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Abstract: Epstein–Barr (EBV) is a human γ-herpesvirus that undergoes both a productive (lytic) cycle
and a non-productive (latent) phase. The virus establishes enduring latent infection in B lymphocytes
and productive infection in the oral mucosal epithelium. Like other herpesviruses, EBV expresses its
genes in a coordinated pattern during acute infection. Unlike others, it replicates its DNA during
latency to maintain the viral genome in an expanding pool of B lymphocytes, which are stimulated
to divide upon infection. The reactivation from the latent state is associated with a productive gene
expression pattern mediated by virus-encoded transcriptional activators BZLF-1 and BRLF-1. EBV is
a highly transforming virus that contributes to the development of human lymphomas. Though viral
vectors and mRNA platforms have been used to develop an EBV prophylactic vaccine, currently,
there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection and EBV-
associated cancers. Natural products and bioactive compounds are widely studied for their antiviral
potential and capability to modulate intracellular signaling pathways. This review was intended
to collect information on plant-derived products showing their antiviral activity against EBV and
evaluate their feasibility as an alternative or adjuvant therapy against EBV infections and correlated
oncogenesis in humans.

Keywords: Epstein–Barr virus; natural antivirals; human oncogenic virus

1. Introduction

EBV commonly infects people in developed and developing countries. Most cases are
asymptomatic, although infectious mononucleosis can manifest in individuals, particularly
as the age of infection increases. EBV infects epithelial cells first, then spreads to B cells
in lymphoid tissue, establishing lifelong latent infection [1]. Immortalized B cells with
EBV have oncogenic potential, leading to cell cycle progression and transformation events
linked to several cancers [2]. While T cells usually regulate EBV proliferation, immunocom-
promised individuals may lack this control, associating latent EBV infection with cancers.
No specific FDA or EMA-approved anti-EBV drug exists, but a combination of standard
antivirals and immunomodulators has shown effectiveness. However, accumulating epi-
demiological, serological, and virological evidence substantiates the involvement of EBV
in the etiology of multiple sclerosis (MS). Recent extensive population-based studies pro-
vide compelling evidence that EBV infection is probably a prerequisite for developing the
disease [3]. Therefore, discovering novel, potent, and safe antiviral agents targeting virus
particles and cell response to viral infection remains a daunting challenge. The therapeutic
use of natural compounds to treat various diseases dates back to ancient times, and more
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formulations are still used today as supportive medicine [4]. Their activity is attributable to
secondary metabolites isolated and characterized as bioactive compounds. Their antiviral
activity was an important revelation because viral infections and the long-term prevalence
of drug resistance remain a worldwide problem that cannot be underestimated. Numerous
natural compounds have been screened and identified as inhibitors targeting various steps
of viral replication, such as the entry, uncoating, genome replication, late gene expression,
assembly, exit, and cellular processes required for virion production [5]. The advantage
of their use lies in the low toxicity and availability of the products and in the lack of drug
resistance phenomena. At the same time, many natural compounds and pure metabolites
exhibited potent inhibitory activity in vitro, but they were much less effective in vivo due to
absorption and metabolic modification phenomena [6]. However, natural products remain
the best resource for future development as potent and safe antiviral formulations. The
review summarizes EBV pathogenesis, reactivation, and its role in related diseases, provid-
ing updates on natural inhibitors targeting the EBV lytic cascade and cellular pathways
associated with oncogenesis.

2. EBV-Associated Disorders and Antiviral Therapy

EBV, discovered over 50 years ago, causes latent infection, efficiently infecting the
nasopharyngeal mucosa and B lymphocytes and leading to their immortalization. In
immunocompetent individuals, most infected cells are eliminated by cytotoxic lymphocytes
after acute infection, with a small percentage of B cells transitioning through different
latent states (pre-latent, latency III, and latency I). Reactivation of the infection involves
an interplay between lytic and latent cycles, contributing to EBV-associated diseases [7].
EBV-associated carcinogenesis is a complex process, activating oncogenes encoded by
the virus. It transforms B-lymphocytes into lymphoblastoid cell lines (LCLs), expressing
latent genes and microRNAs, evolving in carcinogenesis. Proteins like LMP1 and LMP2A
activate signaling pathways in cell cycle progression. EBNA proteins, including EBNA2,
EBNA3A, and EBNA3C, manipulate cell cycle regulators, inhibit apoptosis, and modulate
immune responses, contributing to oncogenesis. The BHRF1 miRNA is implicated in B cell
transformation, while EBNA-LP cooperates with EBNA2 in expressing viral oncogenes.
EBV is associated with several cancers, each exhibiting different latency programs. Burkitt
lymphomas (BL), nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), and Hodgkin’s
lymphoma (HL) express specific latency programs [8]. The virus is linked to MS, with cross-
reactive antibodies suggesting molecular mimicry as a mechanism for MS pathology [3].

Therapeutic strategies for EBV-associated malignancies include antivirals, lytic cycle
induction, small molecule inhibitors, immunostimulators, and vaccines. Immune check-
point therapies show promise. Effective antivirals remain elusive, but small molecule
inhibitors targeting EBNA1, such as VK-2019, are promising and undergoing clinical trials
for advanced nasopharyngeal carcinoma. Adoptive cell therapy involving engineered
T-cell receptors and CAR T cell therapy for EBV proteins is under investigation [9–13].

The absence of FDA-approved vaccines underscores the need for prophylactic mea-
sures. Various vaccines are explored, including recombinant envelope protein, live recom-
binant, and mRNA vaccines [14,15]. Drugs like JQ1, cimetidine, and antiretrovirals show
anti-EBV activity by presenting different approaches to inhibit EBV replication [16–22].
Further research and clinical studies are crucial for validating efficacy and safety across
diverse patient populations.

2.1. EBV Entry in B and Epithelial Cells

The EBV virion, with a diameter of about 150–170 nm, is composed of an icosahedral
nucleocapsid with 162 capsomers surrounded by an envelope. The viral genome comprises
about 170 kb of double-stranded DNA [8]. Viral surface glycoproteins are responsible
for recognizing and binding to cellular receptors and consequent membrane fusion. EBV
possesses a wide range of glycoproteins, such as gp350, gp42, gH, gL, and gB [23]. Since the
entry mechanism of EBV is much more sophisticated, many receptors involved in infecting
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different cell types have been identified. During primary infection, the virus crosses
the mucosal epithelial cells by transcytosis and then infects B cells in the submucosal
secondary lymphoid tissues [24]. The different cellular targets allow differences between
the mechanisms underlying EBV attack on B lymphocytes and epithelial cells. Indeed, B
lymphocytes express CD21/CD35 receptors, also known as complement receptor type 2
and complement receptor type 1 (CR2/CR1), mainly expressed in lymphocytes [25–27].
The interaction between the EBV envelope glycoprotein, gp350/220, and CD21/CD35 is
responsible for the binding and triggers a signaling cascade, allowing the penetration of
the virion in B cells [26]. Thus, gH, gL, and gp42 form a heterotrimer that binds to human
leukocyte antigen (HLA) class II molecules (HLA-II) on B cells, leading to a conformational
change and to the activation of gB, which plays a direct role in membrane fusion [23,28–33].
Unlike B cells, epithelial cells do not constitutively express CD21 or CD35. Thus, the
binding is guaranteed by the interaction of EBV glycoprotein BMRF2 with integrins β1,
α5, and α3 [34], and the consequent entry of virion involves various cellular receptors
which interact with gH/gL or gB [35]. BBRF2 is an EBV tegument protein with putative
homologs in all three herpesvirus subfamilies [36]. The interaction between BBRF2 and
BSRF1 tegument proteins prevents BSRF1 degradation and increases viral infectivity [35].
Neuropilin-1 (NRP1) is a multifunctional protein that acts as a cellular entry cofactor for
different viruses [37]. NRP1 has been reported to interact with gB and mediate the EBV
infection. Ephrin receptor 2 type A (EphA2), which belongs to the largest family of receptor
tyrosine kinases, has been recognized as a receptor for many pathogens and has been shown
to bind gH/gL complex during the infection of epithelial cells by EBV [38–40]. Following
viral attachment to cellular receptors, the virion internalizes and delivers its epigenetically
naïve linear DNA genome to the nucleus [41]. The circularization of the viral DNA is one of
the first events useful to protect the DNA ends from degradation and minimize induction
of the DNA damage response of the infected cell. Many lytic and latent viral genes are
expressed during the first hours of infection. Approximately ten days later, EBV latent
gene expression predominates, and lytic gene expression becomes almost undetectable. In
this scenario, the latency phase is established. Under the influence of appropriate stimuli,
the expression of virus-encoded transcriptional factors, BZLF-1 and BRLF-1, activates a
productive gene expression pattern in the replication of the viral genome and progeny
virus genesis (Figure 1) [42].

2.2. The Role of EBV Proteins in Cell Cycle Progression and Oncogenesis

EBV is associated with specific human cancers such as Burkitt’s lymphoma, nasopha-
ryngeal carcinoma, and gastric cancer [8]. These tumors express latent EBV antigens and a
viral genome synchronized with host genome replication, dependent on chromosomal initi-
ation factors ORC2 and Cdt1 [42–44]. While EBV in cancer cells is mainly in the latent state,
the lytic cycle of the virus contributes to tumor development by promoting inflammation
and angiogenesis via the secretion of cytokines and growth factors like IL-10, IL-8, TGF-β,
and VEGF [45,46]. During lytic cycle reactivation, the immediate-early (IE) lytic genes,
BZLF1 and BRLF1, are expressed, activating early genes and EBV genome replication with
a rolling-circle mechanism [45,47]. EBV-associated carcinogenesis is a multistep process
in which oncogenes encoded by EBV play a crucial role. The virus transforms human
B-lymphocytes into LCLs expressing various latent genes, including Epstein–Barr virus
nuclear antigens (EBNA 1, 2, 3A, 3B, 3C, and EBNA leader protein), latent membrane
proteins (LMP-1 and LMP-2), small RNAs (EBER1 and EBER2), and microRNAs [8]. LMP1
and LMP2A activate signaling pathways involved in cell cycle progression, including NF-
κB, JNK, p38 MAPK, JAK/STAT, and PI3K/Akt [48–51]. The carboxy-terminal activating
region 1 (CTAR1) of LMP1 induces the expression of EGFR and TRAF1, promoting B cell
proliferation and differentiation by deregulating CDK2 and Rb, involved in G1/S cell cycle
progression [52]. EBNA 3A/C inhibits the transcription of CDK inhibitors, p14ARF and
p16INK4A, neutralizing the tumor suppressor gene Rb and maintaining constitutive cell
cycle activation [53,54]. It also directly interacts with the C-terminus region of p53 by
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modulating its transcriptional and apoptotic activities [55]. The inactivation of the BHRF1
miRNA results in B cell transformation and LCL growth, suggesting its role in oncogene-
sis [56–61]. EBNA2 induces transcription of the cellular oncogene MYC and impairs EBV
lytic replication by inducing expression of the methylcytosine dioxygenase Tet 2 (TET2),
blocking methylation sites for BZLF1 binding [62–64]. The EBNA leader peptide (EBNA-
LP) cooperates with EBNA2 in expressing viral oncogenes, including LMP1 [65]. EBNA3A
and EBNA3C rescue infected cells driven into a proliferative state by EBNA2-dependent
MYC expression by negatively regulating pro-apoptotic proteins BIM and p16INK4a [66],
preventing the switch to lytic replication by repressing BLIMP1 expression [67]. EBNA3B
ensures sufficient immune cell infiltration among EBV-transformed B cells to limit lym-
phoma development [68]. EBV-associated carcinogenesis involves immunosuppressive
conditions, HIV-1 co-infection and transplantation [69], the activation of the inflammatory
system, and genetic or epigenetic predisposition and alterations in the host genome [70].
The virus induces B cells to become activated lymphoblasts by differentiating into resting
memory B cells where the virus persists. This differentiation occurs via the germinal center
(GC) reaction, representing a high-risk region for genetic instability and antiapoptotic
signals leading to B-cell lymphoma [71,72].
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following naïve B-cell infection. (4) LCLs expressing nuclear proteins (EBNA-1, EBNA-2, EBNA-3A, 
EBNA-3B, EBNA-3C and EBNA-LP), membrane proteins (LMP-1, LMP-2A and LMP-2B), small 
RNAs (EBER1 and EBER2) and transcripts (BARTs). (5) The expression of BZLF1 is crucial to switch 
from latent to lytic infection. In red, antiviral drugs currently in use against EBV target several 
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Figure 1. EBV infection and antiviral treatment. (1) Entry of EBV into the oropharyngeal epithelium
mediated by the interaction between integrins on cell membranes and BMRF2 viral glycoprotein.
(2) The infection of naïve B cells by the interaction of specific receptors on the B cell surface (CD21/CD35)
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with glycoproteins (gp350/220) on the viral surface. This interaction is a key step in the viral
entry process and sets the stage for subsequent events in the viral life cycle within the host cell.
(3) Activation of intracellular signals such as apoptosis, cell proliferation, and angiogenesis following
naïve B-cell infection. (4) LCLs expressing nuclear proteins (EBNA-1, EBNA-2, EBNA-3A, EBNA-3B,
EBNA-3C and EBNA-LP), membrane proteins (LMP-1, LMP-2A and LMP-2B), small RNAs (EBER1
and EBER2) and transcripts (BARTs). (5) The expression of BZLF1 is crucial to switch from latent to
lytic infection. In red, antiviral drugs currently in use against EBV target several mechanisms.

3. Natural Therapeutic Compounds Targeting EBV Infection

The categorization of antiviral agents into virucides, chemotherapeutic agents, and
immunomodulators is a common classification based on their mechanisms of action. Viru-
cides are substances or agents that directly inactivate or destroy viruses. They act by
disrupting the viral structure or interfering with essential viral functions. Otherwise, an-
tiviral chemotherapeutic agents are drugs designed to target viral replication processes
specifically. These drugs interfere with the virus’s ability to replicate or spread within the
host. Several antiviral drugs may target various stages of the viral life cycle, such as viral
entry, genome replication, or virion release. Lastly, immunomodulators are substances that
modulate or regulate the immune system’s response to viral infections. They can enhance
or suppress immune functions to achieve a balanced and effective antiviral response. Im-
munomodulators are often used to treat viral infections by either boosting the immune
system’s ability to fight the virus or preventing excessive immune responses that can lead
to inflammation and tissue damage [73]. It is important to note that these categories are
not mutually exclusive, and some antiviral agents may exhibit properties of more than
one category. Several natural compounds have been studied for their potential antiviral
properties. It is important to note that while these compounds may exhibit antiviral activity
in in vitro studies, their effectiveness in treating viral infections in humans may differ. Here
are some examples of natural compounds with reported antiviral properties (Figure 2).
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3.1. Natural Products Targeting EBV Binding

Viral entry generally occurs either through direct fusion of the virus with the surface
membrane or by endocytic uptake [74]. Although the viral attachment to host cells rep-
resents a significant phase for productive infection, low numbers of compounds isolated
from medicinal plants are known to inhibit the early stages of EBV infection (Table 1). It
was reported that the quercetin isolated from licorice interferes with the recognition of
EBV receptors such as CD21, CD35, and HLAII in AGS cells) and consequently blocks EBV
entry [75]. In addition, the treatments of quercetin or isoliquiritigenin limit EBV infection in
coinfected gastric adenocarcinoma cells and lymphoblastoid cells containing EBV. Further,
it was reported that glycyrrhizic acid (GL), a component of licorice root (Glycyrrhizae radix),
is active against EBV replication in superinfected Raji cells in a dose-dependent manner and
interferes with the early step of EBV replication cycle [76]. The potential role of genipin as a
natural crosslinker for proteins and its impact on the interaction between EBV attachment
proteins and cellular receptors is an interesting hypothesis [77]. Genipin may bind to EBV
attachment proteins such as gp350 and gp42. These viral proteins are involved in the initial
stages of EBV infection, particularly in attaching to host cells. If genipin interferes with the
proper function of these proteins, it could disrupt the ability of the virus to attach to host
cells. Further, extracellular genipin may bind to cellular EBV receptors such as CD21 and
CD35. Doing so might block these cellular receptors from interacting with EBV attachment
proteins. This interference prevents the virus from effectively attaching and entering into
host cells [78]. In silico analysis underscores the potential of bruceantin, belonging to the
family of triterpenes, and epigallocatechin-3-gallate (EGCG), major green tea catechin, as
antiviral agents targeting the gH protein of EBV [79]. EGCG is known to influence the
properties of viral envelopes in other viruses, such as influenza and herpes simplex virus
(HSV) [80] and reduce the attachment of CHIKV and HCV to target cells [81,82]. These data
suggest a broad-spectrum antiviral potential for EGCG, impacting various stages of the
viral life cycle. Borenstein et al., 2020 demonstrated that ginkgolic acid, at a concentration
of 100 µM, effectively prevented EBV membrane fusion. In particular, it has been described
as an inhibition of the viral fusion glycoprotein gB that prevents EBV reactivation [83].

Table 1. Natural products targeting EBV binding.

Plant Substance Class Target References

Licorice Quercetin Flavonoids CD21, CD35 and HLAII
EBV receptor Lee, M. et al., 2015 [75]

Glycyrrhizae
radix Glycyrrhizic acid Pentacyclic

triterpenoid
Interference with early step

of EBV replication Lin, J.-C. 2003 [76]

Gardenia
jasminoides Genipin Monoterpenoids

gp350 and gp42
attachment proteins, and

cellular receptors

Liu, H. et al., 2013
Son, M. et al., 2015 [77,78]

- Bruceantin Secotriterpenoid gH protein Jakhmola, S. et al., 2022 [79]

Green tea Epigallocatechin-3-gallate Flavonoid gH protein Jakhmola, S. et al., 2022 [79]

Ginkgo biloba Ginkgolic acid Alkylphenol gB protein Borenstein, et al., 2020 [83]

3.2. Natural Extracts Targeting EBV Lytic Infection and Oncogenesis

During the lytic cycle, EBV produces infectious virions, which can infect new cells.
This mechanism can contribute to the spread of the virus within the host and potentially
facilitate the infection of new target cells [84]. The ability of the virus to generate infectious
particles increases the likelihood of establishing persistent infections. Further, the lytic
phase involves the expression of various viral proteins, interfering with host cell signal-
ing pathways, cell cycle, and cell survival. Some of these proteins may act as effectors
contributing to oncogenesis. The role of EBV infection in tumorigenesis is a complex
and multifaceted phenomenon. While it is true that lytic infection can lead to cell death,
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evidence suggests that the lytic phase of EBV may also promote oncogenesis via different
mechanisms [85]. Specific viral proteins may also play a role in immune evasion, allowing
infected cells to escape detection and elimination by the host immune system. Finally, lytic
infection can induce an inflammatory response, and therefore, chronic inflammation is a
well-known factor in promoting tumorigenesis [86]. Additionally, the lytic phase may influ-
ence the cellular microenvironment, creating conditions favorable for cell transformation
and tumor growth. Consequently, a growing interest is being given to identifying com-
pounds, specifically from natural extracts, that can effectively inhibit EBV lytic replication
and block tumor development (Table 2).

The increased production of free radicals during EBV infection can lead to a radi-
cal chain reaction known as lipid peroxidation, causing damage to cell membranes and
lipoproteins [87]. This cytotoxic and mutagenic phenomenon is associated with oxidative
stress triggered by EBV infection [88,89]. Oxidative stress is related to the secondary lipid
peroxidation products, such as malondialdehyde (MDA) and conjugated dienes (DC),
generated by the decomposition of long-chain polyunsaturated fatty acids [90]. These prod-
ucts activate the transcription factors, including STAT3 and NF-κB [91]. Certain natural
compounds have been found to reduce intracellular oxidative stress induced by in vitro
treatment with TPA (12-O-tetradecanoylphorbol-13-acetate), leading to the inhibition of
EBV replication. A study demonstrated that the treatment with TPA (8 nM) and extracts
from Olea europaea L. var. sativa caused a significant decrease in MDA and DC levels in Raji
cells, showing a protective effect against the induction of the EBV lytic cycle [87]. Eugenia
uniflora extracts were assessed for their inhibitory effect on purified EBV DNA polymerase
induced by phorbol 12-myristate 13-acetate (PMA) [92]. The study identified four principal
compounds: gallocatechin, oenothein B, eugeniflorin D1, and eugeniflorin D2. The com-
pounds showed varying degrees of inhibition, with eugeniflorins D1 and D2 exhibiting
higher activity against EBV DNA polymerase than gallocatechin and oenothein B. The
IC50 values of eugeniflorins D1 and D2 were lower than phosphonoacetic acid ones (PAA),
suggesting their effectiveness in inhibiting EBV DNA synthesis. Nomura et al., 2002 syn-
thesized polyphenol esters composed of gallic acid and ferulic acid, which demonstrated
potent suppression of TPA-induced EBV activation at a concentration of 20 µM in vitro [93].
Zhang et al. [94] assessed the inhibitory effect of chlorogenic acid, protocatechuic acid, and
gallic acid isolated from Ficus hispida L.f. fruits against TPA-induced EBV early antigen
(EBV-EA) activation in Raji cells. These compounds exhibited inhibitory actions against
EBV-EA activation, with IC50 values of 340, 481, and 473 mol ratio/32 pmol TPA [95].
The flavonoid-type compounds luteolin-7-O-β-D-glucopyranoside and apigenin-7-O-[β-D-
apiofuranosyl (1→6)-β-D-glucopyranoside], isolated from Lindernia crustacea (L.) F.Muell.
(Scrophulariaceae) effectively inhibited EBV lytic cycle [96]. In particular, the luteolin-7-O-
β-D-glucopyranoside inhibits EBV lytic cycle at 20 µg/mL concentration. The inhibitory
effect was associated with the downregulation of replication and the transcription activator
(Rta) expression. Unlike, apigenin-7-O-[β-D-apiofuranosyl (1→6)-β-D-glucopyranoside]
completely suppressed EBV virion production at a concentration of 50 µM. It inhibited
EBV reactivation in the lytic cycle by suppressing the activities of the immediate-early gene
Zta (BZLF 1) and Rta promoters [97]. Zta and Rta are essential proteins initiating the EBV
lytic cycle [98,99]. Epigallocatechin-3-gallate (EGCG) has been observed to effectively block
EBV lytic replication within a concentration range of 0.5 to 50 µM [100]. The inhibition
of EBV lytic replication by EGCG has been demonstrated by (i) downregulation of LMP1
expression [100]. (ii) Inhibition of MAPKs/wt-p53 Signal Axis (in AGS-EBV cells) [100];
(iii) Inhibition of JNKs/c-Jun Signal Axis (in p53 mutant B95.8 cells) [100]. These find-
ings suggest that EGCG exerts its inhibitory effect on EBV lytic replication by targeting
LMP1 and modulating specific signaling pathways (MAPKs/wt-p53 and JNKs/c-Jun).
The ability of EGCG to interfere with these molecular pathways highlights its potential
usage as a therapeutic agent against EBV-associated diseases [98,99]). The study of pro-
toapigenone and its analog protoapigenone 1′-O-isopropyl ether indicated their potential
as selective and effective inhibitors of the EBV-lytic replication in EBV-positive Burkitt’s
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lymphoma (P3HR1) cells by impeding the expression of Rta protein [101]. Protoapigenone
1′-O-isopropyl ether was more selective against EBV and less toxic to the cells, making it a
promising candidate for further investigation and development as a potential therapeutic
agent for EBV-associated diseases, particularly in the context of Burkitt’s lymphoma [101].
The selectivity of a compound is crucial in developing effective and safe treatments for viral
infections. Further research and clinical studies are necessary to explore these compounds’
full potential and safety profile in treating EBV infections [98,99,101,102]. Neo-clerodane
diterpenoids from Scutellaria barbata [103] and from Euphorbia milii were reported to have
potential antiviral activity. In particular, the acetone extract of E. milii inhibited the EBV
lytic cycle. Thirteen new entrosane-type diterpenoids (1–13) were isolated from the E. milii
and were evaluated against EBV. Among those, one derivative showed the most potent
inhibitory activity with an EC50 value of 5.4 µM compared to the positive control (+)-
rutamarin (EC50 = 5.4 µM) [99,104]. Lignans, isolated from Saururus chinensis and Litsea
verticillate exhibited an antiviral effect against EBV via inhibition of the lytic cycle along
with other biological activity. Among 28 lignans isolated from S. chinensis, manassantin
B [99,105,106] demonstrated efficacy in blocking the lytic replication of EBV with lower cy-
totoxicity [107]. It has been shown that it targets BZLF1 gene expression by interrupting the
AP-1 signal transduction. Further, it blocks the rapamycin complex 2 (mTORC2)-mediated
phosphorylation of AKT Ser/Thr protein kinase at Ser-473, inhibits protein kinase Cα

(PKCα) phosphorylation at Ser-657 and interrupts the mTORC2-PKC/AKT signaling path-
way. Manassantin B’s ability to interfere with the mTORC2 pathway and AP-1 signal
transduction suggests its potential as an antiviral agent against EBV. By targeting specific
molecular pathways involved in the lytic replication of the virus, manassantin B may help
suppress the expression of key genes like BZLF1, ultimately inhibiting the production of
infectious virions [99,107].

The sulfated polysaccharides found in microalgae have also been reported to have
antiviral activity. For instance, the methanol extracts of Synechococcus elongatus and
Ankistrodesmus convolutus were reported to have low cytotoxicity and a strong antivi-
ral effect against EBV in Burkitt’s lymphoma cells. The antiviral activity was measured
by reducing the cell-free EBV DNA [99,108]. Moronic acid found in Rhus chinensis and
Brazilian propolis inhibited the expression of Rta, Zta, and an EBV early protein. It reduces
the ability of Rta to activate a promoter containing a Rta-response element. Since the
expression of many EBV lytic genes depends on Rta, the treatment of P3HR1 Burkitt’s
lymphoma cells with moronic acid substantially reduces the production of EBV particles
by inhibiting the lytic cycle [99,109]. Astragalus membranaceus extract (thanks to its polysac-
charides) inhibits EBV lytic cycle by suppressing the expression of the immediate–early
protein, including Zta, Rta, and EA-D [99,110]. Henna (Lawsonia inermis L.) leaf powder
and its primary pigment, lawsone (2-hydroxy-1,4-naphthoquinone), showed significant
inhibition (>88%) of EBV-early antigen activation in vitro [99,111]. De Leo et al. demon-
strated that resveratrol, a natural phenolic compound found in many plants and fruits,
strongly induced apoptosis of EBV-positive Burkitt’s lymphoma cells, depending on the
viral latency program. Additionally, resveratrol inhibited EBV reactivation by suppressing
the lytic gene expression, including Rta, Zta, and EA-D. The production of virion was also
reduced in a dose-dependent manner under resveratrol treatment [99,112,113]. Further, the
studies conducted by Lee et al. in 2015 and Hwan Hee Lee et al. in 2016 provide insights
into the distinct effects of quercetin and isoliquiritigenin on EBV infection and associated
cancer. Quercetin showed higher antiviral activity than isoliquiritigenin. Indeed, it plays an
important role in producing EBV progeny viruses from SNU719 cells, upregulates EBV lytic
genes such as BZLF1, BRLF1, and BLLF1, and enhances the frequency of Fp (F promoter)
usage in EBV. Moreover, the abrupt release of a large quantity of EBV progenies triggers
apoptosis. Isoliquiritigenin, on the other hand, significantly upregulates EBV latent genes
such as LMP1, LMP2, EBNA3A, and EBNA1, clearly contributing to the maintenance of
EBV latency in SNU719 cells [75,114]. The ethanolic extract of Andrographis paniculata, and
the compound of interest, andrographolide (at a non-toxic concentration for P3HR1 cells of
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5 µg/mL), showed an antiviral effect against EBV via a mechanism of inhibition that occurs
via blocking the transcription of the immediate–early genes that encode lytic proteins Rta
and Zta [99,115].

The ethanolic extract of Polygonum cuspidatum inhibits the transcription of EBV’s imme-
diate early genes and the expression of lytic proteins Rta, Zta, and EA-D. The primary active
components in P. cuspidatum were reported to be resveratrol and emodin. The effective
concentration of emodin required to inhibit the expression of immediate–early protein by
50% (EC50) obtained from flow cytometry was 4.83 µg/mL (17.87 µM), and its EC50 value
to reduce DNA replication was 1.2 µg/mL [99,116–118]. Cordycepin, an adenosine deriva-
tive found in cordyceps (genus of Ascomycete fungi), has a similar chemical structure to
adenosine; it can be intercalated into RNA molecules and can terminate RNA synthesis. It
was reported to downregulate most EBV genes significantly by reducing EBV genome copy
number by up to 55% in response to 125 µM cordycepin treatment, significantly lowering
LMP2A and EBNA1 in SNU719 cells. Furthermore, cordycepin significantly suppressed
EBV transmission from cell to cell in a coculture [99,119].

Table 2. Natural compounds targeting EBV lytic infection.

Plant Substance Class EBV Target References

Olea europaea L. var.
sativa - MDA and DC Ben-Amor, I. et al., 2021

[87]

Eugenia uniflora
Gallocatechin,

oenothein B, eugeniflorin
D1, eugeniflorin D2

Flavonoid, Polyphenol,
Tannins EBV DNA polymerase Lee, M. et al., 2000 [92]

- Gallic acid,
ferrulic acid

Phenolic acids,
Hydroxycinnamic acids

Inhibition on TPA-induced
EBV activation Nomura, E. et al., 2002 [93]

Ficus hispida L.f.
Chlorogenic acid,

protocatechuic acid,
gallic acid

Phenolic acids
Hydroxybenzoic acid

Trihydroxybenzoic acid
EBV early antigen Zhang, J. et al., 2018 [94]

Lindernia crustacea (L.)
F.Muell.

Luteolin-7-O-β-D-
-glucopyranoside,
apigenin-7-O-[β-D-

-apiofuranosyl(1→6)-β-D-
-glucopyranoside]

Flavonoid
Flavonoid Rta and Zta

Wu, C.-C. et al., 2015 Wu,
C.-C. et al., 2017

Tsai, Y.-C. et al., 2020
[96,97,103]

- Epigallocatechin-3-gallate Flavonoid LMP1, MAPKs/wt-p53
and JNKs/c-Jun pathways Li, H. et al., 2021 [100]

-
Protoapigenone,

protoapigenone-1′-O-
isopropyl ether

Flavonoid,
Flavonoid Rta

Tung, C.-P. et al., 2011
Vágvölgyi, M. et al., 2019

[101,102]

Scutellaria barbata Neo-clerodane diterpenoids Diterpenes Inhibition EBV lytic
replication Wu, T. et al., 2015 [103]

Euphorbia milii Entrosane-type diterpenoids Diterpenes Inhibition EBV lytic
replication

Kemboi, D. et al., 2020
[104]

Litsea verticillate Lignans Diphenolic compounds Inhibition EBV lytic
replication Wang, D. et al., 2016 [106]

Saururus chinensis Manassantin B lignan Benzodioxoles BZLF1
mTORC2

Cui, H. et al., 2014, Wang,
Q. et al., 2020 [105,107]

Synechococcus elongatus Sulfated polysaccharides Glycans Reducing cell-free EBV
DNA Kok, Y.-Y. et al., 2011 [108]

Ankistrodesmus
convolutus Sulfated polysaccharides Glycans Reducing cell-free EBV

DNA Kok, Y.-Y. et al., 2011 [108]

Rhus chinensis Moronic acid Pentacyclic triterpenoid Rta and Zta
EBV early antigen

Chang, F.-R. et al., 2010
[109]

Brazilian propolis Moronic acid Pentacyclic triterpenoid Rta and Zta
EBV early antigen

Chang, F.-R. et al., 2010
[109]

Astragalus membranaceus Polysaccharides Rta and Zta
EBV early antigen Guo, Q. et al., 2014 [110]

Lawsonia inermis L. 2-hydroxy-1,4-
-naphthoquinone Quinones EBV early antigen Kapadia, G.J. et al., 2013

[111]

- Resveratrol Nonflavonoid polyphenol Rta and Zta
EBV early antigen

Yiu, C.-Y. et al., 2010, De
Leo, A. 2012 [112,113]
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Table 2. Cont.

Plant Substance Class EBV Target References

- Quercetin Flavonoid BZLF1, BRLF1, BLLF1 and
F promoter

Lee, M. et al., 2015
Lee, M. et al., 2016 [75,114]

- Isoliquiritigenin Flavonoid LMP1, LMP2, EBNA3A,
EBNA1

Lee, M. et al., 2015
Lee, M. et al., 2016 [75,114]

Andrographis paniculata Andrographolide Terpenoid Rta and Zta
EBV early antigen Lin, T.-P. et al., 2008 [115]

Polygonum cuspidatum Resveratrol,
Emodin Nonflavonoid polyphenol, Rta and Zta

EBV early antigen

Yiu, C.-Y. et al., 2011,
Yiu, C.-Y. et al., 2013
Yiu, C.-Y. et al., 2014

[116–118]

Cordyceps Cordycepin Trihydroxyanthraquinone LMP2A, EBNA1 Ryu, E. et al., 2014 [119]

3.3. Natural Extracts Targeting EBV Latent Proteins and Intracellular Pathways

Research for natural extracts and compounds targeting EBV latent proteins and in-
tracellular pathways is an active area of investigation. While there is no definitive cure
or specific treatment for EBV, some natural extracts have shown promise in laboratory
studies for their potential antiviral properties. Some natural extracts, studied for their
capability to target EBV latent proteins and interfere with intracellular pathways, are de-
scribed in Table 3. The findings reported by Ramayanti et al. provide valuable insights
into the potential effects of curcumin and its analogs on EBV and associated cancers. In-
deed, reduced viability of EBV-positive nasopharyngeal carcinoma cells was reported
following treatment, highlighting the potential cytotoxic effect on these cancer cells. The
authors also reported that curcumin and its analogs might promote apoptosis, specifically
in EBV-positive cells, which could contribute to limiting the growth of cancer cells [99,120].
Intriguingly, curcumin-induced EBNA1 degradation via the proteasome-ubiquitin pathway
decreased the expression of EBNA1 in HONE1 and HK1-EBV cells and inhibited the tran-
scriptional level of EBNA1 in the HeLa cells [121]. Genipin, a natural compound extracted
by Gardenia jasminoides, suppresses EBV infection [78] by promoting the viral lytic repli-
cation cycle in a dose-dependent manner. At 100 µM, it induces the upregulation of EBV
lytic genes BNRF1, BCRF1, BLLF1, BZLF1, and EBV latent genes LMP1, LMP2A, EBNA2 in
SNU719 cells and the downregulation of EBER1, EBNA3A, EBNA3C, EBNA1, and EBV
lytic gene BRLF1. Unlike, the treatment of SNU719 cells with genipin at 50 µM resulted
in an upregulation of EBV lytic gene BZLF1 only, while EBV latent genes LMP1, LMP2A,
EBER1, EBNA2, EBNA3A, EBNA3C, EBNA1, and EBV lytic genes BNRF1, BCRF1, BLLF1,
BRLF1 were downregulated [78]. These findings suggest that genipin has differential effects
on EBV gene expression depending on its concentration. Briefly, at 100 µM, a broader set of
genes is affected, both lytic and latent, while at 50 µM, the impact is more selective. The
modulation of gene expression, especially the upregulation of lytic genes, could contribute
to suppressing EBV infection. The ethanolic extract of Polygonum cuspidatum also inhibited
the expression of LMP1, triggering the EBV-positive cells to enter apoptosis [118]. LMP1 is
known for its role in promoting cell survival and preventing apoptosis, so inhibiting its
expression represents a potential mechanism for triggering apoptosis in EBV-positive cells.
Berberine, found in plants such as barberry (Berberis vulgaris) and huanglian (Coptidis rhi-
zome), decreases the expression of EBNA1 at both mRNA and protein levels by inhibiting
p-STAT3 and decreasing EBV virion production. The in vivo results of a non-toxic dose of
berberine showed a decrease in tumor growth of EBV-associated NPC [99,122–125]. Trip-
tolide produced by the thundergod vine (Tripterygium wilfordii) inhibits cell proliferation of
EBV-positive B lymphoma cells via the downregulation of LMP1. In addition, triptolide
inhibits EBNA1 expression by increasing the sensitivity for mitochondrial apoptosis in
NPC [99,126,127]. A reinforcement of quercetin-mediated cytotoxicity and an enhancement
of quercetin-mediated apoptosis in SNU719 cells were reported, as well as the activation of
the EBV lytic gene promoter. These findings suggest that the combination of Ganoderma
lucidum extracts and quercetin results in synergistic effects, both in terms of antitumor
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activity against EBVaGC cells and activation of the EBV lytic cycle [128]. Baicalein, a
bioactive flavonoid compound purified from the root of Scutellariae baicaleinsis, inhibits the
growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity
of EBNA1 [129].

Table 3. Natural compounds targeting EBV latent proteins and intracellular pathways.

Plant Substance Class EBV Target Host Target References

- Curcumin and
curcuminoids

Curcuminoids/
Polyphenols EBNA1 Promotion apoptosis Ramayanti, O. et al.,

2018 [120]

Gardenia
jasminoides 100 µM genipin Monoterpenoids

BNRF1, BCRF1,
BLLF1, BZLF1, LMP1,

LMP2A, EBNA2,
EBER1, EBNA3A,
EBNA3C, EBNA1,

BRLF1

- Son, M. et al., 2015 [78]

Gardenia
jasminoides 50 µM genipin Monoterpenoids

BZLF1, LMP1,
LMP2A, EBER1,

EBNA2, EBNA3A,
EBNA3C, EBNA1,

BNRF1, BCRF1,
BLLF1, BRLF1

- Son, M. et al., 2015 [78]

Polygonum
cuspidatum Ethanolic extract Alcohol LMP1 Promotion apoptosis

Yiu, C.-Y. et al., 2013,
Yiu, C.-Y. et al., 2011,
Yiu, C.-Y. et al., 2014

[116–118]

Berberis vulgaris Berberine Protoberberine
alkaloids EBNA1, p-STAT3 XAF1 and GADD45a,

JNK and p38-MAPK

Wang, C. et al., 2017,
Park, G.B. et al., 2016,

Tsang, C.M. et al., 2013,
Zhou, F. et al., 2020

[122–125]

Coptidis rhizome Berberine Protoberberine
alkaloids EBNA1, p-STAT3 XAF1 and GADD45a,

JNK and p38-MAPK

Wang, C. et al., 2017,
Park, G.B. et al., 2016,

Tsang, C.M. et al., 2013,
Zhou, F. et al., 2020

[122–125]

Tripterygium
wilfordii Triptolide Epoxide LMP1, EBNA1 Promotion apoptosis

Zhou, H. et al., 2015,
Zhou, H. et al., 2018

[126,127]

Ganoderma
lucidum

Ganoderma lucidum
extracts + quercetin Agaricomycetes Activation of EBV

lytic gene Promotion apoptosis Sora, H. et al., 2019
[128]

Scutellariae
baicaleinsis Baicalein Flavonoid EBNA1 Q-promoter - Zhang, Y. et al., 2018

[129]

- Quercetin Flavonoid -

p53, p21, Bax, PUMA,
and caspase 3, -9, PARP,
demethylation cellular/

viral genomes,
MAPK/JNK MAPK/ERK

Hwan, H.L. et al., 2016
[114]

- Isoliquiritigenin Flavonoid - MAPK/JNK MAPK/ERK Lee, M., et al., 2015 [75]

It has also been illustrated that berberine-induced apoptosis by activating XAF1 and
GADD45a. Berberine increases the levels of cellular reactive oxygen species and upreg-
ulates p53 by activating JNK and p38-MAPK pathways [123]. Then, p53 translocates the
GADD45α (growth arrest and DNA damage-inducible alpha) protein into the nucleus and
the XAF1 (X-linked inhibitor of apoptosis 1) protein into the cytosol. Furthermore, p53
upregulates PUMA, a pro-apoptotic protein that rapidly induces apoptosis via a bax- and
mitochondrial-dependent pathway [99,122–124]. These findings suggest a complex and
interconnected network of molecular events through which berberine exerts its apoptotic
effect. The activation of XAF1 and GADD45a, the increase in cellular ROS levels, the upreg-
ulation of p53, and the subsequent translocation of specific proteins together contribute
to the induction of apoptosis. The involvement of JNK and p38-MAPK pathways adds
another layer of complexity to the signaling cascade. The information provided from the
study by Hwan Hee Lee et al. indicates that quercetin and isoliquiritigenin, two flavonoids
found in certain plant-based foods, have differential effects on the expression of proteins
associated with apoptosis in EBV (+) human gastric carcinoma-bearing animals. The treat-
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ment with quercetin and isoliquiritigenin upregulated the expression of p53, p21, Bax, and
PUMA proteins. Quercetin markedly increased the expressions of the cleaved forms of
caspase 3, -9, and PARP in EBV (+) human gastric carcinoma. Quercetin’s effects were
significantly more pronounced than isoliquiritigenin [114]. In Lee, M. et al., 2015, quercetin
(CD50 62 µM) strongly induced early apoptosis and necrosis/late apoptosis in SNU719 cells
and significantly arrested the S/G2 transition of SNU719 cells, whereas isoliquiritigenin
(CD50 45 µM) did not impact on the cell cycle progress. Quercetin showed demethylation
in cellular and viral genomes. Quercetin and isoliquiritigenin appeared to induce signal
transductions linked to apoptosis, such as the MAPK/JNK pathway and MAPK/ERK
pathway [75].

4. Discussion

EBV is a member of the herpesvirus family, capable of establishing lifelong infections
in humans via both lytic and latent phases. During the latent phase, the virus resides in
B lymphocytes, while the lytic phase involves productive infection in the oral mucosal
epithelium. EBV encodes proteins that manipulate the host immune response, such as
EBNA-1, which helps the virus to evade detection by cytotoxic T lymphocytes [130] and
microRNAs that regulate gene expression both in the virus and the host [131]. EBV inter-
feres with the host’s antigen presentation, inhibits apoptosis in infected cells, and can lead
to various diseases, including cancer [132,133]. Despite causing infectious mononucleosis,
EBV is associated with around 200,000 malignancies worldwide annually. Understanding
these mechanisms is crucial for developing targeted treatments for EBV-related diseases.
Natural antiviral compounds are substances derived from plants, fungi, or other natural
sources that have demonstrated properties in preventing or treating viral infections [5].
Within this review, we provided an overview of mechanisms for natural products that have
demonstrated antiviral effects towards EBV infection.

Compounds like licorice, genipin, and EGCG prevent attachment/entry to host cells
by using different mechanisms. Several compounds have demonstrated the ability to
inhibit EBNA1, including curcuminoids, genipin, and baicalein, while a subset of agents
functions as inhibitors of LMP1 [75,78,100,114,116–118,120,126,127,129]. Additionally, cer-
tain compounds not directly targeting the virus can mitigate the effects of viral infec-
tion. Compounds with robust antioxidant properties protect the cells from oxidative
stress triggered by EBV replication [87–95]. Others exhibit antiviral effects by block-
ing the transcription of immediate–early genes that encode lytic proteins Rta and Zta,
such as Luteolin-7-O-β-D-glucopyranoside, apigenin-7-O-[β-D-apiofuranosyl(1→6)-β-D-
glucopyranoside], Protoapigenone, protoapigenone-1′-O isopropyl ether, Moronic acid,
Resveratrol [96–102,109,112,113]. Some of them induce apoptosis, activate p53, and block
cell cycle progression, limiting the growth of EBV-positive nasopharyngeal carcinoma
cells [78,114,116–118,120,122–129].

The diversity of sources, including Scutellaria barbata, Euphorbia milii, Saururus chinensis,
and Litsea verticillate, underscores the rich pool of bioactive compounds present in nature
that could be further investigated for their therapeutic potential against EBV infections.
Further research and clinical studies are essential to validate these findings and understand
the mechanisms of action underlying the antiviral effects.

5. Conclusions

This review summarizes the current information about natural compounds that inhibit
or interfere with EBV infection. The current range of etiotropic drugs for EBV is limited,
and some are repurposed from treatments for other viral diseases. In addition to the
ongoing search for etiotropic therapy, it is crucial to discover new, potent, and safe antiviral
agents that target both the virus and the infected cells. The therapeutic application of
natural compounds in treating different diseases has ancient roots, and many formulations
continue to be used as supportive medicines. This study sheds light on the most active
molecules, discussing their efficacy in inhibiting EBV by influencing various molecular
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aspects of viral replication. Nevertheless, considering the extensive history of many of the
mentioned compounds used as dietary supplements and their low likelihood of causing
side effects, some of these phytoconstituents could serve as effective supplements to
standard chemotherapy.
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Abbreviations
List of abbreviations and acronyms used in the paper.

Abbreviation Full Name
AGS cells Atypical Glandular Cells
AKT Ser/Thr Serine/threonine protein kinase B
AP-1 Activator protein-1
B cells B lymphocytes
Bax BCL2 Associated X

BBRF2
EBV homologues to herpes simplex virus capsid-associated or tegument
components UL7

BCRF1 Viral interleukin-10 homolog
BHRF1 Bam HI fragment rightward open reading frame 1
BIM BES1-interacting Myc-like protein
BL EBV-positive Burkitt lymphomas
BLLF1 Glycoprotein 350/220
BMRF2 Epstein-Barr Virus DNA Polymerase Processivity Factor
BNRF1 Gene encoding for p140
BRLF-1 Replication and transcription activator
BZLF-1 Bam HI Z fragment leftward open reading frame 1
CAR T cell therapy Chimeric antigen receptor T cell therapy
CD21 or CR2 Cluster of differentiation 21
CD35 or CR1 Cluster of differentiation 35

CD 50 values
Concentration of a test substance decreasing the number of viable cells
by 50%

CDK2 Cyclin-dependent kinase 2
Cdt1 Chromatin licensing and DNA replication factor 1
CHIKV Chikungunya Virus
CTAR1 Carboxy-terminal activating region 1 of LMP1
DC Conjugated dienes
EA-D Early antigen diffuse
EBER1 Epstein-Barr virus noncoding small RNA
EBER2 Epstein-Barr virus noncoding small RNA 2
EBNA Epstein–Barr nuclear antigen
EBNA1 Epstein–Barr nuclear antigen 1
EBNA2 Epstein–Barr nuclear antigen 2
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EBNA3A Epstein–Barr nuclear antigen 3 A
EBNA3C Epstein–Barr nuclear antigen 3 C
EBNA-LP Epstein-Barr virus nuclear antigen leader protein
EBVaGC cells Epstein-Barr virus-associated gastric carcinoma
EBV-EA Epstein-Barr virus early antigen
EC50 value Half maximal effective concentration
EGCG Epigallocatechin-3-gallate
EGFR Epidermal 237 growth factor receptor
EMA European Medicines Agency
EphA2 Ephrin type-A receptor 2
FDA Food and Drug Administration
Fp F promoter
G1/S Phases of the Cell Cycle
GADD45a Growth arrest and DNA-damage-inducible protein
gB Glycoprotein B
GC Germinal center reaction
gH Glycoprotein H
gL Glycoprotein L
GL Glycyrrhizic acid
gp350 EBV envelope glycoprotein 350
gp42 EBV envelope glycoprotein 42
HCV Hepatitis C virus
HeLa cells Cells from Lacks’s cancerous cervical tumor
HK1-EBV cells Positive EBV nasopharyngeal carcinomas cells
HL Hodgkin lymphoma
HLA Human leukocyte antigen
HONE1 Positive EBV nasopharyngeal carcinomas cells
HSV Herpes Simplex
IC50 values Half maximal inhibitory concentration
IE Immediate-early lytic genes
IL-10 Interleukin 10
IL-8 Interleukin 8
JAK/STAT Janus kinases/signal transducer and activator of transcription proteins
JNK C-Jun N-terminal kinase
JQ1 Bromodomain and Extra-terminal Inhibitor
LCLs Lymphoblastoid cell lines
LMP1 Latent Membrane Protein 1
LMP2A Latent Membrane Protein 2
MAPKs Mitogen-activated protein kinases
MDA Malondialdehyde
MS Multiple sclerosis
mTORC2 Rapamycin complex 2
MYC Master Regulator of Cell Cycle Entry and Proliferative Metabolism
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NPC Nasopharyngeal Carcinoma
NRP1 Neuropilin 1
ORC2 Origin Recognition Complex subunit 2
p14ARF Tumor suppressor p14
p16INK4a Cyclin-dependent kinase inhibitor 2A
p38 MAPK p38 MAP Kinase
P3HR1 EBV-positive Burkitt’s lymphoma cells
p53 Protein 53
p53 mutant B95.8 cells Lymphoblastoid cell line with mutated protein 53
PAA Phosphonoacetic acid
PARP Poli ADP-ribosio polimerasi
PI3K/Akt Phosphatidylinositol-3-kinase/ Protein kinase B
PMA Phorbol 12-myristate 13-acetate
PKCα Protein kinase Cα
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p-STAT3 Phosphorylated signal transducer and activator of transcription 3
PUMA p53 upregulated modulator of apoptosis
Raji cells human B lymphoblastoid cell line
Rb Retinoblastoma gene
ROS Reactive oxygen species
Rta Replication and transcription activator
SNU719 cells Gastric cancer cell lines
TET2 Tet methylcytosine dioxygenase 2
TGF-β Transforming growth factor beta
TPA 12-O-tetradecanoylphorbol-13-acetate
TRAF1 Tumor necrosis factor Receptor Associated Factor 1
VEGF Vascular endothelial growth factor
XAF1 X-linked inhibitor of apoptosis protein associated factor 1
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