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Abstract: The Papillomaviridae are a family of vertebrate-infecting viruses of oncogenic potential
generally thought to be host species- and tissue-specific. Despite their phylogenetic relatedness to
humans, there is a scarcity of data on papillomaviruses (PVs) in speciose non-human primate lineages,
particularly the lemuriform primates. Varecia variegata (black-and-white ruffed lemurs) and Varecia
rubra (red ruffed lemurs), two closely related species comprising the Varecia genus, are critically
endangered with large global captive populations. Varecia variegata papillomavirus (VavPV) types
−1 and −2, the first PVs in lemurs with a fully identified genome, were previously characterized
from captive V. variegata saliva. To build upon this discovery, saliva samples were collected from
captive V. rubra with the following aims: (1) to identify PVs shared between V. variegata and V. rubra
and (2) to characterize novel PVs in V. rubra to better understand PV diversity in the lemuriform
primates. Three complete PV genomes were determined from V. rubra samples. Two of these PV
genomes share 98% L1 nucleotide identity with VavPV2, denoting interspecies infection of V. rubra
by VavPV2. This work represents the first reported case of interspecies PV infection amongst the
strepsirrhine primates. The third PV genome shares <68% L1 nucleotide identity with that of all PVs.
Thus, it represents a new PV species and has been named Varecia rubra papillomavirus 1 (VarPV1).
VavPV1, VavPV2, and VarPV1 form a new clade within the Papillomaviridae family, likely representing
a novel genus. Future work diversifying sample collection (i.e., lemur host species from multiple
genera, sample type, geographic location, and wild populations) is likely to uncover a world of
diverse lemur PVs.

Keywords: Papillomaviridae; Varecia rubra; lemur

1. Introduction

Papillomaviruses (PVs) are double-stranded DNA viruses with icosahedral capsids
that infect diverse vertebrates, including mammal, avian, fish, and reptile species [1,2].
Depending on the PV type, infected hosts can experience a variety of disease outcomes
ranging from asymptomatic cases—the majority of PV infections—to benign papillomas
and even progressing to invasive cancer [3–6]. PV genomes are ~6–8 kb in size and encode
at least four proteins (i.e., two early proteins—E1, E2, and two late proteins—L1, L2) with
high conservation of the L1 capsid protein across PVs [1,7]. PVs have co-evolved with their
hosts and are generally recognized as host species- and tissue-specific [4,8]. However, the
assumption that PVs are primarily host species-specific is being increasingly challenged
by the detection of several PV types in species other than their host species [9]. While
host–pathogen co-evolution, intra-host duplication, adaptive radiation, and recombination
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have been found to be drivers of PV evolution, mounting evidence of interspecies infection
suggests that host-switching could also serve as a crucial evolutionary force in the history
of PVs [9–14].

Cross-species PV infections leading to tumor disease are described for several PVs,
especially those in the genus Deltapapillomavirus, including bovine papillomavirus (BPV)
types −1, −2, or −13 in equine sarcoids [15–17], BPV-1 in captive tapir sarcoids [18], BPV-2
in bladder tumors of water buffalo [19], BPV-1 in cutaneous and perivulvar fibropapillomas
in water buffalo [20], and BPV-14 in feline sarcoids in domestic cats and captive African
lions [21,22]. Cross-species experimental inoculation with BPV1 has been shown to induce
fibromas and fibrosarcomas in hamsters and mice [23–25] and oral papillomas in domestic
dogs from coyote oral papillomavirus [26]. Overall, BPVs, in particular, have been repeat-
edly observed to have interspecies hosts with pathogenic effects on new host species. This
may in part be due to the tissue tropism of PVs in the genus Deltapapillomavirus, as they can
infect dermal fibroblasts [27,28].

Beyond BPVs, naturally occurring interspecies PV infection has been seen across
numerous mammalian orders (Artiodactyla, Carnivora, Chiroptera, Lagomorpha, Pri-
mates, and Rodentia) and avian orders (Anseriformes, Charadriiformes, and Passeriformes)
(Figure 1) [9,10,12,13,16,18–22,27–46]. Interspecies PV infection in non-human primates
has only been detected in very closely phylogenetically related species in the same genus.
Four alphapapillomavirus types, Macaca fascicularis papillomavirus (MfPV) types −1,
−8, −11, and Macaca mulatta papillomavirus (MmPV) −1, have been detected across
rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). Addi-
tionally, Pan paniscus papillomavirus 1 (PpPV1) was isolated from both chimpanzees (Pan
troglodytes) and bonobos (Pan paniscus), although it is unclear which species served as the
first host of PpPV1 [35].

Only 16 out of >390 non-human primate species have been screened for PVs (Table 1).
Acknowledging ongoing taxonomic adjustments across all non-human primate lineages,
the New World monkeys (>100 species), Old World monkeys (>130 species), and lemurs
(>100 species) are the most speciose non-human primate lineages [47–50]. For understand-
ing PV diversity in these vast lineages, just 8 complete PV genomes across 5 New World
monkey species are available on NCBI, while 23 complete PV genomes across 6 Old World
monkey species are currently available (Table 1). Further, despite lemuriforms comprising
~20% of primate species, only three complete genomes of PVs in lemurs from just one host
species had been characterized prior to this study.

We previously identified two PV types, Varecia variegata papillomavirus (VavPV) −1
and −2, from captive black-and-white ruffed lemur (Varecia variegata variegata) saliva sam-
ples, providing the first complete genomes of PVs in the lemuriform primates [51]. VavPV1
and VavPV2 share <64% L1 identity with one another and <66% L1 identity with all other
PV L1 sequences. VavPV1 and −2 formed a distinct clade within the Firstpapillomavirinae
sub-family and likely represent a novel genus [51].

As interspecies PV type infection in primates has been detected in sister species, we
obtained saliva samples from red ruffed lemurs (Varecia rubra), the only other species
within the Varecia genus. Our primary goals were (1) to identify PVs shared between V.
variegata and V. rubra and (2) to identify any new PVs in V. rubra to better understand
PV diversity in the lemuriform primates using viral metagenomics. Occurring in the
eastern rainforests of Madagascar, V. variegata and V. rubra are diurnal, frugivorous lemurs
vital to their ecosystems as seed dispersers and pollinators [47]. Both are classified as
critically endangered and, thus, have extensive global captive populations [52,53]. The
work presented here is relevant for the health of captive Varecia populations and for forming
a baseline of our knowledge of lemur PVs from which future comparisons between captive
and wild Varecia PVs will be possible.
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Figure 1. Summary of evidence available throughout the literature and NCBI Virus
(https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ (accessed on 1 September 2023)) of naturally oc-
curring interspecies infection in mammalian and avian orders. PVs are connected via solid vertical
lines to the animal species they have been found to infect. Abbreviations and references for PV types
are as follows: Anas platyrhynchos papillomavirus 1 (AplaPV1) [10], bovine papillomavirus types
−1, −2, −7, −8, −13, −14 (BPV1, BPV2, BPV7, BPV8, BPV13, BPV14) [12,16,18–22,28–33,39,41–45],
Eptesicus serotinus papillomavirus types −2, −3 (EsPV2, EsPV3) [13], Fringilla coelebs papillo-
mavirus 1 (FcPV1) [34], Larus smithsonianus papillomavirus 1 (LsmiPV1) [10], Macaca fascicularis
papillomavirus types −3, −8, −11 (MfPV3, MfPV8, MfPV11) [38], Macaca mulatta papillomavirus 1
(MmPV1) [38], Ovis aries papillomavirus type −1, −2, −4 (OaPV1, OaPV2, OaPV4) [27,40,46], Pan
paniscus papillomavirus 1 (PpPV1) [35,36], Phodopus sungorus papillomavirus type 1 (PsuPV1) [9],
Sylvilagus floridanus papillomavirus 1 (SfPV1) [37], Varecia variegata papillomavirus 2 (VavPV2).

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
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Table 1. For each non-human primate (NHP) superfamily, the approximate number of extant
NHP species is compared to the NHP species with PV sequences, including both partial sequences
and complete genomes, available in NCBI. Additionally, the number of complete PV genomes
available in NCBI for each primate superfamily is displayed. The data, obtained from NCBI Virus
(https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ (accessed on 18 November 2023)), emphasizes the
scarcity of PV data across speciose NHP lineages. The six PV genomes available for lemurs include
the three genomes characterized previously and the three genomes described in this study.

NHP Superfamily Approx. Number of Extant
Species

Species with PV
Sequences (Partial and

Complete) in NCBI

Number of
Complete PV

Genomes
Available in NCBI

Ceboidea
(New World Monkeys) >100

Alouatta caraya
Alouatta guariba

Callithrix penicillata
Saimiri sciureus

Sapajus sp.

8

Cercopithecoidea
(Old World Monkeys) >130

Colobus guereza
Macaca fascicularis

Macaca fuscata
Macaca mulatta
Papio hamadryas

Piliocolobus tephrosceles

23

Hominoidea
(Apes, excludes humans) ~25

Gorilla gorilla
Pan paniscus

Pan troglodytes
4

Lemuroidea
(Lemurs) >100 Varecia variegata

Varecia rubra 6

Lorisoidea
(Lorisids & Galagos) >25 - 0

Tarsioidea
(Tarsiers) >10 - 0

2. Materials and Methods

To characterize additional novel lemur PVs and to identify potential interspecies
infection by PV types, two saliva samples from captive red ruffed lemurs (Varecia rubra) were
collected at the Duke Lemur Center in Durham (NC, USA). The sampled lemurs appeared
healthy with no apparent symptoms and continued to be monitored by veterinary staff.
V. rubra saliva samples were collected under IACUC #A161-21-08 in August–September
2022. Saliva was obtained by allowing the lemurs to chew on a SalivaBio Children’s Swab
(Salivametrics, Carlsbad, CA, USA). Swabs saturated with saliva were placed within a
SalivaBio Swab Storage Tube (Salivametrics, Carlsbad, CA, USA) and centrifuged to collect
the saliva. Saliva samples were stored at −80 ◦C until viral DNA extraction.

Immediately prior to extraction, SM buffer (0.1 M NaCl, 50 mM Tris-HCl [pH 7.4])
was added to each saliva sample to obtain a final volume of 400 µL. Viral DNA was
extracted from 200 µL of diluted sample using the High Pure Viral Nucleic Acid Kit (Roche
Diagnostics, Indianapolis, IN, USA), and circular DNA in the extract was amplified using
the Illustra TempliPhi Kit (GE Healthcare, Chicago, IL, USA). Illumina sequencing libraries
were generated using the Illumina DNA Prep Kit (with Tagmentation) and sequenced on
an Illumina HiSeq 2500 at Psomagen Inc. (Rockville, MD, USA).

Paired-end reads (2 × 150 bp) were trimmed using Trimmomatic-0.39 [54] and de
novo assembled with MEGAHITv.1.2.9 [55]. After circular contigs were identified based on
terminal redundancy, contigs >1000 nts were analyzed for viral-like sequences using Dia-
mond [56] BLASTx against a local viral protein RefSeq database (release 220; downloaded
September 2023). Potential PV-like contigs were confirmed using BLASTn [57]. Genomes
were annotated using CenoteTaker2 [58] and refined with PaVE [59].

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
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To determine the genera of the PV genomes characterized in this study, datasets of
papillomavirus E1, E2, and L1 protein sequences were constructed using PaVE reference
and non-reference sequences. The datasets were aligned with the Varecia PVs using MAFFT
v7.113 [60] in AUTO mode. Alignments were trimmed with TrimAL [61] (0.2 gap threshold).
ProtTest 3 [62] was used to determine the best-fit amino acid substitution models for each
dataset. A partitioned maximum likelihood phylogenetic tree of concatenated E1 + E2 + L1
amino acid sequences was built using IQ-TREE 2 [63] with partition models LG + I + G for
E1, LG + I + G + F for E2, and LG + I + G + F for L1. The tree was rooted with avian and
reptilian PV sequences and edited in iTOL v6 [64].

Mitochondrial genomes were annotated using MITOS Web Server [65]. For mitochon-
drial genome comparisons, available mitochondrial genomes for lemur species within the
Lemuridae family (and Indriidae as an outgroup) were aligned with mitochondrial genomes
characterized in this study using MAFFT [60]. The mitochondrial genome maximum
likelihood phylogenetic tree was built using IQ-TREE 2 with ModelFinder and ultrafast
bootstrap (UFBoot) approximation (1000 bootstrap replicates) and edited in iTOL v6 [64].

3. Results

Our viral metagenomic workflows enabled the identification of three circular contigs,
ranging in size from 7452 to 7770 nts in length, that represented complete PV genome
sequences based on terminal redundancy. The mapped reads have been deposited at SRA
under SRR26324874 and SRR26324875. The genome sequences are deposited in GenBank
under accessions OR734654-OR734656. For OR734654 (7452 nts), the depth of coverage is
110× with 5463 reads, and for OR734655 (7770 nts) and OR734656 (7770 nts), the depth is
196× and 296× with 10134 and 15325 reads, respectively.

All three genomes contain open reading frames for L1, L2, E1, E2, E6, and E7 (Figure 2).
As PV-type demarcation is determined by L1 sequence similarity <70%, we compared L1
nucleotide identity between the V. rubra-derived papillomavirus L1 sequences characterized
in this study and the previously characterized VavPV1 and VavPV2 L1 sequences detected
from V. variegata.
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Figure 2. Annotations of complete PV genomes characterized from V. rubra saliva. Two of the
complete genomes can be classified as VavPV2, a PV previously determined from V. variegata saliva.
One of the complete genomes belongs to a new type and species and has been named Varecia rubra
papillomavirus 1 (VarPV1).

OR734655 and OR734656 share 100% L1 nucleotide identity and were isolated from
twin V. rubra lemurs M1 and J1, female lemurs housed together at the time of sampling.
Further, OR734655 and OR734656 share 98% L1 nucleotide identity with VavPV2. Therefore,
these two PVs belong to the same PV type (i.e., VavPV2). As VavPV2 has been found in two
V. rubra and two V. variegata female individuals’ saliva from the Duke Lemur Center, this
serves as a case of interspecies PV-type infection between non-human primate sister species.
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The third complete PV genome sequence identified in V. rubra, OR734654, shares <68%
L1 nucleotide identity with VavPV1, VavPV2, and all other PVs. Based on the PV species
demarcation threshold of 70%, this PV represents a novel type which we have named
Varecia rubra papillomavirus (VarPV) type 1. VarPV1 is the third PV type and species to
be characterized in the lemuriform primates. Furthermore, VarPV1 was identified in the
individual M1 from which we also identified VavPV2, thus suggesting an oral co-infection.

In the E6 and E7 proteins of VarPV1 and VarPV2 from V. rubra, we identified the con-
served zinc-binding domains (CxxC) (Figure 3). Unlike the pRB-binding motif (Lx[C/S]xE)
identified in VavPV1 from V. variegata, we were unable to identify this motif in VarPV1 or
VavPV2. We also identified the conserved regions 1 and 2 in VarPV1 and VavPV2 that are
homologous to those in the E1A protein of human adenovirus 5 (family Adenoviridae) and
the large tumor antigen of simian virus 40 (family Polyomaviridae) [66].
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Figure 3. Summary of the conserved zinc-binding motifs (CxxC) in the E6 and E7 proteins,
and conserved regions 1 and 2 and pRB-binding motif (Lx[C/S]xE) in the E7 protein of all
lemur papillomaviruses.

Based on their E1 + E2 + L1 protein sequence phylogeny, the two VavPVs and VarPV1
form a new cluster within a well-supported clade with sequences in the genera Dyoxipapillo-
mavirus, Gammapapillomavirus, Pipapillomavirus, Taupapillomavirus, and Treisetapapillomavirus,
in addition to six non-classified PV types, including BPV19, BPV21, and BPV27 (Figure 4).
Overall, due to the divergence of the Varecia PV cluster from known PV genera, this new
cluster likely represents at least one new genus.

The results presented in this study highlight the use of viral metagenomics for de-
termining the complete genomes of viruses potentially relevant to endangered species’
health. In addition, metagenomic protocols employing rolling circle amplification are
also ideal for the determination of mitochondrial genomes. Two complete mitochondrial
genomes were characterized in V. rubra saliva from individuals M1 and J1, which are female
twins. The raw reads are deposited under SRA accessions SRR26324872 and SRR26324873,
and genomes are deposited in GenBank under accessions OR711366 and OR711367. Both
mitochondrial genomes are 16972 nt in length and share 100% nucleotide identity. The
cytochrome-b (cytb) genes, the gene primarily used for phylogenetic species identification
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in lemurs, in both mitochondrial genomes are 1140 nt in length; the same length has been
previously found in V. rubra cytb (accession number AY441450). Although sequences of
V. rubra mitochondrial genome cytb and D-loops [67] have been published, there were
no complete V. rubra mitochondrial genomes available on NCBI prior to this study. The
complete mitochondrial genomes of V. rubra share 96.8% nucleotide identity with V. var-
iegata (accession numbers AB371089 and KJ944176), emphasizing the close evolutionary
relationship between the two species (Figure 5).
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4. Discussion

Ongoing habitat loss has dramatically impacted Varecia populations in Madagascar.
Additionally, given Varecia’s vital roles in primate evolutionary history and ecosystem
services, large captive populations of around 800 V. variegata and 600 V. rubra are main-
tained globally [53,68]. To maintain healthy captive Varecia populations, understanding the
pathogens that impact them is imperative for the survival of these species. The Duke Lemur
Center in Durham (NC, USA) houses the largest and most diverse population of lemurs
outside Madagascar and is currently home to 13 V. variegata and 12 V. rubra individuals.
The Duke Lemur Center plays an active role in the Species Survival Plans and Population
Analysis and Breeding and Transfer Plans for both V. variegata and V. rubra. Thus, the study
of viruses circulating in captive populations is essential for learning about viral diversity
within Varecia and implementing strategies to reduce the burden of pathogenic viruses that
can be detrimental to their health and conservation.

Although the majority of PV infections are asymptomatic, information about PVs
is relevant for lemur health as some types have been associated with invasive cancer in
humans and non-human primates. In our previous work, we determined the first complete
genomes of PVs in lemurs, VavPV1 and VavPV2, in V. variegata saliva. In this study, we
present a case of interspecies infection by VavPV2 in V. rubra. In addition, a new PV
type has been identified in V. rubra and termed VarPV1. In non-human primates, the two
previously known instances of interspecies PV infection were between Macaca mulatta
and M. fascicularis, and Pan paniscus and P. troglodytes (Figure 1). As non-human primate
interspecies infection has only been detected in Old World monkeys and apes thus far, this
study represents the first characterization of interspecies PV infection in strepsirrhines.

The Varecia PVs form a distinct cluster, likely representing at least one new genus,
within a well-supported clade consisting of numerous established genera (Figure 4). In
the genera Dyoxipapillomavirus and Pipapillomavirus, respectively, BPV7 and Phodopus
sungorus papillomavirus (PsuPV)-1 types are members of this clade known to be capable
of interspecies infection and tumor induction. BPV7 has been isolated from cutaneous
papillomas in cattle [33], while PsuPV1 infection has been found to occasionally result
in oral squamous cell carcinoma in hamsters [9]. Based on health exams completed by
the Duke Lemur Center veterinary staff, the VavPVs and VarPV1 infections appear to be
asymptomatic. Prior to this study, there were no instances of interspecies infection between
non-human primates in the aforementioned clade, as MfPV3, MfPV8, MfPV11, MmPV1,
and PpPV1 (Figure 1) all belong to the Alphapapillomavirus genus. This study expands our
understanding of the diversity of PVs that can undergo interspecies infection in primate
sister species.

Interspecies PV infection in non-human primates has thus far only been detected in
evolutionarily closely related species within the same genus. V. variegata and V. rubra are
closely related lemur species comprising the Varecia genus within the Lemuridae family. V.
rubra was previously considered a subspecies of V. variegata until evidence supported its
classification into a separate species, beginning in 2001 [69,70]. In Madagascar, the range
of V. rubra is primarily restricted to the Masoala Peninsula in northeastern Madagascar,
whereas that of V. variegata stretches through rainforest parcels from northeastern to south-
eastern Madagascar [52,53,71]. Providing evidence for their evolutionary relatedness, the
geographic ranges of V. variegata and V. rubra have historically overlapped, resulting in
reports of potential hybridization throughout time, based primarily on intermediate fur
patterns, with hybridization likely to have been a rare occurrence [70,71]. V. variegata and V.
rubra hybrids have also occurred in the past for the captive population studied, as Varecia
were allowed to hybridize in the earlier history of the Duke Lemur Center, when it was
known as the Duke University Primate Center, resulting in 53 hybrids (including 50/50,
7/8th, and 15/16th hybrids), 12 of which did not survive (stillborn or died shortly after
birth). Although the M1 and J1 V. rubra individuals focused on for this study have no
known level of hybridization in their pedigree, it is possible that relatives of M1 and J1
had interacted with hybrid individuals in the past. V. rubra and V. variegata’s close genetic
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relationship and exposure to one another through a captive environment are likely the
drivers of the interspecies PV infection seen in this study.

Future work will delve more deeply into PV diversity across lemuriform primates
through the sampling of additional host species, body sites (e.g., skin, anogenital region),
and populations (i.e., wild versus captive). The same lemur individuals found to harbor
PVs may be targeted for additional sampling across body regions to understand the cell
tropism of VavPV1, VavPV2, and VarPV1.

5. Conclusions

In addition to expanding the known diversity of PVs, this study represents the first
case of interspecies PV infection in strepsirrhines (VavPV2) and characterizes the third
complete PV genome isolated from lemurs (VarPV1). The diversity of PVs characterized
from two highly evolutionarily related lemur species, V. variegata and V. rubra, is likely
just a glimpse into the undiscovered PV diversity circulating in over 100 species of lemurs.
As V. variegata and V. rubra are critically endangered species with extensive global captive
populations, understanding viral diversity in the Varecia genus is vital for the continued
success of maintaining the health of captive populations and to provide a foundation for
future comparisons to viruses found in wild Varecia. Lastly, the work here shows the
value of viral metagenomics in recovering the complete genomes of viruses relevant to
animal health, particularly for animals in which remarkably limited viral research has
been conducted.
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