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Abstract: In this study, we aimed to characterize the nonlinear and multidelayed effects of multiple
meteorological drivers on human respiratory syncytial virus (HRSV) infection epidemics in Japan.
The prefecture-specific weekly time-series of the number of newly confirmed HRSV infection cases
and multiple meteorological variables were collected for 47 Japanese prefectures from 1 January 2014
to 31 December 2019. We combined standard time-series generalized linear models with distributed
lag nonlinear models to determine the exposure–lag–response association between the incidence
relative risks (IRRs) of HRSV infection and its meteorological drivers. Pooling the 2-week cumulative
estimates showed that overall high ambient temperatures (22.7 ◦C at the 75th percentile compared to
16.3 ◦C) and high relative humidity (76.4% at the 75th percentile compared to 70.4%) were associated
with higher HRSV infection incidence (IRR for ambient temperature 1.068, 95% confidence interval
[CI], 1.056–1.079; IRR for relative humidity 1.045, 95% CI, 1.032–1.059). Precipitation revealed a
positive association trend, and for wind speed, clear evidence of a negative association was found.
Our findings provide a basic picture of the seasonality of HRSV transmission and its nonlinear
association with multiple meteorological drivers in the pre-HRSV-vaccination and pre-coronavirus
disease 2019 (COVID-19) era in Japan.

Keywords: human respiratory syncytial virus; meteorological drivers; transmission dynamics;
epidemics; Japan

1. Introduction

The human respiratory syncytial virus (HRSV) infects the human respiratory tract,
causing clinically severe pneumonia in young children and bronchitis in infants [1]. Glob-
ally, HRSV-induced acute lower respiratory tract infections (ALRIs) are responsible for
approximately 70,000 deaths in children under the age of 5 years and hospitalization of
approximately 3.4 million people [2,3]. The magnitude of the global disease burden caused
by HRSV has recently been recognized to affect not only infants and young children but
also the elderly (≥65 years), and it remains a significant public health concern [4,5]. The
transmission dynamics of HRSV infection epidemics are seasonally driven in temperate re-
gions, with most infections occurring during annual autumn–winter (September–February)
seasons; however, a seasonal shift in the HRSV infection epidemics to the summer–autumn
(June–November) seasons between 2017 and 2019 has been reported in Japan [6–9]. For in-
stance, epidemics of HRSV infection in the United States and 15 European countries, where
the climatic environment is like that of Japan, are also concentrated in autumn–winter
seasons [6,10]. It should be noted that off-season HRSV infection epidemics were observed
during the coronavirus disease 2019 (COVID-19) pandemic in Japan (i.e., no major epidemic
in 2020, and an unusually high number of cases reported in 2021) [11,12].
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The transmission dynamics of HRSV are shaped by a web of biological and non-
biological factors, and it has been suggested that in addition to intrinsic transmission
factors such as innate immunity, viral survival, and antigenic variation, extrinsic seasonal
climate-driven factors influence the transmission dynamics [13,14]. Although previous
studies have reported partially conflicting results, several phenomenological trends in
the relative role of multiple meteorological conditions (e.g., mean ambient temperature,
relative humidity, precipitation, and wind speed) in HRSV transmission have emerged. For
instance, two systematic reviews concluded that high ambient temperature and relative
humidity were associated with HRSV transmission in tropical and subtropical regions,
while in temperate regions, low ambient temperature and high relative humidity were
associated with the occurrence of several HRSV-caused epidemics [15,16]. In other epi-
demiological studies, ambient temperature has been found to have a negative association
with HRSV infection incidence in European countries [17,18], the United States [19,20],
and Mainland China [21–24]. Meanwhile, relative humidity has been reported to have
a positive association with HRSV infection incidence in European countries and Hong
Kong [17,25,26]. Overall, few epidemiological studies have described the relationship be-
tween precipitation and wind speed and HRSV infection incidence; however, an association
between peak precipitation and HRSV infection incidence has been observed in several
tropical regions [27–31], and a moderate negative correlation between wind speed and its
incidence has been observed in Kenya [32]. Indeed, the differences in these reports could
partially be explained by the variation in the spatial scales of analysis, application of differ-
ent statistical methods, and consideration of various potential confounders. Epidemiologic
studies assessing the relationship between climate variability and transmission could have
methodologic limitations that may introduce bias and limit causal inferences [33–35].

Although previous studies have gradually revealed the associations between the
climate variability and the transmission dynamics of HRSV, the effect of meteorological
drivers on the timing and intensity of its epidemics is poorly understood. Generally, the
effects of climate variability and disease transmission are complex, nonlinear, and often
shape multiple, delayed events, limiting statistical inferences based on traditional determin-
istic linear modelling and single-delayed effects frameworks [36]. While these traditional
methods aid in the forecasting of HRSV infection epidemics, current modelling frameworks
may oversimplify the nature of relationships between meteorological drivers and disease
dynamics. The time-varying distributed lag nonlinear models (DLNMs) developed in
the last decade have been relatively underused, despite being well suited for time-series
statistical modelling of infectious disease dynamics [37,38]. In recent years, these models
have begun to be adapted to climate-sensitive vector-borne diseases (e.g., dengue fever,
malaria, and West Nile virus) [39–44], but their application for respiratory virus infections,
including HRSV infections, has been quite limited. In the present study, we aimed to ex-
plore the nonlinear and multidelayed effects of multiple meteorological drivers (i.e., mean
ambient temperature, relative humidity, precipitation, and wind speed) on the seasonality
of HRSV infections using weekly surveillance data across 47 prefectures in Japan over the
2014–2019 period by designing a cutting-edge time-series statistical model. These exposure–
lag–response associations can reveal how meteorological drivers affect HRSV infection
risk in the weeks leading up to an outbreak. Furthermore, if the explanatory powers of
these meteorological drivers can be determined, the seasonality and transmission of these
viruses in different environments can be better understood, which would contribute to the
development of early warning systems to respond in a timely manner to annual HRSV
epidemic surges and public health strategies and interventions. By characterizing the
relative role of these meteorological drivers on HRSV infection dynamics, we attempted
to gain an insight into the seasonal mechanisms of the disease, thereby rendering basic
information to disentangle its extrinsic environmental drivers.
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2. Materials and Methods
2.1. Design Setting

This time-series statistical modeling analysis investigated the potential nonlinear and
multilagged relationships of HRSV transmission with multiple meteorological drivers
(i.e., mean ambient temperature, relative humidity, rainfall, and wind speed) in Japan,
using an ecological study design. In this study, we systematically collected and analyzed
epidemiological data for the number of weekly newly confirmed HRSV infection cases
and meteorological drivers (i.e., mean ambient temperature, relative humidity, rainfall,
and wind speed) from 1 January 2014 to 31 December 2019 (between the 1st week of
2014 and 52nd week of 2019) across 47 prefectures in Japan, covering the entire country.
We selected these locations based on the geographical diversity and availability of data
across the study period. It should be noted that the transmission dynamics of HRSV have
drastically changed since 2020 owing to the COVID-19 pandemic; hence, this period was
not included in the analysis [11,12]. The post-COVID-19 pandemic period will be evaluated
in a future project. Japan is located at latitudes of approximately 26–43◦ N and longitudes of
approximately 127–141◦ E in the Western Pacific Region and comprises a total of 47 Japanese
prefectures (Figure S1). Given their geoclimatic characteristics, 46 prefectures, excluding
Okinawa, are classified as temperate regions, and Okinawa as a subtropical region with
four distinct seasons in Japan; summers are hot and humid (June–August), while winters
are cold and dry (December–February).

2.2. Empirical Datasets
2.2.1. National HRSV Surveillance Data

The HRSV infection epidemiological data used in this study were obtained from the
Infectious Disease Weekly Report (IDWR), sourced from the National Epidemiological
Surveillance of Infectious Diseases (NESID) data published by the National Institute of
Infectious Diseases, Japan (NIID), under the authority of the Ministry of Health, Labor and
Welfare, Japan (MHLW) [45]. The MHLW manages approximately 3000 pediatric sentinel
sites (i.e., hospitals and clinics) in Japan and reports the number of patients diagnosed
with HRSV infection on a weekly basis to the prefecture or municipal public health sectors
in Japan [46,47]. A confirmed case of HRSV infection is defined as a positive result in a
rapid diagnostic test (RDT) using a test kit licensed in Japan or a laboratory confirmation
such as virus isolation or antibody titer increase in paired sera according to the MHLW
guidelines [48]. The number of sentinels assigned to each public health service area is based
on population size: a public health center with <30,000 individuals is assigned one sentinel,
a center with 30,000–75,000 individuals, two sentinels, and that with >75,000 individuals,
three or more sentinels, as determined by the following formula: 3 + (population −
75,000)/50,000 [9]. These sentinel sites forward clinical data to approximately 60 prefectural
or municipal public health sectors, and the data are electronically reported to the NIID; the
number of HRSV infection cases is released weekly on the NIID website. In the present
study, we extracted the number of weekly newly confirmed HRSV infection cases across all
47 prefectures in Japan reported in weeks 1–52 from 2014 to 2019, from the NESID database.

2.2.2. Meteorological Data

The Automated Meteorological Data Acquisition System (AMeDAS) developed by the
Japan Meteorological Agency is a high-resolution surface observation network for investi-
gating meteorological conditions in Japan. In the present study, we retrieved prefecture-
specific daily time-series of meteorological data across 47 prefectures in Japan collected at
the AMeDAS over the study period [49]. The weekly meteorological data, including mean
ambient temperature in degrees Celsius (◦C), relative humidity in percent (%), precipita-
tion in millimeters (mm), and wind speed in meters per second (m/s), published by the
website were calculated from the daily records and utilized as independent variables in the
time-series statistical models presented here. These meteorological variables were chosen ac-
cording to their availability and use in previous HRSV modelling studies [8,11,17,19,50–52].
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Meteorological data collected from meteorological observatories (meteorological stations)
situated in the prefectural capitals were utilized for each prefecture.

2.3. Statistical Analysis
2.3.1. Descriptive Statistics

To determine the key characteristics of the multitudes of time-series datasets used in
this study, we described the probability distributions of the number of weekly newly con-
firmed HRSV infection cases and meteorological drivers (i.e., mean ambient temperature,
relative humidity, precipitation, and wind speed) across all 47 prefectures in Japan during
the study period by utilizing the following descriptive statistics: mean, standard deviation
(SD), minimum (Min), 25th percentile (P25), 50th percentile (P50), 75th percentile (P75), and
maximum (Max).

2.3.2. Construction of the Time-Series Statistical Model

To establish a robust and reliable time-series statistical model, multiple stages were
incorporated into it [11,53,54]. Prior to constructing the model, we checked the probability
distribution of the dependent variables and number of weekly newly confirmed HRSV
infection cases (the normality of probability distribution was assessed by the Shapiro–Wilk
test) (Figure S2), followed by an assessment of the relationships (e.g., linearity) between
number of weekly newly confirmed HRSV infection cases and each independent variable.
Generally, by assessing the transformation of dependent variables in time-series-driven
systems, these variables can be used as stationary effects, often improving forecasting
accuracy. All dependent variables and independent variables included in the statistical
models were assessed for multicollinearity using pairwise Spearman’s rank-order cross-
correlation coefficient (ρ). If the variables were found to be strongly linearly correlated
(cut-off of |ρ| > 0.8), the variable with the largest mean absolute statistical correlation
with the other independent variables was eliminated [55]. In the preliminary analysis, no
independent variables showing strong statistical linear correlations were observed (Table S1).

In the present study, we fitted standard time-series multivariate generalized linear
models (GLMs) with a quasi-Poisson distribution family and logarithmic-link function,
allowing for overdispersion in the observational data, by adding the time-varying DL-
NMs to simultaneously describe nonlinear and multidelayed dependencies between the
incidence relative risks (IRRs) of HRSV infection and meteorological drivers. Briefly, a
DLNM was designed for each targeted meteorological driver and added to the regression
equation of GLM. This method was used as a primary model to disentangle the underlying
complex association between the number of weekly newly confirmed HRSV infection cases
and different multiple meteorological drivers (i.e., mean ambient temperature, relative
humidity, precipitation, and wind speed) as main exposures. In a DLNM, a cross-basis
function that combines two tensor product of basis-functions is introduced: one represents
the dependent variable’s probability distribution in the independent variable and lagging
dimensions to simultaneously assess the lag effect and the other represents the nonlinear
effects of the exposure driver [37,38,56].

The cross-basis term for time-varying DLNMs acts as basis function predictor in
two dimensions: exposure and lag spaces. Specifically, we modeled exposure–response
associations using a natural cubic spline with three degrees of freedom (df) and mod-
eled the lag–response association using a natural cubic spline with three df. To adjust
for the possible harvesting and misalignment from the delayed heterogeneity of mete-
orological drivers of HRSV infection dynamics, based on multiple accumulated studies
investigating the incubation period (i.e., approximately 2–8 days) and reporting delays of
HRSV [8,17,19,50–52,57,58], we considered temporal lags (i.e., delays in potential effect)
of up to 2 weeks as the default lag structure for the cross-basis function of each indepen-
dent variable related to the dependent variable. These temporal time lags are useful for
describing the biologically and physically plausible time lags in the population dynamics,
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natural history of the HRSV host reservoir, and subsequent incubation period before disease
notification.

The general algebraic definition of the time-series statistical models is formulated as
follows:

log [(y[i,t]|r[i,t])] := α[0] + ∑ sβ[s] fg

(
x[i,t,s]; d f

)
+ ∑ uhg

(
z[i,t,u]; θ

)
+ e[t] + p[t]

+s[t] + log
[
r[i,t−1]

]
+ log

[
O[t]

]
+ ε [i,t]

where y[i,t] is the outcome time-series; r[i,t] is the expected time-series of the number of
weekly newly confirmed HRSV infection cases in prefecture i on week t; the term α[0] cor-

responds to the overall intercept; ∑s β[s] fg

(
x[i,t,s]; d f

)
denotes the cross-basis function of

DLNMs with exposure and multilagged effects modelled by a natural cubic spline function
and a linear function of multiple meteorological drivers (i.e., mean ambient temperature,
relative humidity, precipitation, and wind speed) in prefecture i in week t, respectively. We
also modeled baseline risk along with shared long-term seasonal variations and cycles and
short-term trends by incorporating natural cubic splines of time (7 degrees of freedom (df)
per year) as term ∑u hg

(
z[i,t,u]; θ

)
, year as term e[t], and number of public holidays per week

as term p[t], with the fixed effects variables as possible confounders [11,53,54,59–61]. s[t] de-
notes prefectural characteristics or regional variable indicators in prefecture i. Furthermore,
the autocorrelation of residuals in the case of infectious disease was pathogen-specific
and needed to be accounted for; therefore, autoregressive terms at order one (as term
r[i,t−1]) was incorporated into the statistical models, accounting for potential serial corre-

lation [53,54,59–61]. The teem log
[
O[t]

]
denotes the logarithm of the yearly population

(per 100,000) by prefecture as the offset term [62]. The use of these population estimates
for our denominator in the models allowed for the exponentiation of each coefficient to
be expressed as an IRR, which is an intuitive representation of the association of variables
with the increased risk of HRSV infection incidence. The term ε [i,t] indicate errors. To
quantify the total contribution, independent effects, and relative importance of multiple
meteorological drivers, we included all variables in the same model [53,63]. By including
all variables of interest in the same regression equation, we were able to strengthen the
interpretation of the effects as independent or additive, based on accumulated empirical
knowledge.

To test the sensitivity of the results to the modeling choices described above, we
repeated the analysis by varying the df of the natural cubic spline of time from 7 df per
year to 3 df or 11 df per year. We also performed a sensitivity analysis of the observed
effect on the weeks of lags accounted for in the statistical model by modifying the length
of the lag period from 2–3 and 4 weeks. We quantified the estimates as cumulative-week
(i.e., 0–2 weeks) and single-week (i.e., 0, 1, and 2 weeks) IRRs together with the 95%
confidence intervals (CIs) at the 25th and 75th percentiles of all meteorological drivers to
determine the strengths of the associations. The reference value for ambient temperature
and relative humidity were set as the median (50th percentile), while the precipitation
and wind speed were set as 0.0 mm and 0.0 m/s, respectively. Additionally, we plotted
the exposure–response curves to describe the overall cumulative associations. Statistical
significance was considered at a p-value of <0.05 (i.e., type I error), on a two-tailed test. All
analyses were performed using STATA version 15.1 statistical software (Stata Corp, College
Station, TX, USA) and R statistical programming software version 4.1.0 (R Foundation for
Statistical Computing, Vienna, Austria) using the “dlnm” [64].

2.4. Ethical Considerations

The present ecological modeling study analyzed publicly available data in Japan.
As such, the epidemiological datasets utilized in this study were de-identified and fully
anonymized in advance, and the analysis of publicly available data with no identifying in-
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formation did not require ethical approval. The present study was conducted in accordance
with the Declaration of Helsinki (as revised in 2013).

3. Results
3.1. Descriptive Analysis

Overall, 721,709 newly confirmed HRSV infection cases were observed during the
313-week study period across all 47 prefectures in Japan (Figure S1). The mean number of
the weekly newly confirmed cases, i.e., the average for all prefectures and weeks during
the study period, was 49 (range, 0–892) (Table 1). The weekly mean ambient temperature,
relative humidity, precipitation, and wind speed also had wide ranges (−6.7–32.2 ◦C,
30.8–97.2%, 0.0–94.1 mm, and 0.9–11.3 m/s, respectively).

Table 1. Descriptive statistics for the number of weekly newly confirmed HRSV cases and meteoro-
logical variables.

Potential Drivers Mean SD Min P25 P50 P75 Max

Weekly newly confirmed cases 49 76 0 7 22 58 892
Mean ambient temperature (◦C) 15.7 8.3 –6.7 8.1 16.3 22.7 32.2

Relative humidity (%) 69.5 9.5 30.8 63.1 70.2 76.4 97.2
Precipitation (mm) 4.7 6.4 0.0 0.7 2.9 6.2 94.1
Wind speed (m/s) 2.9 0.9 0.9 2.2 2.8 3.4 11.3

Abbreviations: SD, standard deviation; Min: minimum; P25, 25th percentile; P25, 50th percentile; P75, 75th
percentile; Max: maximum. Notes: the present study covers the period between 1 January 2014 and 29 November
2019 (between the 1st week of 2014 and 52nd week of 2019) across all 47 prefectures in Japan.

3.2. Assessing the Nonlinear Effects of Meteorological Drivers on HRSV Infection Incidence

The pooled overall cumulative relationships between multiple meteorological drivers
(i.e., mean ambient temperature, relative humidity, precipitation, and wind speed) and
HRSV infection incidence are illustrated in Figure 1. Notably, we observed a nonlinear
relationship between mean ambient temperature and HRSV infection incidence (Figure 1A).
In particular, for the range of approximately 10.0–15.0 ◦C, we found a linear inverse
mean ambient temperature–incidence relationship, with low mean ambient temperatures
associated with increased HSRV infection incidence. In contrast, the cumulative IRR
increased when the mean ambient temperature was dramatically higher than approximately
20.0 ◦C. Specifically, the corresponding cumulative IRRs were 1.023 (95% CI, 1.008–1.039)
at 8.1 ◦C (25th percentile), and 1.068 (95% CI, 1.056–1.079) at 22.7 ◦C (75th percentile),
respectively, with reference to the IRR at 16.3 ◦C (Table 1). A J-shaped association was
observed between relative humidity and HRSV infection incidence (Figure 1B). Relative
humidity exhibited a positive and almost linear relationship with HRSV infection incidence
above approximately 70.0%. The 2-week cumulative IRRs were 0.997 (95% CI, 0.971–1.003)
at a relative humidity of 63.1% (25th percentile) and 1.045 (95% CI, 1.032–1.059) at a relative
humidity of 76.4% (75th percentile) with reference to the IRR at 70.4% (Table 1). The overall
relationship between precipitation and HRSV infection incidence was weak (Figure 1C).
An almost nonlinear positive association trend with incidence was observed across the
entire precipitation range. For instance, the 2-week cumulative IRRs were 1.027 (95% CI,
1.015–1.038) at a wind speed of 0.7 mm (25th percentile) and 1.064 (95% CI, 1.032–1.097)
at 6.2 mm (75th percentile) with reference to that at 0.0 mm (Table 1). A clear inverse
association was observed between wind speed and HRSV infection incidence (Figure 1D).
Specifically, the cumulative IRR decreased rapidly with increasing wind speed across the
entire range. The 2-week cumulative IRRs were 0.793 (95% CI, 0.697–0.903) at a wind speed
of 2.2 m/s (25th percentile) and 0.775 (95% CI, 0.678–0.885) at 3.4 m/s (75th percentile),
with reference to that at 0.0 m/s (Table 1).
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Figure 1. Assessing the pooled nonlinear association of IRRs of HRSV incidence with meteorological
variables. (A) Overall association of the 2-week cumulative risk of the percent change in the estimated
human respiratory syncytial virus (HRSV) infection incidence with weekly mean ambient temperature
(unit: ◦C). (B) Overall association of the 2-week cumulative risk of the percent change in the estimated
HRSV infection incidence with weekly relative humidity (unit: %). (C) Overall association of the
2-week cumulative risk of the percent change in the estimated HRSV infection incidence with weekly
precipitation (unit: mm). (D) Overall association of the 2-week cumulative risk of the percent change
in the estimated HRSV infection incidence with daily weekly wind speed (unit: m/s). The present
study covers the period between 1 January 2014 and 29 November 2019 (between the 1st week of
2014 and 52nd week of 2019) across all 47 prefectures in Japan. The red, yellow, blue, and green lines
represent the estimated incidence relative risks (IRRs) of HRSV infection, with the shaded bands
representing the 95% confidence intervals (CIs). The corresponding reference values are 16.3 ◦C (A),
70.2% (B), 0.0 mm (C), and 0.0 m/s (D). The relevant selected estimates (i.e., IRR and 95% CIs) for
this figure are shown in Table 2.
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Table 2. Forecasting the specific IRRs of nonlinear associations between the HRSV incidence and
meteorological variables.

Potential Drivers

Lag (Weeks)

0 1 2 0–2

IRR (95% CI) IRR (95% CI) IRR (95% CI) IRR (95% CI)

Mean ambient temperature (◦C)

8.1 ◦C 1.053
(1.015, 1.093)

1.117
(1.070, 1.166)

0.869
(0.837, 0.903)

1.023
(1.008, 1.039)

22.7 ◦C 0.936
(0.910, 0.964)

1.037
(1.001, 1.073)

1.099
(1.067, 1.131)

1.068
(1.056, 1.079)

Relative humidity (%)

63.1% 0.998
(0.986, 1.011)

0.979
(0.966, 0.991)

1.009
(0.997, 1.022)

0.997
(0.971, 1.003)

76.4% 1.007
(0.997, 1.017)

1.039
(1.029, 1.050)

0.998
(0.988, 1.008)

1.045
(1.032, 1.059)

Precipitation (mm)

0.7 mm 1.002
(0.995, 1.008)

1.012
(1.005, 1.019)

1.015
(1.005, 1.019)

1.027
(1.015, 1.038)

6.2 mm 0.983
(0.964, 1.002)

1.033
(1.014, 1.053)

1.047
(1.027, 1.067)

1.064
(1.032, 1.097)

Wind speed (m/s)

2.2 m/s 0.972
(0.877, 1.078)

0.887
(0.799, 0.985)

0.919
(0.829, 1.019)

0.793
(0.697, 0.903)

3.4 m/s 0.976
(0.875, 1.088)

0.864
(0.774, 0.965)

0.918
(0.824, 1.022)

0.775
(0.678, 0.885)

Abbreviations: IRR, incidence relative risk; CI, confidence interval; HRSV, human respiratory virus. Notes: the
present study covers the period between 1 January 2014 and 29 November 2019 (between the 1st week of 2014
and 52nd week of 2019) across all 47 prefectures in Japan. Associations between the HRSV infection incidence
and mean ambient temperature (unit: ◦C), relative humidity (unit: %), precipitation (unit: mm), and wind speed
(unit: m/s) are described as IRRs with 95% confidence intervals (CIs) with reference to the IRRs at 16.3 ◦C, 70.2%,
0.0 mm, and 0.0 m/s, respectively; 8.1 ◦C and 22.7 ◦C correspond to the 25th and 75th percentiles of mean ambient
temperature, respectively; 63.1% and 76.4% correspond to the 25th and 75th percentiles of relative humidity,
respectively; 0.7 mm and 6.2 mm correspond to the 25th and 75th percentiles of precipitation, respectively; 2.2 m/s
and 3.4 m/s correspond to the 25th and 75th percentiles of wind speed, respectively.

3.3. Sensitivity Analysis

The main findings described above were confirmed by repeating the series of sensitiv-
ity analyses utilizing alternative DLNM specifications. For all meteorological drivers (i.e.,
mean ambient temperature, relative humidity, precipitation, and wind speed), changing
the incorporation of the df of the natural cubic spline of time from 7 df per year to 3 df
(Figure S3) or 11 df per year (Figure S4) revealed that the observed risk effect shape was
substantially robust over the different parameterizations. Generally, although we observed
wider 95% CIs after slightly increasing the df for each of the meteorological drivers, the
estimated shapes of the exposure-response functions remained largely similar. Further, for
all meteorological drivers, on changing the incorporation from 0–2 lag weeks to 0–3 lag
weeks (Figure S5) and 0–4 lag weeks (Figure S6), the observed shapes of the incidence
curves were found to be consistent. Generally, model uncertainties tend to increase when
more weeks are included. Taken together, the series of sensitivity analyses confirmed the
robustness of the findings of the main analysis.

4. Discussion

In the present study, we retrospectively modelled the nonlinear and multidelayed
temporal effects of multiple meteorological drivers (i.e., mean ambient temperature, relative
humidity, precipitation, and wind speed) on HRSV seasonality using multiseason data
across all 47 prefectures in Japan. To our knowledge, this study presents one of the most
comprehensive assessments of the effects of meteorological drivers on HRSV infection
seasonality across a large gradient of climate conditions related to latitudes and longi-
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tudes. Overall, we found evidence of a modest nonmonotonic association between these
meteorological drivers and HRSV infection incidence over lags of 0–2 weeks, contributing
to approximately 14.8% of the variation in IRR over the study period. More specifically,
an increase in mean ambient temperature from 8.1 ◦C (25th percentile) to 22.7 ◦C (75th
percentile) was associated with an increase of approximately 4.5% in the cumulative risk of
HRSV infection incidence over a 2-week period. The other meteorological drivers (relative
humidity, precipitation, and wind speed) explained approximately 4.8%, 3.7%, and 1.8% of
the variation, respectively. Despite these simplified assumptions, our findings objectively
reveal that the temporal driving patterns of HRSV infection could be partially explained by
these meteorological drivers. In addition to highlighting the relative role played by climate
variability, our findings indicate that there may be an additional underlying mechanism
involved in shaping the time-dependent transmission heterogenicity of HRSV that remains
to be identified. By identifying causal relationships between meteorological drivers and
HRSV infection epidemic patterns, we can build predictive models of the epidemic that
would help inform guidelines for timing of monoprophylaxis, such as palivizumab, and
HRSV vaccination when it becomes available [65,66].

Our results are fairly consistent with the results of previous studies that investigated
the broad mechanistic principles underlying the association between meteorological factors
and HRSV infection seasonality. For instance, the observation that moderately low ambient
temperatures lead to high viral transmission rates has been made in many previous studies.
In particular, the negative association between mean ambient temperature and HRSV
infection incidence, which was observed in this present study, is biologically valid and con-
sistent with the results of previous studies conducted in mainland China and Brazil [23,67].
Moreover, laboratory studies and animal experiments have described that low ambient
temperature plays a potential role in modulating the viability and stability of respiratory
viruses by affecting the properties of viral surface proteins and lipid membrane and pro-
portion of droplet nuclei [68–71]. Lower ambient temperatures may also enhance virus
susceptibility by triggering changes in human physiology. In contrast, a linear increase in
the cumulative IRR as the mean ambient temperature increased to above approximately
20.0 ◦C was observed in this study, similar to the form of nonlinear association identified in
two studies that were recently conducted in Singapore [50,51]. For instance, HRSV infection
epidemics in tropical and subtropical regions (e.g., Hong Kong, Singapore, Malaysia, and
Colombia) have been associated with high ambient temperatures [72]. Recently, it has
also been observed that the HRSV infection seasonality has changed from autumn–winter
(September–February) to summer–autumn (June–November) in Japan after 2017, which is
generally a temperate region [6–9]. A notable study using national Japanese surveillance
and meteorological data examined the causes of summer–autumn epidemic conditions and
found that the interaction between ambient temperature (≥28.2 ◦C) and relative humidity
(≥79.0%) had a 1.92-fold (95% CI, 1.60–2.23) marginal effect on HRSV infection incidence [9].
Another study by Yusuf et al. that examined HRSV infection incidence throughout a year
in nine cities that had different climates and geographical locations suggested that the
incidence was related to ambient temperature in a bimodal fashion, with greater disease
incidences at ambient temperatures of 24.0–30.0 ◦C and 2.0–6.0 ◦C [73]. These accumulated
epidemiological findings suggest that HRSVs are partially active at relatively high and low
ambient temperatures. Although the underlying cause for this complex form of association
is unclear, our study, which captured data over multiple seasons across climate zones in
Japan, found that ambient temperature had a U-shaped association with incidence. Our
findings provide an important perspective on how the variation in ambient temperature
between regions may affect HRSV infection epidemics in Japan.

There is ample evidence of a positive association between humidity (including relative
and/or absolute) and HRSV infection epidemics, generally consistent with our results.
Studies conducted in several regions, including Mexico, Spain, and Italy, have shown
an association between high HRSV infection incidence with high humidity [18,25,73].
Indeed, our results are consistent with the modeling results of a study conducted in
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Singapore that found an inverse J-shaped association between humidity and HRSV infection
epidemics [51]. One potential mechanism by which high humidity may facilitate HRSV
transmission is through increased viral survival; as HRSV is transmitted via droplets
and respiratory secretions, it tends to be rapidly inactivated in small aerosols at low
humidity levels and higher HRSV stability in large-particle aerosols at higher humidity
levels [18,51,73,74].

To our knowledge, little is known about the effects of precipitation and wind speed
on HRSV dynamics; however, our findings show that high levels of precipitation and
low levels of wind speeds are weakly associated with increased HRSV infection risk in
Japan. Previously, several studies in Italy, Singapore, Philippine, Thailand, and Brazil
have already reported that high precipitation is associated with increased HRSV infec-
tion incidence, suggesting that the epidemic seasonality may show a similar pattern to
precipitation [51,52,67,75,76]. Indeed, the peak in HRSV infection epidemics coincides
with the rainy season in several tropical locations [27–31]. In contrast, limited studies in
Singapore and Kenya have found wind speed to be negatively associated with the HRSV in-
fection incidence [32,51]. Generally, some of the previous literature suggests that low wind
speeds can prolong the presence of infected aerosol particles in the air, thereby facilitating
the transmission of respiratory viruses [77]. Also, higher wind speeds can disperse droplets
and decrease the concentration of infected aerosol particles [77,78]. Overall, these epidemi-
ological findings were partially consistent with the trends in our results; however, further
studies are needed to assess the relative role of these drivers in the HRSV transmission.

Overall, a possible another interpretation for our observations is that ambient me-
teorological drivers are associated with the amount of time spent indoors and outdoors,
thereby facilitating transmission. Time spent indoors in closed or confined environments
could theoretically facilitate the transmission of respiratory viral infections such as HRSV.
Indoor congestion has often been hypothesized as a primary contributor to the surge in
HRSV infection cases during colder seasons in temperate regions [79,80]. Conversely, in
subtropical regions, the prevalence of hot and humid climatic conditions during summer
drives individuals to seek shelter in densely populated, air-conditioned settings, thereby
creating a favorable environment for viral transmission [81]. Notably, most meteorological
conditions vary between indoor and outdoor environments and the form of associations
also differs (e.g., influenza and COVID-19) [33,82,83]. For instance, these meteorological
drivers may be a proxy for another variable that affects transmission (e.g., human behavior
and living environment), or there may be a complex relationship between climate variability
and disease transmission (e.g., nonlinear or threshold effects). Indeed, these ambiguities
may render complex nonlinear associations more plausible. Despite the regional proxim-
ity and similar climates, the epidemiological patterns of HRSV infection in the Western
Pacific and South-East Asia regions, including Japan, appear to exhibit subtle differences,
suggesting that climatic factors alone do not entirely dictate epidemic seasonality. Indeed,
one of our significant concerns is the lack of studies on the association between ambient
meteorological drivers, human behavior, and HRSV infection epidemics. Thus, detailed,
multicountry, multicity studies with different epidemiological contexts and long-term
studies are therefore needed to further disentangle complex interactions and present robust
evidence.

There are several caveats when interpreting the results of this study. First, our study
was based on the analysis of secondary data and is regarded as a type of ecological study
in causal inference, which is prone to unobserved confounding [8,11,53,54]. In particular,
we did not have access to data on the different genetic strains of HRSV that emerged
over time in the different prefectures; therefore, we did not explicitly model the effects
of HRSV subtypes (A and B), which could have helped to explain the differences in the
HRSV transmission seasonality in Japan [84]. Furthermore, increased contact structures
(i.e., contact patterns and rates) among older students during school terms have been
also hypothesized to play an important role in HRSV seasonality [85,86]. These factors
influence the accurate modeling of the true extent of disease infections and transmission
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within populations; however, disease surveillance data allow researchers to determine
temporal trends in disease dynamics that can be further modeled and used in public health
decision making. In particular, the influence of individual exposure on infection risk and
causality at the individual level cannot be inferred over a large geographical area of Japan.
Second, our time-series statistical model only accounted for meteorological drivers; other
important drivers such as human behavioral changes could also drive viral transmission,
although some of these were associated with the selected meteorological drivers (e.g.,
indoor crowding in hot/cold weather) [24,79–81]. Since the beginning of the COVID-19
pandemic, a near cessation of HRSV transmission during periods of movement restrictions
and physical distancing has been observed. However, on/off-season HRSV infection epi-
demics have been reported in multiple countries, which may be attributed to the relaxation
of nonpharmaceutical interventions and an increase in population susceptibility [87,88].
As all our data were collected prior to the COVID-19 pandemic, our current modeling
framework was not devised to incorporate these factors. Fourth, our study may be lim-
ited in its generalizability due to the collection of data from a specific geographical area
(47 Japanese prefectures) and a limited period (2014–2019), thus precluding the representa-
tion of different epidemic periods across diverse regions. For similar future studies, it may
be beneficial to consider increasing the number of geographical regions, expanding the set
of indicators, and including additional data, such as individual-level data. Fifth, although
we only utilized meteorological drivers such as mean ambient temperature, relative hu-
midity, precipitation, and wind speed as explanatory variables in our time-series statistical
models, other environmental confounders such as diurnal temperature ranges, sunshine
hours, and ultraviolet levels may also contribute to HRSV transmission [50,51,89–91]. In
particular, some air pollutants (e.g., particulate matter of aerodynamic diameter of less
than 2.5 µm, nitrogen dioxide, sulfur dioxide, and carbon monoxide) have been widely
considered in epidemiological studies of HRSV and further modelling studies are needed to
quantify the contribution of these potential drivers to the transmission dynamics of HRSV
across Japan and to understand the interrelationships [50]. Seventh, because our study
focused on pooled associations between meteorological drivers and seasonal variations
in incidence, we did not fully characterize the association between the heterogeneous
transmission of HRSV in specific Japanese prefectures, which was beyond the scope of this
study. For instance, the occurrence in local HRSV infection epidemics in remote prefectures
of Japan should be considered, as the epidemiological effect on HRSV transmission may
differ among regions [11,46]. To identify the actual causes of the heterogeneity among the
prefectures, we need to validate these causes by formulating sophisticated spatiotemporal
hierarchical modeling frameworks (e.g., approximate Bayesian inference using integrated
nested Laplace approximation) and DLNMs [92] while simultaneously accounting for
spatial heterogeneity and autocorrelation or a two-stage time-series design involving a
downscaling procedure [37,56]. Moreover, the application of techniques such as analysis of
partial differential equation systems and numerical simulation may also allow for more
flexible modelling of exposure–lag–response relationships [93–96]. Indeed, this our method
does not provide site-specific information on meteorological relationships with HRSV
infection incidence. Therefore, our present results reflect an overall average trend during
the study period in Japan that should be interpreted with caution. Finally, although this
study successfully described the space-varying, nonlinear, and multidelayed associations
between the meteorological drivers and HRSV infection seasonality across Japan, there
remain some future studies that could expand our current knowledge. Particularly, the
extent to which the future long-term risk of HRSV infection may change under different
current and future climate change scenarios has not been predicted and is not sufficiently
clear. For instance, harmonized input data and common simulation protocols from the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) can provide useful insights
into the possible consequences of several key climate change options open to us (e.g.,
dengue, malaria, and vibriosis) [97].
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5. Conclusions

Disease transmission is a dynamic interplay involving a network of contributing
factors. Here, using empirical epidemiological data, we characterized the nonlinear and
multidelayed temporal associations between the meteorological drivers and HRSV infection
seasonality in the pre-HRSV-vaccination and pre-COVID-19 era across Japan. As a result,
our findings indicate that hot and humid weather, high levels of precipitation, and low
levels of wind speeds are associated with increased HRSV infection risk in Japan. Note that
most HRSV and other seasonal respiratory viruses actually transmit indoors, rather than
outdoors; therefore, the relevance of these outdoor climate correlations maybe most useful
as a surrogate for indoor environments at the time of such HRSV incidence and transmission
events. Our findings align, to an extent, with available mechanistic explanations and reports
from the previous literature from other regions of the world. The meteorological drivers
investigated in our method may help researchers to partially explain differences in the
strength of seasonality across the different regions of Japan, in contrast with previous
methods that assume a linear relationship of seasonality with disease risk and changing
exposures. More broadly, this study may suggest to policymakers the need for public health
strategies and interventions that are flexibly adapted to the climatic conditions in different
regions of Japan to mitigate HRSV transmission (e.g., increase the intensity and frequency
of interventions in periods of hot and humid weather, high levels of precipitation, and
low levels of wind speeds). More importantly, substantively, with several prophylactic
vaccine candidates (e.g., prefusion-stabilized F protein vaccine) on the horizon, our present
findings on the HRSV infection seasonality in Japan could help to predict the onset of
the HRSV season and may inform the timing of immunization as well as seasonal health
service planning by pediatric clinical and laboratory diagnostic teams to prevent severe
outcomes in high-risk groups [65,66]. Future analyses should consider how the associations
addressed in this study can inform the forecasting of the spatiotemporal distribution and
seasonality of HRSV under anticipated climate regimes, immunization, and COVID-19-
related disruptions.
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