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Blood safety remains a paramount public health concern, and health authorities
maintain a high level of vigilance to prevent transfusion-transmitted infections (TTIs) [1].
Rigorous policies, including healthy donor selection, pathogen detection, and pathogen
reduction in donated blood, are crucial post-donation safety measures [2]. Historically, the
universal implementation of enzyme immunoassays marked the first generation of blood
screening tests in modern blood banks, significantly reducing the transmission of blood
pathogens. This approach played a crucial role in revealing the prevalence of bloodborne
pathogens in both general populations and high-risk groups [3]. However, the adoption
of nucleic acid tests (NATs) in blood screening units has been transformative, markedly
enhancing the specificity and sensitivity of pathogen detection tests [4]. Consequently, the
identification of infected donors was dramatically elevated, and the risk of transfusion-
transmitted infections (TTIs) significantly decreased [5]. Moreover, molecular techniques
have aided in categorizing viral strains into distinct groups and subgroups, providing
precise insights into the geographical distribution of circulating bloodborne pathogens [6–9].
Additionally, the application of these molecular techniques has facilitated the development
and production of vaccines and antiviral medications, resulting in a significant decrease
in the carrier population of bloodborne pathogens [10]. These improvements have also
assisted health authorities in implementing tailored elimination programs for some of these
pathogens, customized for each country [11–14].

In addition to implementing applied strategies for blood safety, it is crucial to have
a comprehensive understanding of the epidemiology of bloodborne pathogens and the
biotic and abiotic factors that influence it [15,16]. This understanding is essential for
delineating the panel of blood screening tests in local blood banks based on the prevalence
of bloodborne pathogens in a specific geographical region. It appears that recent global
changes are likely to drive a series of challenges and disrupt the longstanding endemic
boundaries [17].

Climate change has led to alterations in both temperature and precipitation averages
at regional and global levels over the course of several years [18]. As a result of ambient
events, such as droughts, flooding, and forest fires, ecosystem conditions and, consequently,
their inhabitants have undergone modifications. Human and animal populations are
relocating from regions affected by natural disasters and settling in industrialized or often
newly deforested locations [19–21]. Following this, in the newly opened-up ecosystem,
pathogens are adapting to new vectors and intermediate hosts, leading to the emergence
of new outbreaks [17,22]. Additionally, travel to or from this newly emerged ecosystem
may establish new epidemiological corridors and enhance the dispersal of bloodborne
infections [23,24].

Indeed, higher temperatures and increased humidity frequently promote the abun-
dance of vectors [25,26]. Furthermore, the intricate relationship between humidity and
temperature, encompassing variations in their levels and durations (increase, decrease,
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prolongation, and shortening), significantly impacts the winter survival of arthropods [27],
which directly speed up the vector–host interaction, the host biting rate, the frequency of
pathogen proliferation, and, finally, the life cycle complementation of vector-borne blood
pathogens [28,29].

A recent study examining the impact of climate change forecasts on West Nile Virus
(WNV) expansion reveals a concerning fivefold increase in the risk of WNV infection
in Europe over the coming decade. Remarkably, Western Europe could potentially face
significant outbreaks, irrespective of the extent of climate change [30]. Additionally, the
same modeling predicts more frequent outbreaks of the dengue virus in the future in
Pakistan [31].

Public health interventions traditionally focus on vector control. However, natural
disasters significantly impact these measures, exposing humans to vectors. To address this,
it is crucial for blood bank authorities to establish an intelligent surveillance system that
includes a risk assessment of bloodborne pathogens, accounting for local climate variables.
This system, relying on environmental parameters, can assess the risk of bloodborne
infections in specific geographical areas and accordingly update the blood screening assay
panel. Drawing from lessons learned in recent pandemics, a preparedness program can
assist in preventing or responding to pathogen outbreaks caused by climate change. An
investigation of pathogen traces in sewage, a valuable lesson from the COVID-19 pandemic,
has led to the establishment of a surveillance system for various threatening pathogens [32].

Human mobility, animal trades, and migrations fall under the second category of chal-
lenges in the field of transfusion medicine. These activities have expedited the relocation
and dissemination of pathogens and their associated vectors more rapidly and efficiently
than in the past [33]. Historically, political or economic instabilities and, more recently,
domestic conflicts, regional violence, and persecution, plus natural disasters, have served
as “push factors”, compelling populations to immigrate and seek new opportunities in
more developed countries. In many cases, immigrants originate from geographical areas
that are endemic for certain communicable diseases or where the prevalence of infectious
diseases is significantly higher than in the destination countries [34–37]. It is worth noting
that, for various reasons, individuals in these populations have limited access to health
services, including screening, vaccination, and appropriate treatment. Moreover, the pro-
longed process of immigration can heighten the risk of infectious disease outbreaks among
these marginalized populations, potentially impacting the prevalence of specific infectious
diseases in the destination areas [38–41]. Several studies have demonstrated a notable
prevalence of bloodborne diseases, including neglected tropical diseases, within these com-
munities. It is imperative to establish a healthcare system to provide essential healthcare
amenities for these populations [42,43]. Establishing a protective system at immigrant
reception camps, involving the identification of infected individuals, treatment, screenings,
and subsequent vaccinations, could contribute significantly to mitigating potential threats
to blood safety [44].

The third challenge to blood safety stands distinct from the two aforementioned
challenges. Based on a provided list of bloodborne pathogens by the American Association
of Blood Banks (AABB), a total of 68 microorganisms have been identified that can be
transmitted through blood and blood products [45]. However, unexpected bloodborne
pathogens and emerging infectious disease (EID) agents remain significant concerns for
blood safety. Dengue virus, Chikungunya virus, and, most recently, Zika virus are examples
of recently emerged infectious diseases [46]. This highlights an urgent need for innovative
strategies or techniques in the surveillance and discovery of previously unforeseen and
potentially harmful pathogens that could jeopardize blood transfusion safety. This urgency
has been effectively addressed by the high-throughput sequencing technique (HTS).

The capacity of HTS, particularly next-generation sequencing (NGS), to sequence
the complete metagenome of biological samples has revolutionized the diagnostic field.
Furthermore, this technique, coupled with other advanced disciplines, such as proteomics,
transcriptomics, and metabolomics, and integrated with computational methodologies,
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is applied to detect and investigate all microorganisms at their community levels [47,48].
This technique has been extensively employed to spotlight the microbiome, particularly the
bacteriome, in various ecological niches of the human body, with a particular emphasis on
the human gut. The discovery of numerous associations between gastrointestinal, skin, or
vaginal bacteria (microbiome) and a variety of illnesses is a direct outcome of the deploy-
ment of this technique in clinical investigations [49]. Viral communities, referred to as the
virome in these body compartments, exert an indirect influence on these associations by
impacting bacterial populations, either increasing or decreasing them [50]. However, armed
with NGS, the human microbiome project (HMP) has primarily focused on the bacteriome.

NGS has added significant value to diagnostic virology by identifying minor or major
viral populations in various ecological niches of animals, insects, or human bodies. This
has addressed the hidden threat of unanticipated viruses in different human illnesses. The
introduction of astrovirus MLB2 as the cause of febrile disease and meningitis [51,52], the
identification of a new Bunyavirales virus as the cause of thrombocytopenia and leukope-
nia illness in China [53], the association of novel rhabdoviruses with acute hemorrhagic
fever [54], and the identification of polyomavirus as the etiologic agent for human Merkel
cell carcinoma [55] are a few instances showcasing the remarkable impact of this technology
in clinical virology. In light of these accomplishments, the identification and characteriza-
tion of viral swarms present in the blood (blood virome) represent another intriguing facet
of the application of NGS.

NGS allows for a comprehensive exploration of the entire viral landscape in blood.
While we previously believed blood to be sterile, recent studies have estimated the pres-
ence of approximately 105 viral particles per milliliter [56]. By using NGS, Giant Blood
Marseillevirus, human pegivirus 1 (HpgV-1), papillomavirus, and gemycircularvirus, as
well as members of Picornaviridae, Circovirdae, and Astroviridae, could be detected in
the blood stream [57–61]. Furthermore, through the application of this method, endoge-
nous retroviruses, which are linked to several neurological, inflammatory, and infectious
diseases, become detectable in the bloodstream [62–65]. Additionally, by relying on NGS,
the translocation of prokaryotic viruses from the gut to the blood in certain pathological
disorders has been traced [66]. The significance of the blood virome is underscored by
the fact that, unlike other body compartments, blood is a systematically closed tissue. It
lacks connections to the external environment and does not harbor commensal bacteria.
Therefore, commensal viruses in the blood, such as HpgV and Anelloviruses, can directly
interact with host cells. These viruses may influence the clinical outcomes of illnesses, and
the clinical treatment of patients can, in turn, impact their population or evolution.

However, similar to the virome composition of other body compartments, the blood
virome is susceptible to interventions. It has been demonstrated that the virome plays
a pivotal role in human health, and disturbing this community exerts a detrimental im-
pact. Factors such as vaccination, infection, and the administration of therapeutic or
immunomodulatory agents, as well as solid or hematopoietic transplantations, have the
potential to disrupt the composition of the blood virome [66–68]. The modulations induced
by these interventions could introduce permanent changes and might lead to various
illnesses [69]. Our recent investigation on the most prevalent member of the blood virome,
the Anellovirus family, shows that the administration of immunosuppressive agents to
liver transplant recipients [70], antiviral therapy in HBV carriers [71], multiple blood trans-
fusions in patients with blood disorder [72], and convalescent plasma therapy in COVID-19
patients [73] has an impact on the conformation of the blood virome. Notably, there is a
trace of evidence indicating a potential detrimental effect of certain Anellovirus subgroups
in specific conditions, both independently and in co-infection with certain pathogenic
viruses [74–76]. Although we have not identified a driving role for Anelloviruses, they
might not be merely considered bystanders.

To respond to the aforementioned three challenges, we need to establish a new
paradigm in transfusion safety. These strategies should simultaneously tackle the chal-
lenges posed by global warming and human/animal immigration as potential sources of
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the emergence or re-emergence of bloodborne pathogens. An urgently needed component
is a well-coordinated monitoring system of climate parameters linked to the favorability of
pathogens and vectors. This real-time climate-based risk assessment can be complemented
by deferring donations from individuals who have recently traveled to newly endemic
regions. Additionally, to minimize the perturbations of personalized blood viromes, urging
a more sparing use of prescriptions and blood products can be useful.

Funding: The author was funded by the C1 funding from KU Leuven (grant C14/20/109).
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