
Citation: Sun, J.; Kessl, J.J. Optimizing

the Multimerization Properties of

Quinoline-Based Allosteric HIV-1

Integrase Inhibitors. Viruses 2024, 16,

200. https://doi.org/10.3390/

v16020200

Academic Editors: Alan N. Engelman,

Mamuka Kvaratskhelia, Duane

P. Grandgenett, Goedele N. Maertens

and Kristine Yoder

Received: 29 December 2023

Revised: 23 January 2024

Accepted: 25 January 2024

Published: 28 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Review

Optimizing the Multimerization Properties of Quinoline-Based
Allosteric HIV-1 Integrase Inhibitors
Jian Sun * and Jacques J. Kessl *

Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
* Correspondence: jian.sun@usm.edu (J.S.); jacques.kessl@usm.edu (J.J.K.)

Abstract: Allosteric HIV-1 Integrase (IN) Inhibitors or ALLINIs bind at the dimer interface of the IN,
away from the enzymatic catalytic site, and disable viral replication by inducing over-multimerization
of IN. Interestingly, these inhibitors are capable of impacting both the early and late stages of viral
replication. To better understand the important binding features of multi-substituted quinoline-based
ALLINIs, we have surveyed published studies on IN multimerization and antiviral properties of
various substituted quinolines at the 4, 6, 7, and 8 positions. Here we show how the efficacy of these
inhibitors can be modulated by the nature of the substitutions at those positions. These features
not only improve the overall antiviral potencies of these compounds but also significantly shift the
selectivity toward the viral maturation stage. Thus, to fully maximize the potency of ALLINIs, the
interactions between the inhibitor and multiple IN subunits need to be simultaneously optimized.

Keywords: HIV; integrase; virus maturation; allosteric integrase inhibitor; ALLINI; quinoline;
aberrant integrase multimerization

1. Introduction

The catalytic activity of the Integrase (IN) enzyme of the Human Immunodeficiency
Virus type 1 (HIV-1) plays a major role during the early stage of the virus life cycle as it
is responsible for the integration of the viral DNA (vDNA) into the host chromatin. This
integration is composed of two successive but distinct events. In the first, IN removes a
GT dinucleotide from both 3′ ends of the vDNA (termed 3′-processing or 3P). After the
capture of a target DNA (tDNA), the strand transfer takes place where the vDNA recessed
ends are inserted into the tDNA in a transesterification reaction. This second event has
been successfully targeted by several FDA-approved inhibitors (Raltegravir, Elvitegravir,
Dolutegravir, Bictegravir, and Cabotegravir) [1] that are currently used clinically to treat
HIV-1 infected patients. Although these treatments are extremely effective, resistant strains
have emerged against several of these drugs due to the high viral mutation rates [2,3].
Thus, these viral escape mutations within the active site of IN underline the importance of
pursuing alternative mechanisms of inhibition with new binding sites on the enzyme.

The HIV-1 IN is structured into three distinct domains: N-terminal domain (NTD),
catalytic core domain (CCD), and C-terminal domain (CTD) [4,5]. During integration,
the three domains interact to form an ordered multimeric structure with the vDNA, the
intasome [6–10]. Integration of the HIV-1 genome also involves the interaction between
IN and the host chromatin-associated co-factor LEDGF/p75 (Lens Epithelium-Derived
Growth Factor), which bridges the intasome to active genes [11–16]. LEDGF/p75 interacts
with the intasome through its Integrase Binding Domain (IBD) by inserting a small loop
into a well-defined pocket located at the IN CCD dimer interface [14,17].

Allosteric HIV-1 Integrase Inhibitors (ALLINIs) [18–22], which are also known as
LEDGINs (LEDGF/p75 Inhibitors) [23], NCINIs (Noncatalytic Site Integrase Inhibitors) [24],
or INLAIs (IN-LEDGF Allosteric Inhibitors) [25], selectively bind at this LEDGF/p75 IBD
binding pocket, away from the IN catalytic site and potently inhibit HIV-1 replication.
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Importantly, these compounds retain full potency against clinical strains resistant to the
FDA-approved IN catalytic inhibitors [23].

2. Discovery and Initial Optimization of the Quinoline-Based ALLINIs

The first quinoline-based ALLINIs were independently discovered by two distinct
research groups at the University of Leuven (Belgium) [23] and at Boehringer Ingelheim
(Canada) [26]. At Leuven, the initial hit compound 1 (Figure 1) was generated from a series
of virtual screening calculations targeting the IBD binding pocket at the IN CCD dimer
interface [23]. Testing of 1 confirmed an in vitro inhibition of the IN-LEDGF/p75 interac-
tions by 36% at 100 µM using an AlphaScreen-based protein–protein binding assay [27].
Through several iterations, this hit was further refined into quinoline 2 (Figure 1) by re-
placing the tetrazole with carboxylic acid, removal of the unstable secondary ketimine at
position 3, addition of a benzene group at position 4, and addition of a chlorine at position
6 (scaffold numbering shown in Figure 1). This improved quinoline was now able to inhibit
the IN-LEDGF/p75 interactions in vitro with an IC50 of 12.2 ± 3.4 µM and showed weak
antiviral activity (41.9 ± 1.1 µM). Further medicinal chemistry effort yielded quinoline 3
(also named LEDGIN-6) with an IN-LEDGF/p75 interaction IC50 of 1.37 ± 0.36 µM and
an antiviral activity at 2.35 ± 0.28 µM. As the compounds of this series were optimized
to prevent the binding of LEDGF/p75 to IN, they were termed LEDGINs. The binding of
LEDGINs at the IBD binding pocket on the IN CCD dimer interface was confirmed via
X-ray structure determination of IN CCD crystals soaked with quinoline 3 (Figure 2) [23].
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At Boehringer Ingelheim, a similar series of quinolines (Figure 3) with antiviral activi-
ties were identified through a high throughput screening (HTS) campaign targeting the 3P
enzymatic activity of IN [26]. Testing of the initial hit compound 4 (Figure 3) showed an
in vitro inhibition of the 3P catalytic function of IN at 9.0 µM using a FRET-based assay [28].
Medicinal chemistry efforts improved the series 300-fold to compound 5 (Figure 3, also
named BI-B or BI-1001) with an IC50 in the same 3P assay at 28 nM. This improved quino-
line was also able to inhibit viral replication with an EC50 at 450 nM. As for the LEDGINs,
crystallographic studies confirmed the binding of the compound at the IBD binding pocket
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on the IN CCD dimer interface [26]. This crystal structure was used to optimize the series
into 6 and 7 (Figure 3, also named BI-D and BI-C) [29] by adding a tert-butyl group at the
alpha position of the carboxylic function, further filling up the binding pocket. Additional
hydrophobic bulk was also added in position 2 of the quinoline scaffold, improving the 3P
IC50 into the single-digit nanomolar range at 6 nM and 3 nM, respectively, and bringing the
antiviral activity EC50 at 10.0 nM [29] and 4.2 nM [26], respectively.
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3. Integrase Multimerization by ALLINIs

In order to reconcile the different types of activities observed with the two quinoline
series described above, comparative studies with representative compounds 3 (LEDGIN-
6) and 5 (BI-1001) were initiated by the Kvaratskhelia group (The Ohio State University,
USA) [18]. This work was the first to propose that the inhibition of both IN-LEDGF/p75
interaction and IN catalytic functions were likely a secondary outcome of the mode of
action of those compounds toward the IN protein: a strong and rapid induction of IN
hyper-multimerization. This effect was initially observed in vitro using a FRET-based assay
and recombinant IN [18,30] (Figure 4). This ALLINI-induced hyper-multimerization was
shown to render IN incapable of binding to LEDGF/p75 or performing its normal catalytic
functions. In addition, the in vitro compounds inhibitory concentrations were similarly
effective in blocking overall antiviral replication in cell culture [18]. These observations
were subsequently confirmed using similar assays and compounds [24,31].
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While the initial studies expected that the potency of these compounds was during
the integration step, subsequent observations clarified this as a secondary consequence
of the IN hyper-multimerization. The Engelman group (Harvard Medical School, USA)
was the first to measure ALLINI potencies during HIV-1 egress (where the infectivity
of viral particles produced from ALLINI-treated cells was assessed in untreated target
cells) versus HIV-1 ingress (where target cells were treated with ALLINIs during infection).
This approach revealed that ALLINIs inhibited the late replication stage more potently
(10 to 100-fold or more, depending on the compound) than the early stage [32]. These
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observations were independently confirmed and published during the same year using
similar assays and compounds [31,33,34]. Observations of the morphology of viral particles
produced from ALLINI-treated cells have shown morphological defects where the viral
ribonucleoprotein complex (RNP) is mis-localized to an eccentric position between the
empty capsid core and the virion’s matrix layer instead of being properly encapsulated into
the core [32]. Thus, these observations have led to the hypothesis that IN plays a critical
non-catalytic role during viral maturation that can be uniquely targeted using ALLINIs.
Subsequently, the Kvaratskhelia group (Ohio State University, USA) demonstrated that
ALLINI-induced IN-hyper-multimerization inhibited viral RNA binding, explaining the
observed effects of these compounds on virion morphology [35].

4. Binding Features of Quinoline-Based ALLINIs

As described above, ALLINIs bind at the LEDGF/p75 binding pocket and engage
the IN CCD dimer interface at a position distal from the enzyme active site. Early X-ray
structures of IN CCD crystals soaked with LEDGINs [23] (Figure 2) were able to provide
valuable information on the binding topology. Quinoline-based ALLINIs harbor several
essential features, including a branched aliphatic group ending with a carboxylic acid
function in position 3 (green and red groups on the quinoline in Figure 5A) and a large
aromatic substitution in position 4 (blue substitution on the quinoline in Figure 5A). This
large aromatic group can be optimized to interact with W132 and L102 of subunit 2 (yellow
residues in Figure 5A). The aliphatic side chain (green chain on the quinoline in Figure 5A)
buries into the CCD-CCD interface, where it contacts hydrophobic amino acids from both
subunits 1 and 2 of the IN dimer. The carboxylic acid group (red) interacts with H171 and
T174 of the IN subunit 1. This interaction recapitulates the binding mode of LEDGF/p75,
explaining why many ALLINIs (or LEDGINs) are effective inhibitors of the IN-LEDGF/p75
interaction.
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Through computer simulations [36–38], crystallography [39–42], and biochemical
experiments [37,38,43,44], it has been shown that in addition to binding at the IN CCD
dimer interface of subunits 1 and 2, ALLINIs also bridge with the CTD of a third IN subunit
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(subunit 3, color-coded magenta in Figure 5A,B) to form a polymer-like repetitive pattern
alternating ALLINIs and IN monomers. Thus, quinoline-based ALLINIs binding to the IN
oligomer and antiviral properties have both been improved by extending the reach of the
compound toward Y226 and W235 of the third IN subunit (Figure 5A) [37,38].

5. Optimization of the Quinoline-Based ALLINIs

Multiple studies using quinoline-based ALLINIs have shown that the antiviral po-
tencies of these compounds, especially at the late phase, are tightly correlated with their
in vitro multimerization properties [18,24,30,32,37,38]. Thus, this review will use the pub-
lished IN multimerization EC50 of compounds to compare and rank the effects of various
substitutions attached at different positions on the quinoline scaffold. When available, the
measured antiviral activities will also be discussed.

5.1. Optimization of Position 4

Substitutions added to position 4 of the quinoline scaffold aim to maximize interaction
between the compound and the hydrophobic pocket defined by the residue pair W132/L102
of subunit 2 (yellow residues in Figure 5A). Thus, compounds with aromatic groups on
position 4 are highly favored, with a preference for substituted phenyl groups [22]. Exten-
sive exploration of the chemical space demonstrates that several single para substitutions
of the phenyl group (Table 1) improve the compound’s multimerization EC50s compared
with the unsubstituted derivative 8. Substitutions with fluorine (compound 10) or fluorine-
containing groups such as trifluoromethyl and trifluoromethoxy (compounds 12 and 14)
slightly decrease EC50s by 2–4 folds while substitution for either a methyl or a methoxy
group (compounds 11 and 13) resulted in a six-fold improvement in the EC50 values. Inter-
estingly, adding a chlorine (compound 9) produced the most effective inhibition among this
series with an EC50 of 100 nM [22], which resulted in a 13-fold improvement compared with
the unsubstituted phenyl group. This strong effect was attributed to the stabilizing effect of
the chlorine−π interaction provided by the side chain of W132 [45]. Larger substitutions
such as cyano (16), acetyl (17), acetamido (18), or phenyl (19), were found to have a negative
contribution to the EC50.

Table 1. Optimization of position 4.
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Meta- or ortho-substituted phenyl additions were shown to be less effective than para
counterparts (Table 2) in improving the compounds [22]. The meta and ortho positions
place the substituted group away from the W132/L102 pair (Figure 5A), which attenuates
the hydrophobic interactions. For most cases with the same R group, the meta position
resulted in the worse potency producing the trend: para > ortho > meta [22]. Attempts
to combine para and meta (same R) into disubstituted phenyl groups did not result in
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significant EC50 improvement. The measurements were either similar to the para alone
(compounds 11 vs. 32) or worse (compounds 13 and 23 vs. 33) [22,24].

Table 2. Optimization of position 4.
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Cl 9 0.10 ± 0.02 20 3.79 ± 0.09 26 0.26 ± 0.04
F 10 0.49 ± 0.04 21 2.11 ± 0.59 27 0.58 ± 0.07

CH3 11 0.24 ± 0.11 22 0.95 ± 0.29 28 0.51 ± 0.05
OCH3 13 0.23 ± 0.04 23 1.38 ± 0.37 29 8.39 ± 0.92
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Because the phenyl group (compound 8) is able to fill the binding pocket more effi-
ciently than smaller pentadiene-like groups such as furane or thiophene (compound 8 vs.
34 and 35, Table 3), larger ring systems are more likely to achieve a greater degree of multi-
merization. It was found very early in the development of these quinolines by Boehringer
Ingelheim that adding a chromane group in position 4 (compound 6 in Table 3, also named
BI-D) was effective in bringing both in vitro IN multimerization EC50 and antiviral potency
in the tenth of nanomolar range. Additional variations, such as benzodioxane (compound
36) or substituted benzoxane (compound 37), confirmed the effect. Interestingly, it was
observed that the addition of substitutions on the benzoxane ring system (such as on
compounds 7 and 37) restricted the free rotation of the group and improved the antiviral
potencies even further [46]. This led to the development of the tricyclic BI 224436, which
completely blocked the rotation and allowed the synthesis of stable atropoisomers [47].
Further testing showed that the stereoisomer displayed in Figure 6 had antiviral activities
in the single-digit nanomolar range [46]. Additionally, this compound was found to display
appropriate metabolic stability in liver microsomal oxidation assay and was further evalu-
ated in several animal models (mouse, rat, dog, and monkey) for preclinical profiling [48].
Thus, BI 224436, which exhibited excellent pharmacokinetic and toxicologic properties in
animals, was successfully advanced into clinical development [48].
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5.2. Optimization of Position 6

Because of its presence on position 6 of the initial HTS hit compound 4, the chlorine
was thought to be important in anchoring the scaffold in the IBD pocket as it interacts with
the triad A129/A128/T124 of IN subunit 2 (Figure 5A). Early optimization efforts replaced
the chlorine with a bromine and improved this interaction slightly [46]. The effect of adding
this bromine on position 4 can be observed by comparing the EC50s of 9 and 39 (Table 4).

Nevertheless, substitution with iodine (40) or amino (41) groups was tested and
resulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional
interactions with A128 and A129, a library of quinolines with position 6-substituted phenyl
groups (Table 4) was generated. Testing of several factors including aromatic interactions
that may contribute to the binding showed that the addition of aryl groups on position 6
negatively impacted the multimerization properties of the scaffold. Further increases in the
measured EC50 were observed with substituted phenyl groups (compare compound 42 with
compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl (51), non-aromatic
six-membered heterocycles (52 and 53), and five-membered aromatic heterocycles (54–57)
were also tested. It was found that a significantly lower potency, or the complete loss of
activity, was caused by the added bulk [38].

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-
resistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the
structural and mechanistic basis for this effect was subsequently elucidated by showing
that the A128T substitution significantly shifted the positioning of the inhibitor in the
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution
at position 4, those gains must be balanced with the possibility that they may magnify the
resistance amplitude when the IN mutation A128T emerges.
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Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 

5.3. Optimization of Position 7 
In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
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sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
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tions that may contribute to the binding showed that the addition of aryl groups on posi-
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heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
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sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
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tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
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(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
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nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
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(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 

5.3. Optimization of Position 7 
In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 
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Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 
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stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
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compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 
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Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 
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In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 
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Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 
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In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 
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Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 

5.3. Optimization of Position 7 
In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 
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Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 

5.3. Optimization of Position 7 
In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 
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Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 

5.3. Optimization of Position 7 
In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 
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Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 
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In order to leverage recent discoveries showing that ALLINIs also bridge with the 
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stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 
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heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
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Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
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binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
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resistance amplitude when the IN mutation A128T emerges. 

5.3. Optimization of Position 7 
In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 

O
O

N

O O

O

O

S

O
C2H5

S

Cl

N

H
N

F3C

N

O

O
0.97 ± 0.40 59

Viruses 2024, 16, 200 8 of 14 
 

 

39 Br 
0.09 ±0.01 
0.07 ±0.01c 46 

 
1.28 ±0.01 53 

 
no activity 

40 I 0.20 ±0.06 47 
 

1.30 ±0.37 54 
 

1.08 ±0.17 

41 NH2 0.19 ±0.05 48 
 

1.20 ±0.14 55 
 

no activity 

42 
 

1.17 ±0.14 49 
 

no activity 56 
 

1.53 ±0.13 

43 
 

1.59 ±0.04 50 
 

no activity 57 
 

1.53 ±0.33 

44 
 

1.93 ±0.01 51 
 

0.57 ±0.29 58 
 

no activity 

45 
 

1.29 ±0.01 52 
 

0.97 ±0.40 59 
 

no activity 
a Multimerization assay; b data from [38]; c data from [19]. 

Nevertheless, substitution with iodine (40) or amino (41) groups was tested and re-
sulted in a two-fold decrease in the EC50 values (Table 4) [38]. To probe for additional 
interactions with A128 and A129, a library of quinolines with position 6-substituted phe-
nyl groups (Table 4) was generated. Testing of several factors including aromatic interac-
tions that may contribute to the binding showed that the addition of aryl groups on posi-
tion 6 negatively impacted the multimerization properties of the scaffold. Further in-
creases in the measured EC50 were observed with substituted phenyl groups (compare 
compound 42 with compounds 43 to 50 in Table 4). Additional groups, such as pyridinyl 
(51), non-aromatic six-membered heterocycles (52 and 53), and five-membered aromatic 
heterocycles (54–57) were also tested. It was found that a significantly lower potency, or 
the complete loss of activity, was caused by the added bulk [38]. 

Experiments conducted at Gilead Sciences, Inc. looking for the selection of drug-re-
sistance against ALLINIs such as 32 and 37 revealed the IN mutation A128T as one of the 
most frequent occurrences [24]. Using compound 39, which has bromine in position 6, the 
structural and mechanistic basis for this effect was subsequently elucidated by showing 
that the A128T substitution significantly shifted the positioning of the inhibitor in the 
binding pocket [19]. As marginal improvements in EC50s can be obtained via substitution 
at position 4, those gains must be balanced with the possibility that they may magnify the 
resistance amplitude when the IN mutation A128T emerges. 

5.3. Optimization of Position 7 
In order to leverage recent discoveries showing that ALLINIs also bridge with the 

CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form a 
polymer-like repetitive pattern, modifications at position 7 were explored [37]. These sub-
stitutions aim to improve the multimerization properties of ALLINIs by extending their 
reach toward Y226 and W235 of the third IN subunit (Figure 5A). 

The compound 60, which added a simple phenyl group at position 7, showed a slight 
improvement in the multimerization EC50 value compared with the unsubstituted com-
pound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety of ortho-
substitutions on the phenyl ring were screened (compounds 61–66). Among those, three 
compounds displayed better EC50 values than 60, with 66 having the lowest multimeriza-
tion EC50 (Table 5). To further explore the properties of this series, both the meta (67) and 
the para (68) methoxy variants were tested. While the para substitution (68) displayed a 
multimerization EC50 of 0.04 µM like the ortho (66), the meta variant (67) was notably less 
potent (Table 5) [37]. To further confirm the significant contribution of manipulating po-
sition 7, the IC50 late-stage antiviral values of 36, 60, and 66 were measured in parallel as 

O
O

N

O O

O

O

S

O
C2H5

S

Cl

N

H
N

F3C

N

O

O
no activity

a Multimerization assay; b data from [38]; c data from [19].

5.3. Optimization of Position 7

In order to leverage recent discoveries showing that ALLINIs also bridge with the
CTD of a third IN subunit (subunit 3, color-coded magenta in Figure 5A,B) and form
a polymer-like repetitive pattern, modifications at position 7 were explored [37]. These
substitutions aim to improve the multimerization properties of ALLINIs by extending their
reach toward Y226 and W235 of the third IN subunit (Figure 5A).

The compound 60, which added a simple phenyl group at position 7, showed a
slight improvement in the multimerization EC50 value compared with the unsubstituted
compound 36 [37]. Seeking additional hydrophobic interactions with W235, a variety
of ortho-substitutions on the phenyl ring were screened (compounds 61–66). Among
those, three compounds displayed better EC50 values than 60, with 66 having the lowest
multimerization EC50 (Table 5). To further explore the properties of this series, both the
meta (67) and the para (68) methoxy variants were tested. While the para substitution
(68) displayed a multimerization EC50 of 0.04 µM like the ortho (66), the meta variant
(67) was notably less potent (Table 5) [37]. To further confirm the significant contribution
of manipulating position 7, the IC50 late-stage antiviral values of 36, 60, and 66 were
measured in parallel as 0.66 µM, 0.05 µM, and 0.01 µM, respectively [37]. Analytical
sucrose density gradient experiments revealed that treatment of producing cells with 66
resulted in a significant shift of the viral capsid core density toward lower values. These
results indicate that the density of the viral cores decreased upon ALLINI treatment and
are consistent with the formation of an empty core caused by the mislocalization of the
viral ribonucleoprotein [20,35,37]. Using previously obtained crystal structures [39,40], a
computer-based binding model of compound 66 was generated and showed that the ortho-
substituted benzyl group on position 7 maximized pi–pi interactions with the aromatic
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residues Y226 and W235 of the third subunit (Pink subunit, Figure 7) [37]. This additional
interaction between the IN CCD and CTD bridged by the ALLINIs was measured using a
FRET-based assay that combined full-length recombinant IN and CTD fragments [37].

Table 5. Optimization of position 7.
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5.4. Optimization of Position 8

Additional attempts to bridge toward the CTD of the third IN subunit were made
by substituting position 8 of the quinoline scaffold [38] ever with the chlorophenyl or
the benzodioxane in position 4. It was found that the addition of bromine (compounds
69 and 75) slightly improved the observed in vitro EC50 for multimerization (Table 6).
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With the objective of promoting further hydrophobic interactions between the compound
and the Y226-W235 residues of the CTD, a phenyl group (70) and ortho, meta, para 8-
methoxyphenyl-substituted analogs (71–73) were tested. It was measured that contrary to
the improvement observed with position 7, the addition of these aryl groups on position
8 negatively impacted the multimerization properties of the compounds [38]. The late-
stage antiviral activities of 36 and 75 were measured in parallel in both WT and A128T
constructs. Interestingly, it was found that while 36 had similar IC50s for both constructs,
compound 75 was two-fold more potent in the A128T (0.06 µM for WT vs. 0.03 µM for
A128T). Molecular modeling of the binding of these two compounds in both WT and A128T
structures revealed that the T128 mutation shifts the inhibitor slightly out of the binding
pocket, even without any substitution in position 6 (see above). This push is calculated to
slightly increase the weak pi–Br interaction between the aromatic side-chain of W235 and
compound 75 [38].

Table 6. Optimization of position 8.
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6. Discussion

Current CDC guidelines (www.cdc.org, accessed on 1 January 2024) for first-line an-
tiretroviral therapy for people infected with HIV-1 must include one of the FDA-approved
IN inhibitors (Raltegravir, Elvitegravir, Dolutegravir, Bictegravir, and Cabotegravir). As
viral escape mutations have emerged at the active site of IN where these drugs bind, new
potent IN inhibitors with alternative inhibition mechanisms are needed. The ALLINIs
(or Allosteric HIV-1 Integrase Inhibitors) bind at the LEDGF/p75 IBD binding pocket,
away from the IN catalytic site and potently inhibit HIV-1 replication [23]. Upon binding
to their target, they induce a strong and rapid IN hyper-multimerization that disables
its functions [18]. Quinoline-based ALLINIs have been shown to be more potent during
the late replication stage as IN hyper-multimerization interferes with the viral RNA-IN
binding step during HIV-1 maturation causing late-stage effect and particle morphological
defects [32,35]. As these late-phase replication effects are tightly correlated with the IN
multimerization properties of these compounds, FRET-based in vitro assay has been used
by several groups to rank and optimize this class of inhibitors [18,24,31,34].
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Early development of the scaffold by Boehringer Ingelheim has shown that the tert-
butoxy acetic acid side chain in position 3 was optimal as it provides essential hydrogen
bond interactions with the T174 and H171 residues, mimicking the LEDGF/p75 binding
pattern [46]. Thus, this review has focused on the published optimization efforts on the
quinoline scaffold by examining the effects of various substitutions attached at positions 4,
6, 7, and 8.

Substitutions added to position 4 maximize the interaction between the compound and
the hydrophobic pocket defined by the residue pair W132/L102 [22,46]. After position 3,
substitutions at this location have the biggest impact on the compound properties. Sub-
stituted aromatic groups such as chlorobenzyl, mono, or dioxane were very effective in
improving both IN multimerization EC50s and antiviral IC50s [22,46]. Further modifica-
tions aiming to restrict the free rotation of the group at the C4 bond improved the antiviral
potencies even further and led to the synthesis of BI 224436 [46]. This Boehringer Ingelheim
compound has been shown to display excellent pharmacokinetic and toxicologic properties
and has advanced into clinical trials [48].

Large substitutions at position 6 negatively impacted the multimerization properties
of the compounds. As the left edge of the unsubstituted scaffold is already close enough to
establish hydrophobic interaction with the triad A129/A128/T124, anything bigger than a
bromine was measured to be too bulky. Additionally, drug resistance studies have revealed
the IN mutation A128T, which is capable of using such substitution to leverage the ALLINI
out of the pocket. Thus, the position should be left unsubstituted [38].

Substitutions at positions 7 and 8 both aim to improve the multimerization properties
of ALLINIs by extending their reach toward Y226 and W235 of the third IN subunit. Thus,
adding an ortho-substituted phenyl group at position 7 or bromine at position 8 was effective
in improving both IN multimerization EC50s and antiviral IC50s, hinting that additional contact
points with IN could be achieved with these additions [37,38]. These measurements suggest it
could be interesting to test the substitution of these two positions in tandem.

7. Conclusions

The discovery and development of quinoline-based ALLINIs is a perfect example
of complementarity and synergy between research in academia and the pharmaceutical
industry. As both Boehringer Ingelheim and Gilead Sciences, Inc. were very effective in
developing the initial HTS hits into potent compounds with excellent pharmacological
properties, academic research groups, intrigued by the unexpected properties of these
compounds, became key players in unmasking their true mode of actions. Detection of the
IN multimerization properties of those compounds was followed by the discovery of their
potency at a late stage, which eventually led to the observation of their role in inhibiting
the vRNA-IN interactions. As the latter of those effects seems to be an indirect consequence
of the drug-induced aberrant multimerization of IN, those breakthroughs may open a new
frontier in HIV-1 drug discovery: the search for a novel class of inhibitors capable of directly
blocking the IN-vRNA interaction.
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