is due in part to the rise in the
prevalence of viral infections and growing concern about antibiotic resistance [2,77].
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4. Mechanism of Actions of Antiviral Secondary Metabolites in Medicinal Plants

Plants’ secondary metabolites are organic compounds that are not directly involved
in the growth, development, or reproduction of the plants. They are produced as a sur-
vival strategy against adverse conditions in the surrounding environment and to carry
out important physiological tasks [12]. There are various criteria used in determining the
classification of secondary metabolites in plants. and include chemical structure, composi-
tion of constituent elements, and how soluble they are in water or organic solvents. The
most commonly accepted criterion however is their biosynthetic pathway [78]. Based on
these pathways, three classes of secondary metabolites have been identified in medicinal
plants: (1) alkaloids, (2) terpenoids and (3) phenolic compounds [79]. Each exhibits different
phytochemical constituents and pharmacological effects against various viral agents [78,80].
Commonly reported mechanisms of action of plant-derived secondary metabolites against
viruses include: (1) virus entry attachment [81,82], (2) inhibition of viral replication [19,80],
(3) protein synthesis inhibition [83–85], (4) modulation of the host’s immune system [86],
(5) modulation of cellular signaling pathways [87], and (6) direct virucidal activity [87,88].

4.1. Phenolics

Phenolic compounds are a diverse group of plant-derived organic molecules struc-
turally characterized by at least one phenol group. They are the most widely distributed
secondary metabolites in plants [89] and are synthesized as an adaptive response to un-
favorable conditions [90]. Phenols are commonly found in all plant organs and are rich
constituents of fruits, vegetables, beverages, cereals, and legumes [91]. Some well-known
phenolic compounds with reported antiviral activities include flavonoids, tannins, and phe-
nolic acids [92–94]. The specific mechanism of action of phenols against viruses depends
on the type of phenolic compound and the virus targeted.

Phenols are well-known to inhibit viral infection of a target host cell in a variety of
ways [95–99], including the disruption of the virus lipid bilayer envelopes [100,101] and
preventing viral attachment to the host cell [97,102]. Furthermore, the inhibition of various
viral protein activities results in the disruption of the viral life cycle, which ultimately
prevents the multiplication and release of the virus [85,102,103].

Various phenols have also been shown to interfere with viral replication by binding
to and subsequently inactivating various viral proteins or enzymes, and subsequently
halt disease progression in the host cells [102,104,105]. Specific examples of compounds
reported to interfere with viral replication include the tannin epigallocatechin-3-gallate
(EGCG), a catechin derived from green tea [106]. EGCG demonstrates inhibition of the M2
protein of the influenza A virus by increasing IFN-λ2 expression in human lung epithelial
BEAS-2B cells through the p38 mitogen-activated protein kinase signaling pathway [107].
EGCG has also been reported to inhibit the binding of HIV-1 envelope glycoprotein gp120
to the glycoprotein CD4 receptor found on an immune cell’s surface [108,109]. Four
flavonoids, namely quercetin, baicalein, myricetin, and quercetagetin, have also previously
been reported to inhibit HIV-1 enzyme reverse transcriptase and cellular DNA and RNA
polymerases [110].

Sodium ferulate, another phenolic acid found abundantly in plants [111], inhibits
the replication of influenza viruses via the activation of the toll-like receptors TLR7 and
TLR9, and subsequently promotes transcription factor IRF7’s translocation into the host
nucleus and the production of type-1 interferons [112]. Chicoric acid such as (caffeic
acid derivative) and a number of dicaffeoylquinic acids have been reported to interfere
with the enzyme integrase of HIV, an enzyme that is crucial to the integration of viral
DNA into the host genome [113]. Gallic acid has also been shown to possess anti-HSV-
2 properties, primarily through the inhibition of the virus’s attachment to the host cell,
subsequently limiting the spread of the virus [114]. Furthermore, multiple antiviral defense
mechanisms, including the inhibition of viral replication and cell to cell movement have
been reportedly activated by salicylic acid [115]. The immunomodulatory effects of various
phenolic compounds have also been previously shown to activate the prouction of various
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host cytokines and chemokines [116,117]. Lastly, a number of plant-derived phenolic
compounds have been shown to induce apoptosis in an infected host, limiting the spread
of viral infections [102,118–120].

Figure 1 schematically summarizes the antiretroviral effects of plant-derived phenolic
compounds.
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phenolic compounds.

4.2. Alkaloids

Alkaloids, primarily but not exclusively present in plants, are a class of naturally
occurring organic compounds containing at least one nitrogen atom. They can be found
in many plant structures and have been reported to have pharmacological effects against
various microbial diseases and viruses. Alkaloids have in particular been highlighted
for their broad-spectrum activities against both DNA and RNA viruses [121,122]. Due to
their importance, they have also been identified as the largest class of plants’ secondary
metabolites investigated to date [122]. The most well-known plant alkaloids found in
nature include cocaine, morphine, and quinine.

Alkaloids have been identified as important inhibitors of the flow of genetic infor-
mation (from the DNA/RNA viral particle to protein synthesis) necessary to ensure the
lifecycle of the virus. The antiviral activities of alkaloids, as proven by experimental
evidence, primarily involve the inhibition of: (1) DNA and RNA replication, (2) RNA
translation, (3) protein synthesis, (4) DNA intercalation, (5) enzymatic activities, (6) the
translocation of the ribonucleoprotein complex, (7) DNA synthesis, and (8) protein synthe-
sis. Many studies have reported the use of alkaloids for the treatment and prevention of
viral infections [122–124]. Alkaloids can also regulate human immune mechanisms toward
viral resistance by mediating the humoral immune response [125].

Figure 2 below is a schematic representation of the antiviral effects of alkaloids.
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4.3. Terpenoids

Terpenoids are a large group of diverse organic products that are ubiquitous in nature.
They exist in six categories namely: hemiterpenes, monoterpenes, sesqui-terpenes, diter-
penes, sesterpenes, triterpenes, and tetra-terpenoids [126]. As an essential component of all
living cells, they are products of both primary and secondary cellular metabolism [127]. Ter-
penoids are mostly present in the leaves and fruits of higher plants, where they sometimes
contribute to their vibrant colors. They are also highly volatile and combustible organic
compounds [128]. As aromatic metabolites, they are largely responsible for the flavor and
fragrance of plants [129]. Terpenoids are of special interest to medical chemists because
of their significant pharmacological potential [130]. Common terpenoids include citral,
menthol camphor, and salvinorin A.

Various terpenoids have been shown to possess promising antimicrobial and antiviral
properties [131]. Those with reported antiviral properties include glycyrrhizin, an impor-
tant antiviral chemical compound found in the roots of the licorice plant (Glycyrrhiza
glabra) [132]. Historical sources from China [133], India [134], and parts of Europe [135]
make references to the use of glycyrrhizin in the treatment of viral respiratory tract and
liver infections caused by hepatitis. Ref. [136] reported the immunomodulatory activ-
ities of glycyrrhizin due to the induction of interferon gamma, and [137] described its
anti-inflammatory mechanisms. Glycyrrhizin furthermore inhibits replication of severe
acute respiratory syndrome associated with corona virus (SARS-Chikungunya virus (CV))
infection and prevents the adsorption and penetration of the virus [138]. Isoborneol, a
monoterpene present in a variety of different essential oils, totally inhibits replication of the
herpes simplex virus (HSV-1), and that at a concentration of only 0.06% [139]. Additionally,
β-pinene and limonene monoterpenes present in various essential oils, showed high anti-
HSV-1 activity, and function by reducing the viral infectivity by 100%, by directly interfering
with free viral particles [140]. Many studies have also indicated that celastrol, a pentacyclic
triterpenoid, inhibits the replication of the dengue virus [141], human immunodeficiency
virus [142], and hepatitis C virus [143].
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Ref. [144] reported that the extracted pigment of carotenoids of Natrialba sp. M6, a
tetraterpene isolated from Wadi El-Natrun in Egypt, exhibited antiviral potency against
Hepatitis C Virus (HCV) and HBV. The RNA and DNA polymerase enzymes responsible
for the amplification of the virus in both HCV and HBV were inhibited, thereby suppressing
the viruses’ replication. Molecular docking simulation was also used to predict the antiviral
effects of two marine carotenoids (specifically fucoxanthin and siphonaxanthin) against
SARS-CoV-2. The effects were later confirmed by in vitro studies [145].

Figure 3 shows a schematic summary of the antiviral activities of terpenoids.
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5. Applications of Metabolomics in Plant Antiviral Research

Metabolomics involves the comprehensive study of small molecules known as metabo-
lites in a living system or biological sample. It can give broad insight into the identity
and detailed information on the chemical fingerprints of metabolites and the metabolic
processes that occur within a biological system [146]. Metabolomics is broadly categorized
into two types, (1) targeted and (2) untargeted metabolomics. In the targeted approach, the
goal is not the identification of all metabolites, but the quantitative measurement of a spe-
cific metabolite or metabolite group that has been previously identified and characterized.
Untargeted metabolomics deals with a comprehensive identification and quantification of
all detectable metabolites present in a biological sample [147].

Advances in metabolomic techniques now play a significant role in the discovery of an-
tiviral compounds in plants, as evidenced by relevant recent publications. The possibilities
for the comprehensive analysis of the complete set of compounds in plants using advanced
analytical techniques are endless. Many studies have reported the use of metabolomics
as an essential tool for the targeted screening of plant secondary metabolites [148,149].
The many advantages that metabolomics presents make it an essential and indispensable
technique in current plant antiviral research.

Arguably the most important application of metabolomics in plant antiviral research
is in the identification and characterization of the plant metabolome. Metabolomics, when
used for this, can provide a detailed snapshot of a plant’s metabolomic profile, with
information on both the identification and quantification of the metabolites present within
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the metabolome. There is an incredible diversity of secondary metabolites exhibited by
plants, many of which have bioactive compounds [150–152]. The use of metabolomics has
additionally assisted in identifying a wide range of metabolites in plants across different
geographical locations and seasons, including those with antiviral potential. The specific
bioactive compounds responsible for the antiviral activity can then be isolated and further
studied for potential therapeutic use.

Metabolomics can also be used for mechanistic or toxicology studies of the isolated
plant antiviral compounds in vivo [153,154]. Since metabolites are downstream products
of cellular metabolism [153], the identification, quantification, and characterization of
these compounds in vivo, in the presence of the isolated plant metabolite/drug show the
metabolic pathways that are altered in response to the plant compound/drug’s antiviral
activity in the culture or host.

There are many complex metabolic interactions that occur within the plant system.
Antiviral compounds can either act alone or in synergy with other compounds to carry out
their activities. In studying the synergistic effect of more than one compound on microbes,
stronger bioactivities have been reported using metabolomics [155–158]. The metabolomics
approach is therefore promising, as a useful strategy for the study of complex interactions
between plant metabolites [159,160].

Metabolomics has also been applied to investigating the effect of the different sea-
sons on the chemical profiles and biological activities of plants [161,162]. Ref. [163] used
metabolomics to study the influence of seasonal change on the anti-HSV1 properties of
Helichrysum aureonitens and reported a correlation between plants harvested in spring and
better antiviral activity. A targeted metabolomics study conducted to determine the effect
of seasonal change on the chlorogenic acids content of H. aureonitens further revealed an
association between water availability and the production of different isomers of chloro-
genic acids [163]. This knowledge is important in determining the optimal season for plant
collection to yield better antiviral efficacy.

Metabolomics can also be used for studying those metabolic pathways involved in
plant-pathogen interaction [159,164,165]. These adapted metabolic pathways can also be
determined by analyzing those changes in metabolome during a viral infection. This is
important in understanding the mechanism by which plants respond to viral infections
and can provide insight into the identification of useful metabolites that may be developed
as therapeutic candidates for antiviral intervention.

A summary of such studies is given in Table 1 below.

Table 1. Metabolomics Studies on Antiviral Compounds from Selected Plants.

Plant Species
Compound/
Compound

Class

Metabolomics
Technique Used

Targeted
Virus (es) Study Outcomes Reference

Helichrysum aureonitens Chlorogenic
acids UPLC-qTOF-MS Herpes simplex virus-1

(HSV-1)
Significant reduction of

HSV-1 titre values [163]

Euphorbia amygdaloides
ssp. semiperfoliata

Jatrophene esters
(terpenes)

UPLC-MS, 1H and 13C
NMR

Chikungunya virus,
HIV-1, and HIV-2

Inhibition of viral replication
via activation of protein

kinase C
[166]

Phyllanthus brasiliensis Justicidin B (polyphenols) HPLC and 13C NMR Zika virus Post-infection intracellular
reduction of viral load [167]

Lampranthus coccineus
and Malephora lutea

Green synthesized silver
nanoparticle

(AgNPs)
UPLC-MS HSV-1, HAV-10 virus,

and Coxsackie B4

Prevents viral entry into the
host cell by binding to the

viral envelope glycoproteins
[168]

Hibiscus sabdariffa
Protocatechuic acid

(hydroxybenzoic acid
derivatives)

GC-MS Human Influenza A
Virus

Acid-dependent virus
inactivation [169]

Elaeodendron croceum,
Artemisia afra, and
Adansonia digitata

13-Hydroxy-9Z,11E-
octadecadienoic acid (fatty

acid), 13S-Hydroxy-
9Z,11E,15Z-octadecatrienoic

acid (fatty acids)

NMR Rift valley fever virus

Interferes with binding of the
virion to the cellular

receptors, therefore inhibiting
viral entry and replication

[108]

Garcinia cambogia Naringin (flavonoid) LC-HRESIMS COVID-19 Inhibition of virus replication
in the lung cells pre-infection [170]
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Table 1. Cont.

Plant Species
Compound/
Compound

Class

Metabolomics
Technique Used

Targeted
Virus (es) Study Outcomes Reference

Scaevola spinescens
Ammarin (phenolic

compounds), nodakenetin
(psoralens)

HPLC-MS/MS Q-TOF MS2 bacteriophage Bacteriophage MS2 plaque
reduction [171]

Pinellia ternata Pinellic acid
(long-chain fatty acids) HPLC Nasal influenza

Demonstrated potency via
activation of antiviral of IgA
antibody (Ab) and antiviral

IgG1 Ab

[172]

Ephedra sinica

4,6-dihydroxyquinoline-2-
carboxylic acid,

4-hydroxyquinoline-2-
carboxylic acid, and

4-hydroxy-6-
methoxyquinoline-2-

carboxylic acid
(quinoline carboxylic acids)

HPLC-Q-TOF-MS/MS,
NMR COVID-19

Inhibited the infec
tivity rate of SARS-CoV-2 S

protein-pseudoviruses
[173]

Rhinacanthus nasutus Rhinacanthins C, D, N, Q,
and E (naphthoquinones)

NMR, mass
spectrometry

Rhinovirus and
coxsackievirus

Observed cytopathic effect
confirmed antiviral action [174]

Bombax ceiba Bombasinol A
(polyphenols) NMR Hepatitis B Virus

Inhibits growth and
replication of HepG2 2.2.15

cell lines
[116]

Phyllanthus urinaria Loliolide
(benzofurans)

NMR,
ESI-LCMS Hepatitis C Virus (HCV) Inhibits HCV host cell entry [175]

Swietenia macrophylla 3-hydroxy caruilignan C
(polyphenolic compound)

NMR
LC-MS Hepatitis C Virus (HCV)

Inhibits
HCV via IFN-stimulated

response and IFN-dependent
antiviral gene expression

[176]

Tabernaemontana cymosa Coumarin A and B
(benzopyrone)

NMR, mass
spectrometry Chikungunya virus (CV) Inhibits CV host cell infection [177]

6. Steps for the Discovery of Antiviral Compounds in Plant Metabolomics Studies

The discovery of compounds with antiviral activities in plants using metabolomics
follows a systematic approach, combining different steps and methodologies. The choice
of plant selected for metabolomics studies is often predicated upon prior knowledge of
the plant’s antiviral properties, either from oral tradition or previous studies. Different
plant parts such as stems, roots, leaves, and flowers, are often collected from the wild or
from a cultivated environment. Due to the different distribution or constituency of various
bioactive compounds in different parts of the plants [178–180], a thorough knowledge from
literature or indigenous knowledge systems is required to determine the specific plant
parts which need to be harvested for the specific application/investigation.

Post-harvest, sample preparation often involves cleaning, drying, and pulverizing/
homogenizing the plant materials, with the subsequent extraction of the bioactive metabo-
lites using various solvents of varying polarities depending on the compound of interest.
Phytochemical investigations typically use a solvent mixture for the extraction of both
polar and non-polar compounds, which comprises a mixture of alcohols (methanol or
ethanol) and water [181–186]. Extraction may be followed by sample preparation for NMR,
GC-MS, or LC-MS analysis, depending on the aim of the studies and the nature of the
targeted metabolites.

Sample preparation for subsequent mass spectrometry analyses is generally more
complex than that required for NMR, often requiring prior derivatization of the extracted
compounds to improve detection of a wider range of analytes [187]. However, the sensitiv-
ity of hyphenated mass spectrometry techniques far surpasses that of NMR. NMR sample
preparation generally involves the addition of deuterated methanol (CH3OH-d4), potas-
sium dihydrogen sulfate (which acts as a buffer in a deuterium water (D2O) solvent) and
trimethyl silane propionic acid (TSP) as an internal reference to detect and correct possible
chemical shift during the analyses of multiple samples [188,189]. Data when using either
approach are generated in the form of NMR spectra and mass spectrometer chromatograms.



Viruses 2024, 16, 218 10 of 20

There are a number of software choices for multivariate data analysis and data pro-
cessing, including MestReNova [190], MetaboLab [191], the Soft independent modeling
by class analogy (SIMCA) [192], Metaboanalyst [193], and Chenomx [194]. Software exclu-
sively designed for mass spectrometry include XCMS (one of the most popular software
for MS) [195], MZmine [196], Automated Data Analysis Pipeline (ADAP) [196], Mass
Spectrometry-Data Independent Analysis software (MS-DIAL) [197] and METLIN [198].

Multivariate data analysis and data processing are essential steps and precursors to
the characterization of bioactive compounds in medicinal plants. The chemical structure of
potential antiviral bioactive principles can then be further and more accurately annotated
by advanced techniques such as 2D NMR. This is a versatile technique that provides more
information about a compound. When used in tandem with relevant databases such as
plant metabolome database and reference libraries [199,200], it is helpful in the elucidation
of small organic molecules’ structures.

Subsequently, a bioguided isolation study to determine the antiviral activity of com-
pounds of interest is carried out, increasing the probability of isolating compounds with
high bioactive activity [201,202]. A knowledge of natural product chemistry is also invalu-
able in investigating small organic molecules with medicinal properties from plant sources.
Thin-layer chromatography (TLC) and column chromatography are popular choices for
compound isolation owing to their convenience and relatively low cost of operation [203].
TLC (or its more sophisticated and improved form, called high-performance thin-layer
chromatography) are commonly used techniques that provides a fast and comprehensive
overview of most of the compounds present in a plant extract, supports the identification
of target compounds in a mixture, and is effective in the isolation of analytes in a sample
mixture [204,205]. The basic principle involves the movement of a compound mixture
along the mobile phase (solvent), through the stationary phase, where separation occurs de-
pending on the adsorption capacities of the compounds in the mixture. The aforementioned
column chromatography (or its highly-improved automated form-high-performance liquid
chromatography) is a technique similar to TLC. It works on the same principle, except that
instead of the stationary phase on a thin layer in TLC, the solid in the stationary phase is
loaded into a long glass column [204,206–208].

When determining the antiviral activities of plants, it is important to conduct an
assay to evaluate the antiviral potential of the plant of interest to inhibit viral replication,
inhibit viral binding to host cell receptors, or interfere with the viral life cycle. An assay
commonly used for this purpose is the cytopathic effect inhibition assay (CPE). This
involves infecting a host cell culture with the virus, then treating the cells with the plant
extract. The cytopathic effect on the cell (cell damage caused by the viral infection) can then
be determined [209,210]. Another often-used assay is the plaque reduction assay. Here,
an assessment is made of a plant extract’s ability to inhibit viral replication. Cultured
cells are seeded to a surface to form a confluent monolayer and infected with a known
number of viral particles. The viruses replicate and form plaques while plant extracts are
added at different concentrations. Fewer plaques suggest antiviral activity of the plant
extract [211–213].

Preclinical trials are studies conducted on animal models to evaluate the effect of a
test compound or drug for its therapeutic potential [214]. Such trials can be performed
in vivo, in vitro, ex vivo, or in silico to gather information regarding the safety and efficacy
of the test compound before performing clinical trials on humans [215], which determines
the effect of drugs or bioactive compounds on human health outcomes [7,216–218]. These
medical studies follow specific protocols, including the recruitment of healthy volunteers
and patients [219]. With respect to the clinical trials of plant-based antiviral compounds,
the trials pass through a number of phases, including initially testing the plant-derived
compound/drug on healthy volunteers to determine possible side effects and other safety
concerns [220], before testing these on infected or disease patients for drug efficacy.



Viruses 2024, 16, 218 11 of 20

7. Future Directions for the Application of Metabolomics to the Development of
Antiviral Therapies from Plant Sources

In the just about 20 years since the introduction of metabolomics [221], some key
advancements and significant progress have been made in the field of medicinal plant
and natural product research. There remains an immense potential for the full exploration
of metabolomics in medicinal plant research and in the search and development of new
therapeutic agents. As [222] noted, although many studies have been conducted on plants
to determine their effects on viruses, most studies do not isolate and identify active com-
pounds responsible for the antiviral potentials of the tested plants. This is further confirmed
by the limited number of studies that reached the level of compound identification and
isolation in the last couple of years, as listed in Table 1 above. Some studies reported good
plant activities against viruses and even went as far as isolating compounds, but did not
elucidate the compound names [177,223]. This presents difficulties in characterizing the
bioactive principles responsible for the biological activity of the plant. Taking advantage
of advances in metabolomics techniques to identify, isolate, and characterize compounds
that have both pharmacological effects and good biological activity will prove beneficial in
the development of antiviral leads as part of an effort toward viral eradication. Further-
more, a detailed search of many scientific databases reveals a lack of information on the
biosynthetic pathways responsible for producing the plant bioactive compounds. Future
studies should harness metabolomics for elucidating the biosynthetic pathways responsible
for the formation of identified antiviral metabolites by these plants [224]. This is crucial
in optimizing plant cultivation and incorporating genetic engineering strategies for the
enhancement of compound synthesis with antiviral bioactivity [221,225].

The emergence of systems biology integrates high throughput data generation and
analysis from many platforms to understand complex interactions between different levels
of organization in a biological system [226,227]. Omics technology, an indispensable molec-
ular technique in systems biology, incorporates genomics, transcriptomics, proteomics, and
metabolomics techniques to foster a better understanding of biological processes [224,228].
The application of a systems biology paradigm in plant studies will provide a more holistic
view of the antiviral potentials in medicinal plants.
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