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Abstract: The search for innovative anti-cancer drugs remains a challenge. Over the past three
decades, antibodies have emerged as an essential asset in successful cancer therapy. The major
obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against
human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma
technology and thus demands alternative approaches, such as humanizing murine monoclonal
antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from
Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of
genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab
on their capsid. This innovation allows the in vitro selection of novel molecules directed towards
cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage
Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This
comprehensive review unveils the remarkable progress in this field and the possibilities of using
clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly
specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as
CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying
the spectrum of potential therapeutic avenues.

Keywords: Phage Display; cancer therapy; therapeutic antibody; biopanning

1. Introduction

Phage Display technology is a method to present proteins, such as antibody fragments,
on the surface of filamentous phages. George Smith first demonstrated in 1985 that it is
possible to display exogenous proteins fused to the filamentous phage f1 capsid, while
maintaining the viral infectivity and protein’s biological activity [1]. Achieving protein
display on the surface of a phage requires a strategic manipulation of its genome. This
involves the fusion of a gene encoding the desired protein to the 5′ region of a filamentous
phage’s coat protein, such as protein III or protein VIII. Once the phage particle is assembled,
the exogenous protein is expressed as part of the viral capsid [2].

The methodology evolved to allow the construction of libraries of polypeptides dis-
played on the phage surface. As the displayed proteins are exposed in a manner that allows
their interaction with ligands, the libraries can be used to select polypeptides with affinity
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to a particular ligand. This approach proves valuable in investigations concerning protein–
protein interactions, the definition of epitopes, or even the search for enzyme substrates [3].
For example, it is possible to build high-variability libraries to search for an antibody with
high affinity to a given antigen. Each phage works as a fusion unit and as an independent
vector, so a particle with affinity to the specific ligand can be identified/selected, and this
particle can separately be propagated [4].

The selection of the Phage Display involves searching for antibodies with specificity
to an antigen of interest, in a vast antibody ocean that consist of the libraries (immune,
non-immune or synthetic) of antibodies [5]. Historically, a metaphor has been used that
associates this selection with panning—the work of a miner searching an ore material in
search of gold—or a metaphor in which a fisherman would fish for a particular antibody in
an ocean of great diversity of antibodies. In both analogies, the idea is that, in theory, an
antibody can be isolated against any antigen, whether it is immune or not, or even against
a toxic antigen [6].

Several antibodies approved for therapeutic use have been developed using Phage
Display (Table 1), which is an alternative to the hybridoma technology and enables the
discovery and generation of fully human antibodies against specific targets [7]. Antibodies,
also known as immunoglobulins, comprise structures characterized by heavy chains con-
taining constant domains (CH) and a variable domain (VH), and light chains, containing a
constant domain (CL) and a light domain (VL) [8]. An immunoglobulin G is constituted by
a symmetrical arrangement of two identical heavy chains and two identical light chains [9].
There are different classes of antibodies, and in addition to the natural forms, it is possi-
ble to construct antibody fragments containing only some parts of the immunoglobulin
molecule [10]. In Phage Display libraries, antibody fragments such as single-chain fragment
variable (scFv), containing only VH and VL interconnected by a flexible linker peptide,
antigen binding fragments (Fab), containing VH, CH1, VL and CL, and single domain,
mainly VHH (camelid-derived heavy chain variable domain), are usually displayed. The
reduced size of these fragments enables their display surface without interfering with the
particle assembly or infectivity [11].

Therapeutic monoclonal antibodies (mAbs) and their derivatives have revolutionized
oncology treatment by leveraging the specificity observed in natural effector mechanisms
of the adaptive immune system [12]. These mAbs, whether used as naked molecules,
conjugated to cytotoxic payloads, or incorporated into chimeric antigen receptors (CARs),
have enabled targeted and precise treatments in diverse oncological scenarios. Ongoing
advancements in this field continue to shape the landscape of cancer therapy [13]. Phage
Display has assumed a significant role in advancing anti-cancer strategies by facilitating
the discovery of novel antibodies, antigens, and epitopes associated with tumors. Addition-
ally, it enables various strategies to tailor affinity, reduce immunogenicity, and search for
biophysical properties that enhance the druggability of these therapeutic molecules [14].

While Phage Display-based antibody discovery platforms can employ repertoires
obtained from immunized animals or patients with particular tumors to enable the in vitro
selection of molecules with desired characteristics, a key strength of this methodology
relies on its independence from animal (or patient) involvement for generating fully human
therapeutic mAbs [2].

This review provides an overview of the impact of Phage Display in antibody research,
in general, and specifically for tumors, presenting the antibodies approved for therapeutic
use developed using this approach and putting forward a strategy of antibody development
for the treatment of different types of cancer. Furthermore, we elucidate the primary
selection methodologies and categories of antibody libraries that have been employed.
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Table 1. Phage Display-derived antibodies that have been approved for clinical use.

Name Commercial Name Format Target Company Clinical Indication Status Phage Display Type

Adalimumab HUMIRA Human IgG1 TNFα Abbvie

Crohn’s disease,
Rheumatoid arthritis, Colitis
ulcerative, Psoriatic arthritis,

others.

Market Naive human Fab library

Anti-MIF
(BaxF07) Human IgG4 Myostatin Baxter Muscle loss Withdrawn Naive human Fab Library

Atezolizumab * Tecentriq Humanized IgG1 PD-L1 Roche, Genentech
Cancers, Melanoma, Solid

Tumors, hepatocellular
carcinoma, others

Market Human Library

Avelumab * Bavencio Human IgG1 PD-L1 Merck, Pfizer
Renal cell carcinoma,

ovarian cancer, gastric
cancer,

Clinical Trials.
Market: Renal

carcinoma
Naive Fab library

Belimumab Benlysta Human IgG1 TNFSF13B GSK, HGSI
Systemic lupus

erythematosus (SLE),
vasculitis

Market: SLE;
Phase III:
Vasculitis

Human naive scFv library

Brodalumab Kyntheum,
Siliq Human IgG2 IL-17RA

Valeant
Pharmaceuticals; LEO

Pharma
Plaque psoriasis Market MorphoSyś HuCAL

Ecallantide Kalbitor Not Antibody Plasma
kallikrein Dyax Corp. Hereditary angioedema Market Dyax platform

Emapalumab Gamifant Human IgG1 IFNγ NovImmune Primary hemophagocytic
lymphohistiocytosis Market Human scFv libraries

Faricimab Vabysmo Human/Humanized
IgG1 VEGF-A, Ang-2 Roche Macular degeneration Approved Synthetic human Fab library

Guselkumab TREMFYA™ Human IgG1 IL23A
Morphosys (Germany);

Morphosys and
Janssen Biotech (USA)

Psoriatic arthritis, psoriasis,
palmoplantar pustulosis,

others
Approved MorphoSyś HuCAL

Ixekizumab Taltz Humanized IgG4 IL17A Eli Lilly (USA) Plaque psoriasis, psoriatic
arthritis Market Immune murine Fab library

Lanadelumab Takhzyro Human IgG1 Plasma
kallikrein Dyax Corp Hereditary angioedema

attacks Market Naive human Fab library
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Table 1. Cont.

Name Commercial Name Format Target Company Clinical Indication Status Phage Display Type

Necitumumab * PORTRAZZA™ Human IgG1 EGF Receptor Eli Lilly (USA) Non-small-cell lung cancer,
metastatic colorectal cancer Approved Naive Fab library

Moxetumomab * LumoxitiTM Mouse Exotoxin
A-IgG1 CD22 MedImmune/Astrazeneca Hairy cell leukemia Approved scFv library

Caplacizumab CapliviTM Humanized VHH VWF Sanofi/Ablynx Thrombotic thrombocytopenic
purpura Approved Immune camelid nanobody

library

Inebilizumab Uplizna Humanized IgG1 CD19 AstraZeneca/
Medimmune, Viela Bio

Neuromyelitis optica spectrum
disorder Approved

Ramucirumab * CYRAMZA™ Human IgG1 VEGF Receptor 2 Eli Lilly (USA)
Breast cancer, gastric cancer,

lung cancer, metastatic
colorectal cancer, others

Approved Naive Fab library; Dyax
platform

Ranibizumab Lucentis Humanized Fab VEGF-A Genentech Neovascular (wet) age-related
macular degeneration Market Fab library

Raxibacumab ABthrax® Human IgG1 Anthrax protective
antigen (PA)

GlaxoSmithKline (UK);
Human Genome Sciences

Inc (HGSI/USA)
Anthrax inhalation Market Naive human scFv library; CAT

platform

Relatlimab * Opdualag Human IgG4 LAG-3 Bristol-Myers Squibb Melanoma Approved Naive human scFv phage library

Tafasitamab * Monjuvi Humanized IgG1/2 CD19 Xencor Non-Hodgkin’s lymphoma,
chronic lymphocytic leukemia Approved MorphoSyś HuCAL

Regdanvimab Regkirona Human IgG1 SARS-CoV-2 (spike) Celltrion Healthcare
Hungary Kft COVID-19 Approved Human scFv library

Tebentafusp * KIMMTRAK Human TCR-scFv gp100, CD3 Immunocore Metastatic uveal melanoma Approved Synthetic TCR-phage library

Tralokinumab Adbry™ (USA);
Adtralza® (EU) Human IgG4 IL-13 LEO Pharma Atopic dermatitis,

asthma Approved Synthetic human scFv library

TNFα: Tumor necrosis factor alpha. IFNγ: Interferon gamma. VEGF: Vascular endothelial growth factor. EGF: Epidermal growth factor. Ang-2: Angiopoietin 2. LAG-3: Lymphocyte-
activation gene 3. IL: Interleukin. PD-L1: Programmed death ligand. VWF: Von Willebrand factor. gp100: A melanoma-associated antigen. Asterisk: Phage-Display-derived antibodies
approved for cancer and other clinical applications.
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2. Main Types of Phage Display Libraries Used to Select Antibodies

Phage Display has been widely applied to develop novel therapeutic antibodies.
Impressively, 18% of all antibodies commercially approved owe their origins to this technol-
ogy. Most of the Phage Display-derived antibodies that have gained clinical approval have
been tailored for deployment in cancer (36%) and immunoregulation (32%) applications
(Figure 1A) (Table 1).
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Since the early 1990s, when Phage Display started to become a popular strategy
to select antibody fragments, several types of libraries have been developed. One of
the first libraries constructed [15] used mouse scFv and Fab fragments. In the same
year, Barbas III and co-workers (1991) developed a protocol to construct combinatorial
libraries from human repertoire based on Fab fragments [16]. These libraries rely on the
random rearrangement of heavy and light chains amplified from immune cells, either from
immunized or naïve animals. Zebedee et al. (1992) used a library to select Fab fragments
from a vaccinated individual, which can be considered an immune library from a human
subject. Libraries derived from naturally immunized individuals, such as vaccinated
subjects, are difficult to find, but even non-immunized human libraries have been used
successfully to obtain high-affinity antibodies against either self- or non-self-antigens [17].

Phage Display libraries can also be developed from variants of a single antibody.
One of these approaches relies on the use of directed evolution to select high-affinity
mutants from a scFv library that has been randomly mutated through error-prone PCR
(epPCR), as previously described [18,19]. Random mutagenesis might be useful to obtain
mature antibodies with different kinetic parameters (different association/dissociation
rates). Direct evolution of antibody affinity can also be accomplished using libraries of
CDRs (complementary determinant regions) of variable domains, mainly CDR3H. CDR3H
variants were randomly generated using degenerate oligonucleotides where codons such
as NNS were used, raising the possibility of any of the twenty amino acids being coded,
while reducing the change to an unwanted stop-codon [20].

Antibody fragments may also be isolated from infected organisms [21–23], as demon-
strated by selecting Fab fragments from HIV-1-positive individuals. This is particularly
interesting for infectious diseases as these subjects are considered immunized and, there-
fore, produce higher--affinity antibodies. This strategy has also been previously described
to select IgE antibodies from an atopic donor immunized with tetanus toxoid [24]. Other ex-
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amples are an anti-U1 RNA-binding antibody fragment [25] and anti-DNA antibodies [26]
from a systemic lupus erythematosus (SLE) individual’s serum. Antibody fragments have
also been selected with the aim of viral infection inhibition, as described by Hodits et al.
(1995), in which a specific scFv for low-density-lipoprotein receptor family blocks infec-
tion with rhinovirus [27]. Other examples include libraries from asthma donors [28] or
individuals infected with Streptococcus oralis [29], hepatitis C virus [30] and Ebola virus [31].

In addition to human and mice, libraries from camelids (camels and llamas) have also
become of great interest due to the size and stability of the single variable domain found
in some of their natural immunoglobulins; as early as 1996 [32], camelid single-domain
antibody fragments (VHH) have been considered as an alternative to new, small, and
high-affinity antigen-binding molecules. Some cartilaginous fish (sharks, skates, and rays)
are also considered another source of single-domain antibody fragments, as they possess
an immunoglobulin-like antigen receptor, IgNAR (immunoglobulin isotype novel antigen
receptor) [33]. VHH and IgNAR are used to reduce the size of functional antigen-specific
molecules. These single-domain molecules have overcome the need for an interface coun-
terpart domain, maintaining solubility, specificity, and affinity. Conventional antibodies
have an interface between VH and VL and, even though these paratopes can have a very
high affinity, they depend on another to prevent hydrophobic residue exposure and low
solubility and expression levels [34]. Despite the diversity of species and formats of an-
tibodies selected using Phage Display, most of the approved antibodies, including those
from Phage Display, are in full-length IgG format and are of murine and human origin
(Figure 1B) (Table 1). This can be explained by the ultimate use of the antibody in treating
human diseases, where the effector function of the immune system is required.

Once a library has been constructed, its diversity enables the selection of antibodies
virtually against any relevant target. Therefore, many libraries are built only once and used
for different applications, such as the Griffiths, A.D. (1994) and Tomlison I+J synthetic scFv
libraries [35], or even the one that we constructed from osteosarcoma patients [36], which
was used to isolate antibodies against anti-tumoral antigens [37], α-dystroglycan mucin
glycopeptide [38] and anti-Zika virus [39]. Three Phage Display commercial platforms
(MorphoSys HuCal, Cambridge Antibody Technology, and Dyax) stand out as possible
sources of molecules that have gone through clinical trials. It is important to note that these
examples are only for monovalent antibody drugs. Many other platforms and antibody-based
molecules such as CAR-T cells, antibody–drug conjugates, antibody fragments (nanobody,
scFv, Fab), and bi- and tri-specific molecules have also been developed using Phage Display,
as listed in the Therapeutic Antibody Database (TABS—https://tabs.craic.com/, (accessed
on 05/01/23)).

3. Biopanning Selection for Retrieval of Specific Antibodies

Biopanning involves selection rounds to determine whether a displayed antibody
can effectively interact with a bait antigen. To eliminate non-specific antibody phages,
stringent methods are applied during the panning cycles [40]. Subsequently, the specific
antibodies are eluted using a condition that prevents the antibody–antigen binding. The
eluted phages are used to (re)infect a bacterial host, amplifying the selected phages and
then initiating a new round of selection [41]. Traditionally, three to six selection rounds are
performed, increasing the stringency with each selection/amplification round, resulting in
an enrichment process in a Darwinian model. Over the cycles, higher-affinity antibodies
become more frequent, and at the end, high-affinity antibodies to the antigen are markedly
enriched [42].

The variety of ways to carry out the selection starts with a wide range of possibilities
for how to present the antigen to the phage library; it can be isolated, combined with other
molecules, or even arranged in a cellular structure. There are also several ways to eliminate
non-binding antibodies [43]. Compared to other methods for generating monoclonal
antibodies, such as transgenic mice, Phage Display technology provides researchers with
great flexibility in selecting platforms, from simple to complex systems (Table 2). Among

https://tabs.craic.com/
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the current technologies for the development of human antibodies, Phage Display is the
most suitable for obtaining antibodies against toxic antigens [14,44].

Table 2. Representation of the different selection strategies and elution methods used in antibody
Phage Display.

Library Method Reference

Synthetic scFv library
Selection in immunotubes coated with antigens. The phage preparation was

added to tubes and after extensive washing, the bound phage was eluted with
triethylamine.

[45]

Combinatorial naive scFv Selection against an immobilized antigen on a roller bench. Bound phages
were eluted with triethylamine. [46]

Synthetic Fab library Selection with seven rounds of panning, using trypsin elution. [47]

Combinatorial scFv library

Anti-Golgi selections were carried out on streptavidin-coated magnetic beads.
Biotinylated Golgi membranes were bound to streptavidin magnetic beads.

After incubation, phages were eluted twice by incubating beads with
triethylamine.

[48]

Combinatorial scFv library Selection with immobilized antigens, reducing the antigen concentration over
the rounds. [49]

Combinatorial scFv library

Selection of specific antibodies against human platelets. Phages bound to the
platelets were eluted with two distinct strategies: (1) Standard elution via

incubation with 0.1 M glycine (pH = 2.2), followed by neutralization with Tris
HCl (pH = 8). (2) Competitive elution via incubation with highly saturating

concentrations (2 mg/mL) of abciximab, an anti-platelet competitor antibody.

[50]

Immune scFv library Selection of antibodies, using sulfatide liposomes as antigen. [51]

Combinatorial scFv library Selection using inactivated measles virus as antigen [52]

Combinatorial Fab library
Selection on streptavidin magnetic beads and biotin-conjugated antigen.
Separation of the bound phages via pull down of the beads. Elution via

competition through use of saturated antigen solution.
[53]

Human scFv library

Panning after a first negative selection with control antigen. Unbound phages
were subjected to further incubation with VZV cell lysate antigen. The bound
phages were eluted with 500 mL triethylamine followed by neutralization with
500 mL Tris/HCl pH 5.5, and they were amplified for a new round of selection.

[54]

Human scFv library Panning decreasing concentrations of the antigen. The bound phages were
detached via the direct addition of 1 mL of XL1-Blue cells. [55]

Naïve scFv
library

Selection against adherent IGROV-I cells. The cells were incubated with
pre-warmed medium at 37 ◦C for 15 min to allow endocytosis of

surface-bound phage. To remove phage bound to the extracellular matrix or to
the culture plate, adherent cells were trypsinized. Subsequently, to remove

phage bound to the cell surface, the cells were stripped three times with
low-pH glycine buffer (150 mM NaCl, 100 mM glycine pH 2.5). Internalized

phages were recovered from within the cells by lysing with 100 mM
triethylamine for 4 min at 4 ◦C and neutralizing with 0.5 M TrisHCl.

[56]

Three scFv libraries

The phage library was incubated with 108 PBMC. Cells were then centrifuged,
washed three times, and labeled with anti-BDCA3 antibody (dendritic cells).

Approximately 105 cells were purified with magnetic-activated and
subsequently fluorescence-activated cell sorting. Sorted cells were washed
once with PBS, and cell-bound phages were eluted with HCl solution and

then neutralized.

[57]

Immune mice scFv-Fc library Phage library was used against rat liver endothelial cell plasma membranes. [58]

Synthetic scFv library
Antibody selection, using biotinylated antigen captured by

streptavidin–agarose resin. Selection can take place through centrifugation or
on a column, separating the non-specific phages and the binding phages.

[59]
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Table 2. Cont.

Library Method Reference

Commercial scFv library

Selection using cells containing the antigen of interest and control cells that
are arranged on a flat surface (slide). Cells containing the antigen were

previously and partially covered with a gold disc. Phages were incubated
with both cells. Subsequently, non-target-cell binding phages were

inactivated with UV irradiation. During irradiation, the phages bound to
the antigen-bearing target cell were protected by the gold disc

(radiation shielding).

[60]

Combinatorial immune Fab library

BRASIL selection. The phage library was incubated with normal cells and
this system was applied in the top of an organic matrix, which was

centrifuged. After, the supernatant with unbound phages was incubated
with cancer cells, in the same method. Then, the cell pellet with bound

phages was used directly to infect bacterial cells.

[37]

Immune llama VHH library

Masked selection: This selection consisted of incubating the phage library
with antigens containing non-relevant (unwanted) epitopes, and then the
non-relevant binding phages were eluted, and their antibody fragments

were produced in soluble form. A new round of selection occurred,
incubating antigens containing the relevant (desired) epitope with the

non-relevant soluble antibody population to block (mask) the non-relevant
epitopes; then, the original phage library was added to the selection.

[61]

Commercial combinatorial Fab
library

Two libraries, one with Kappa chain and the other with Lambda chain,
were mixed and used to select antibodies against protein F pre-fusion and
post-fusion of RSV, performing a negative selection with pre-fusion protein
and a positive post-fusion, and, in parallel, selection in reverse (negative

for post-fusion and positive for pre-fusion).

[62]

scFv naive library Selection of binding phages to a monolayer of corneal epithelial cells and
elution with trypsin, with the support of a peristaltic pump. [63]

Synthetic human VHH library

Selection of specific phages using a streptavidin-based Mass Spectrometry
Immunoassay (MSIA Streptavidin D.A.R.T.) selection method. Metal pins
containing streptavidin were attached to biotinylated antigen. The mixture
was incubated with the phage and then washed to remove non-binding
phage. Each wash cycle consisted of direct injection into an LC-MS in

pulses with increasing speed. Afterward, the metal pins were incubated
with a glycine-HCl solution, and the eluted phages were subjected to 300
cycles of low-speed injection and dispensing. The eluted fractions were

immediately neutralized.

[64]

Synthetic scFv library Selection with astringency with increasing Tween concentration, instead of
the number of washes. [65]

Immune rabbit scFv library Selection with whole immobilized cells of the bacteria Campylobacter jejuni. [66]

Naive scFv library Selection with brain epithelial cells in solution. [67]

Synthetic scFv library

Affinity column selection. Live Listeria monocytogenes cells were
immobilized on a matrix in an immobilization column. The phage library
was applied in the column. Elution was conducted with acid solution and

centrifugation.

[68]

Synthetic scFv library

Selection of internalized phages in breast cancer cells. The phage library
was incubated with cells and after removing unbound phages via washes,
the specific phages were internalized. The internalized phages were eluted

using cell lysis.

[69]

Synthetic scFv library

In vivo selection of atherosclerotic aorta antigen-specific scFv. The phage
library was injected into ill rabbits and the phages circulated for one hour.
The animals were sacrificed, and PBS was applied to ensure removal of free
phages in the blood. The aorta was removed, and the phages were eluted.

[70]
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Table 2. Cont.

Library Method Reference

Naive scFv library
In vivo selection in mice, with 3 h of phage circulation. Phages binding to

tumor organs (lung and breast) and control organs (brain, muscles,
pancreas) were analyzed.

[71]

Naive scFv library Selection against immobilized antigen with astringency by gradually
increasing intense washes in each round. [72]

Combinatorial naive scFv library

Selection of specific antibodies against a biotinylated antigen, immobilized
on a streptavidin surface, using two elution strategies: (1) Standard elution
via incubation with 0.1 M glycine (pH = 2.2), followed by neutralization

with Tris HCl (pH = 9). (2) Competitive elution via incubation with highly
saturating concentrations (2 mg/mL) of non-biotinylated antigen (free

antigen).

[39]

Immune murine scFv library

Selection of antibodies against a mixture of leukocyte cells from leukemia
patients, with a previous depletion step with leukocyte cells from healthy

donors. In the selection, the non-specific phages were removed with
centrifugation and the cell-surface-bound phages were eluted with trypsin.

[73]

Naïve Fab library

Selection using a Phage Display library, in which the Fabs are attached to
the phage by a covalent bond with a capture protein (SpyCatcher)

expressed on the surface of the phage, instead of the classic form of gene
fusion of the antibody gene and the gene of a virus protein, avoiding the

subcloning step of the library construction (smaller phagemids). The
selection was performed with different times of incubation of the library„

with an immobilized antigen in each round.

[74]

Synthetic camelid nanobody library

Panning using a single selection round, with a strong astringency method
of twenty washes with PBS and four additional washes with acid buffer.

The bound phages were eluted via competitive elution with the free
antigen.

[75]

Several selection strategies have already been employed for different purposes, in
the search for therapeutic antibodies, for diagnosis, industrial use, etc. (Table 2). Three
selection strategies stand out: selection using immobilized molecular antigens with a huge
variety of immobilization forms; selection using intact cells or biological tissues; and a more
challenging strategy, the in vivo selection [76–78].

A commonly used method for selecting antigens involves adsorbing the antigen
directly onto a surface or adding a biotinylated antigen to a surface covered with avidin,
streptavidin, or a similar molecule [79,80]. This immobilizes the antigen, which is then
incubated with the antibody library. This selection method is advantageous because it is
simple and involves a common and inexpensive experimental methodology. Restricting
the freedom degree of the (biotinylated) antigen can be useful to limit the availability
of epitopes or to avoid conformations that may interfere with antibody binding in more
natural situations. Synthetic peptides and complex molecules, such as viral particles, have
also been used in this type of selection [65,81–84].

From this basic form of selection, other variants have been proposed, such as the
capture of the antigen by a biotinylated antibody that was previously adhered to a plate
with streptavidin [39]. Another variation is the selection with immobilized antigens in
solution, where the biotinylated antigen is incubated, before or after binding to the an-
tibodies, with magnetic beads coated with streptavidin or anti-biotin antibody, or with
streptavidin–agarose. In the case of magnetic beads, specific antibodies are obtained by
passing them through a magnetic separator (such as a magnetic column) [85,86]. In the
case of streptavidin–agarose, the system undergoes a pull-down followed by centrifugation
and the pellet is washed several times to completely remove the non-binding phages [59].
The selection with magnetic beads or pull-down resin is noteworthy, as it provides an
additional stringent force to the system, reducing the possibility of non-specific phage
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remaining, and because it allows a selection in solution that provides a greater amount of
antigen accessible to antibodies [76,87].

Another selection method involves the use of a compact solid Marketatrix column
with the antigen immobilized, similar to liquid chromatography. This technique is called
Chromato-panning and involves adding the library to the column. Non-specific phages are
removed with washing, while specific phages are eluted by adding an acid or salt-saturated
buffer. These specific phages can then be used for a subsequent selection round [88].

A major revolution in selection methods has been the implementation of negative
selection, which consists of incubating a library of antibodies to one or more non-relevant
antigens, especially antigens that are related to the antigen of interest, to remove non-
specific binders [89,90]. This technique helps to reduce the possibility of contamination with
non-relevant antibodies, especially in the case of structurally similar antigens. Negative
selection does not necessarily have to be performed before the positive one; it can be carried
out in parallel [91,92].

To select specific antibodies against a given antigen in its biological context, several
studies have performed Phage Display selection using whole cells, isolated or in tissue
conformation. This type of selection is often adopted against membrane antigens, whose
native conformation is crucial to success in obtaining antibodies that bind to the target
in vivo [68,69,93].

The cells can be presented adhered to a surface or in solution (Figure 2), and there is
a wide range of methods for conducting the selection. Cells can be attached to a surface,
forming a monolayer that will later receive the phage library [66,94,95], or it is still possible
to use a whole biological tissue, which preserves cellular interactions and the natural
presentation of antigens on the cell surface, which can be altered in the cell isolation
process [96]. Dorfmueller et al. [63] isolated antibodies against corneal endothelial surface
antigens. Excised and preserved corneas were incubated with the phage library and
subjected to several washes to remove non-binding phages. Then, the tissue was scraped,
and the specific phages were eluted using trypsin treatment [63].
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additional selection forces using a simple pull-down method, gradient centrifugation (BRASIL) or
other techniques, such as FACS or mass spectrometry.
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A variant of whole-cell selection is BRASIL (Biopanning and Rapid Analysis of Se-
lective Interactive Ligands) technology, which consists of performing a previous step of
negative selection using the cells of interest lacking the antigen (Figure 2). The phage
library is incubated with antigen-negative cells, and then, this mixture is placed in a tube
filled with an organic immiscible solution that acts as a filter. This tube is then centrifuged
to separate the cells carrying the binding phage (pellet) from the non-binding phages that
remain in the upper aqueous solution. The non-binding phages are collected and incubated
with the same cell type that expresses the antigen of interest. The mixture is added to a
new tube containing the same organic solution as before and centrifuged, and the pellet is
used to amplify the binding phages for a new round. This method is interesting because it
allows for selecting antibodies specific to a cell surface antigen, avoiding contamination
with antibodies that bind to other cell antigens [37,76,91,95].

Sorensen et al. [60] used a creative method to select antibodies specific to a cell type,
performing positive and negative selection simultaneously. A hematopoietic cell (K562, of
female origin) was positioned via micromanipulation in a specific region on a glass plate,
close to several lymphocytes of male origin. The phage library was added to the glass plate
to allow binding to the cells. A gold disc was placed on the plate using micromanipulation
at the K562-specific position, and shortly after this, the plate was irradiated with ultraviolet
light to inactivate the phages so that the phage binding was protected from radiation by the
gold disc. The authors’ idea was to implement a micro-selection methodology that could
be used to obtain antibodies specific to a rare cell type in a heterogeneous population. This
work exemplifies the diversity of selection methods offered by Phage Display technology,
depending on the purpose of the selection [60].

Another example of selection recently used is in vivo selection, which goes beyond
whole-cell selection, and it searches for antibodies that bind to a biological antigen in
its natural context within the organism (Figure 2). Despite being interesting due to its
approximation to the physiological condition, this methodology greatly increases the
complexity of the panning process and has posed major challenges to researchers, such as
the recovery of binding antibodies and the avoidance of selection of non-specific antibodies,
given the availability of a huge diversity of antigens [97–99].

In vivo selection has been extensively studied with peptide libraries, but there have
also been some important studies with antibody libraries [40]. Hemadou et. al. [70] selected
recombinant antibodies specific to atherosclerotic proteins using three selection rounds, in
which an scFv-phage library was applied to rabbit models of atherosclerosis. After 1 h of
phage circulation in the bloodstream, the animals were sacrificed, the cardiac route was
washed with PBS to ensure the removal of non-binding phage, and the binding phages
were eluted from aorta sections. Thousands of selected antibody clones were then tested
using flow cytometry, and the positive clones were sequenced. The methodology adopted
by the authors allowed an adequate selection for that purpose by coupling the in vivo
selection to a high-throughput screening, which accelerated the panning process [70].
High-performance sequencing, combined with a powerful screening method, such as flow
cytometry, improves the discovery of specific antibodies when there is a large antigen
diversity [71,99].

4. Elution Methods for Improving the Specificity of the Antibody Selection

The elution step is crucial to select the best clones later in biopanning. Different
researchers have mainly chosen one of the following three types of elution. The choice is
also influenced by the library type and how the antigen is immobilized.

The first elution employed is one in which a change in pH is used once it impairs
the antibody/antigen interaction, releasing the antibody. Either an acidic (glycine, citric
acid) or alkaline (triethylamine) elution buffer can be used [100]. However, neutralization
is required after acidic elution to avoid degradation of the phages and to preserve their
infectivity [101]. pH-based elution has been the most commonly used method in panning
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strategies. Recently, a citrate buffer (pH 3) was used to elute phages displaying Fab
fragments. The affinity of these antibodies was estimated to be in the order of 2 µM [102].

Some libraries are constructed to contain an internal cleavage site between the an-
tibody and the phage pIII protein, enabling the release of phages displaying selected
antibodies after proteolytic cleavage. Depending on the site used, proteases such as trypsin,
chymotrypsin, thrombin, or factor Xa can be used [103,104]. Lysozyme has also been used
as an alternative to elution via proteolytic cleavage [105]. If enzymatic digestion is used,
phages that result from this step are non-infectious. Hence, there is a selection improvement
of antibody-displaying phages that are still infective [106].

A more specific type of elution is competition-based. In this procedure, an excess
of free, non-immobilized antigen is added to the reaction to unbind phage captured by
the same antigen immobilized in any way. This elution is performed to obtain antibody-
displaying phages with specificity to the antigen and to avoid contamination by non-
specific antibodies [104]. Kabir et al. [107] reported high-affinity antibodies obtained via a
competitive binding strategy against immobilized HM-I killer toxin, an antigenic peptide
from fungal pathogens [107].

5. Phage Display to Select Antibodies against Cancer

Phage Display technology has been used to develop antibodies specific to tumor cells
antigens, enabling the identification of tumor-specific molecular markers for diagnosis and
the development of targeted therapies as alternatives to radiotherapy and chemotherapy.
Monoclonal antibodies (mAbs) targeting tumor-associated antigens can combat cancer
through various mechanisms, including the neutralization of oncoproteins or other soluble
factors, and the destruction of tumor cells by antibody-dependent cellular phagocytosis
(ADCP), antibody-dependent cellular cytotoxicity (ADCC), and complement-dependent
cytotoxicity (CDC) [108]. In addition to their inherent effector mechanisms, the specificity
of mAbs, along with the functional modularity of their variable and constant domains, has
been cleverly exploited to guide cytotoxic molecules or engineered effector cells, enabling
selective targeting of tumors.

Although one of the basic hallmarks of the malignant transformation process is ge-
nomic instability, which can lead to the generation of altered proteins [109], these alterations
do not always result in neoantigens being present at sufficient density on the cell surface
or uniformly across all tumor cell subgroups [110]. These features are often associated
with tumors with a high capacity to evade immune control mechanisms and relapse af-
ter immunotherapeutic approaches [111,112]. Moreover, the tumor microenvironment
can induce immunosuppression and create physical barriers that impede the penetration
of therapeutic effector cells and macromolecules into solid tumors. The combination of
tumor-induced immunosuppression and the internalization of tumor-associated antigens
adds further complexity to developing effective anti-tumor antibodies, presenting a more
significant challenge than initially anticipated.

5.1. Different Methods to Search for Anti-Tumor Antibodies

The search for oncological molecular targets, now widely facilitated by advanced
tools such as mass sequencing and single-cell analysis, can be approached using the Phage
Display technique in its various application formats [113]. Phage Display technology
addresses some of the challenges mentioned above by enabling the exploration of complex
surfaces, including whole cells, to identify protein binders associated with specific tumors or
to map antibody epitopes extracted from individuals sensitized to a particular antigen [114].
Indeed, Phage Display allows the screening of antibody fragment libraries against tumor
cells without prior knowledge of the differential components present in tumor and healthy
cells [73]. This review highlights interesting examples of this approach in the selection
methods section. One such example is the biopanning method called BRASIL, which was
developed by Giordano et al. [115] and later applied by Dantas-Barbosa et al. [37] for the
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screening of antibody fragments [37,115]. Another example is the gold disc microselection
methodology, developed by Sorensen et al. [60].

In another selection approach using whole cells and elution via immunoprecipitation,
Liu et al. [116] isolated an scFv-antibody that binds to PKM2, a protein overexpressed in
lung cancer cells under hypoxia. When this antibody binds to the cell, it is specifically
internalized. In this case, this antibody can be used as a biomarker for hypoxia in liver
cancer tissues or as a targeted payload delivery vector [116].

Another advantage of using whole cells for biopanning is the possibility to obtain
different clones for several epitopes of the same target. Santora et al. [117] have developed a
Fab phage library using a carcinoma cell line BT-20 to generate a cancer-specific polyclonal
library capable of inducing strong ADCC and CDC after removing non-specific sequences
with negative selection. This library was obtained by immunizing mice with BT-20 and
selection was carried out by fixing cells on paraformaldehyde [117]. Such a strategy could
be relevant against resistant malignant cells, in which downregulation of some antibody
targets may play a role in becoming treatment insensitive.

Alterations in tumor cells are often associated with the overexpression of proteins that
are also present in normal cells of the same or even other tissues. This leads to problems
in eliciting a potent immune response against self-antigens [118] and may pose safety
challenges for therapies targeting these antigens [119]. However, if the expression of these
antigens is limited to a specific cell lineage that can be eliminated, it offers a valuable
therapeutic opportunity. For example, for the treatment of hematological tumors like
lymphoma and lymphocytic leukemia, markers like CD20, CD19, CD22, and BCMA have
been used as targets for monoclonal antibodies selected with naïve and immune Phage
Display libraries [108]. These antigens are expressed by B-lymphocytes and their precursors,
making them intriguing therapeutic targets due to their frequent overexpression in B cell
malignancies. Additionally, antibodies that bind to these antigens are not significantly
internalized, further enhancing their potential for therapeutic targeting. This treatment
approach aims to deplete these cells from the blood circulation to control leukemias,
lymphomas, and myelomas [120,121].

Another potent intervention is the use of bispecific antibodies with a CD20 or CD19
binding portion and a second portion specific to T lymphocytes (CD3) to promote the
attachment of T lymphocytes to target cells, such as tumor B cells, increasing cytotoxicity
and the activation of anti-tumor response [121]. The anti-CD3 bispecific antibody, denom-
inated as bispecific T cell engager (BiTE), has been also used for other targets, including
solid tumors, containing specificity against CD3 and GCC, an antigen overexpressed in
gastrointestinal cancers [122].

A widely studied anti-tumor approach uses monoclonal antibodies against growth
factor receptors such as HER-2 (human epidermal growth factor receptor-2) and VEGFR
(vascular endothelial growth factor receptor). Overexpression of these receptors is linked
to tumor metastasis and poor prognosis in many types of cancers, such as breast, colorectal,
lung, neuroblastoma, gastric and cervical cancer. Several therapeutic antibodies have been
approved against this group of molecules, like trastuzumab and tamucirumab. Phage
Display has been employed to select novel anti-HER2 antibodies in different formats such
as single-domain antibodies [123], and to select antibodies targeting new epitopes of HER2
antibodies with diverse functional activities. These antibodies have been combined with
existing anti-HER2 used in clinical trials to overcome tumor resistance observed in some
patients during monotherapy [124]. The effectiveness of these antibodies depends on the
binding epitope since these receptors have regions with different functions, and this prop-
erty is important to consider when selecting antibodies. Shahangian and colleagues (2015)
performed competitive Phage Display panning to select antibodies that efficiently block
VEGF/VEGFR binding. The screening process for specific antibodies involved evaluating
antibodies that showed a significant decrease in VEGF binding during a competitive ELISA
in the presence of VEGFR [125].
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Some therapeutic approaches with anti-tumor antibodies involve mechanisms of intra-
cellular action. Specific binding to cytoplasmic and nuclear molecules that regulate cancer
development, improvised delivery of toxins with intracellular antibodies, blocking secre-
tion of tumor receptors on the endoplasmic reticulum, and antibody-mediated alterations
in cellular signaling pathways are new forms of immunotherapy in addition to interaction
with the cell membrane. Furthermore, intracellular antibodies are an alternative for diag-
nosis, targeting internal markers. The action of intracellular antibodies faces the difficulty
of these molecules crossing the plasmatic membrane and escaping from the pathways of
protein degradation. Different strategies have been explored to overcome this challenge.
Phage Display is an important tool to allow obtaining smaller antibody formats, such as
scFv and VHH, which are more favorable structures for transit through membranes and
tissue barriers and for intracellular expression [126,127].

D’agostino et al. [128] selected, with a llama immune library, the D11 VHH antibody,
specific to the Twist1 factor that inhibits the p53 protein. The activity of D11 VHH was
tested in fibrosarcoma cells via intracellular expression of the antibody using lentiviral
vectors [128]. Pastushok et al. [129] developed, using an immunized Phage Display library,
an anti-RAD51 scFv-Fc. RAD51 is a nuclear protein involved in DNA stability and is
overexpressed in many types of cancer. For the intracellular action of inhibiting RAD51,
the authors fused the recombinant antibody to a cell penetrating peptide (CPP). CPPs are
peptides used for membrane transit of different macromolecules. This type of association
of antibodies with CPPs is called TransMab [129]. Another immunotherapy alternative in
cancer is the construction of bispecific antibodies containing the anti-tumor antibody fused
to a fragment of an autoantibody. Autoantibodies are known to have intrinsic capacities to
cross cell membranes [130].

Phage Display in vivo selection can be an interesting alternative to select functional
anti-tumor antibodies against unknown antigens that are important for tumor progression.
Using a VHH library in mice with cancer, it was possible to select antibodies binding to
dynactin-1-p150, which is present in tumor blood vessels of metastatic glioblastoma and
is associated with the angiogenesis process, but not in normal vessels [131]. This is an
example of how novel targetable proteins can be discovered to develop new anti-angiogenic
antibodies that can be used in combination with ones already approved.

5.2. The Use of Specific Antibodies for Immune Checkpoints

Immune checkpoint pathways are relevant for tumor progression and survival and
many immune-inhibitory molecules are expressed on the surface of tumor cells. These
molecules, such as PD-L1, LAG-3, CTLA-4, and CD272, promote the reduction in the
immune response and tumor tolerance [132,133]. PD-L1, which is primarily expressed in
various immune cells such as dendritic cells and macrophages, interacts with PD-1 found
on activated T cells. This interaction subsequently downregulates T cell receptor activation
and serves as an immunoregulatory mechanism. However, certain tumor cells overexpress
PD-L1 to inhibit T cell activity, particularly in the presence of cytotoxic T-lymphocytes. This
leads to T cell exhaustion, preventing the elimination of tumor cells. Thus, the PD-1/PD-L1
interaction in the tumor infiltrate negatively regulates anti-tumor immune activity [134].

Immunotherapy with anti-PD-1 and anti-PD-L1 antibodies has been a highly success-
ful intervention for several types of cancer, including melanoma, renal, cervical, gastric,
breast and lung cancer, and it involves preventing the interaction between PD-1 and PD-L1
using antibody binding, blocking T cell suppression in solid tumors. These antibodies
can also lead to the elimination of tumor cells by activating NK cells. This immunomod-
ulation has opened up new perspectives for cancer treatment in the clinic, with some
antibodies already approved, such as durvalumab (anti-PD-L1), avelumab (anti-PD-L1),
and camrelizumab (anti-PD-1) [135]. Experiments have shown that anti-PD-L1 antibod-
ies are functionally more effective in blocking T cell inhibitory signaling than anti-PD-1
antibodies [136]. Phage Display is an important tool to provide potent antibodies against
the immune checkpoint molecules. Several anti-PD-1 and anti-PD-L1 antibodies were
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developed using Phage Display in different immunoglobulin structures, such as IgG1 and
IgG4 [137–139]. The anti-PD-L1 antibodies, atezolizumab and avelumab, approved for
urothelial carcinoma, were developed using naïve Phage Display libraries. Antibodies spe-
cific for other immune checkpoint molecules have also been studied, such as CTLA-4 [140]
and LAG-3 [141].

In addition to whole antibodies, anti-PD-L1 VHHs have been isolated from naïve or
immune llama Phage Display libraries [132,142]. The search for anti-PD-1/PD-L1 VHH is
supported by the better tissue penetration of this small molecule, which becomes interesting
for solid tumors where the diffusion of larger antibodies is limited. However, when
administered in humans, VHHs derived from camelids may pose challenges that require
further development to mitigate immunogenicity. To circumvent this problem, human
single-domain antibodies have been developed using methods that facilitate the generation
of specific variable domains with human sequences. For instance, synthetic Phage Display
libraries or transgenic mice have been employed to obtain these human-specific variable
single domains [143].

Another promising approach is multi-immunotherapy based on fusion proteins com-
posed of domains derived from several proteins with diverse immune activities. In this
direction, a fusion protein containing an anti-PD-L1 VHH (obtained using Phage Display),
an anti-CD16a VHH, and IL-15 showed higher anti-tumor activity in vitro and in vivo
comparable to the separate counterparts. The idea of this fusion protein is to block the
PD-L1/PD-1 pathway, thereby maintaining T cell activation, and to attract and activate NK
cells (CD16, IL-15) to induce cytotoxic activity [144].

Phage Display’s primary function in identifying specific targets and ligands goes
beyond aiding the development of various oncological immunotherapies. It also propels the
progress of diagnostic techniques and methods for monitoring patient responses throughout
and post-treatment. Staroverov et al. [145] developed Heat Shock Protein (HSP)-specific
antibodies using a human scFv phage library. Levels of HSPs in affected animals’ blood
sera were evaluated through immunoassays with recombinant Phage Display-derived
antibodies [145]. HSPs are produced in response to stressors such as heat and toxins. They
can be overexpressed in tumor cells due to increased stress during rapid growth, leading
to their release into circulation. Researchers explore their potential as cancer biomarkers
for diagnosis, prognosis, and treatment response monitoring [146]. Exosomes, small
extracellular vesicles that facilitate cell communication, are also investigated for diagnostic
methods. They are released by various cell types, including cancer cells, containing proteins,
lipids, and nucleic acids. Their presence in bodily fluids makes them candidates for liquid
biopsies—a less invasive approach compared to tissue biopsies. A recent proof-of-principle
study employed in vivo peptide Phage Display screening to identify markers in exosomes
linked to a multiple myeloma pre-clinical model [147].

5.3. Expanding the Application of Antibodies: Antibody Drug Conjugates (ADCs) and Chimeric
Antigen Receptors (CARs)

Two notable advancements in the field of mAb-based oncological treatment have
gained significant attention in recent years, fostering high expectations for the future. One
of these advancements involves the conjugation of antibodies to cytotoxic payloads, such
as highly potent drugs or radioisotopes. This enables the specific addressing of these
active molecules to act on the intended target [148,149]. Another advancement involves
therapies utilizing engineered cells that express a chimeric antigen receptor (CAR) on
their surface. This receptor consists of portions derived from various molecules, including
an extracellular portion derived from the variable regions of mAbs [150]. The chimeric
receptor enables the recognition of a specific antigen presented on the tumor cell surface,
directing CAR-harboring effector cells to the target [151].

In these approaches, similar to naked mAbs, the pursuit of efficient and specific
antibodies targeting unique or differentially expressed tumor antigens remains paramount.
However, in these cases, there is a need for more stringent considerations regarding the
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acceptable threshold for on-target off-tumor effects. The cytotoxic potential of these systems,
involving highly potent and non-specific payloads in the case of conjugates, is intentionally
designed to be more aggressive than that of naked mAbs [152]. In the context of the therapy
with CAR-expressing cells, the heightened cytotoxicity of activated effector cells could
lead to significant and long-term side effects associated with off-tumor toxicity, as they are
induced to proliferate, persist, and potentially generate memory cells [153–155].

5.3.1. Examples of Antibody Drug Conjugates (ADCs)

The efficacy and safety of antibody conjugates are strongly influenced by the con-
jugation strategy employed, which includes the choice of chemical groups involved in
the covalent linkage between the payloads and the antibody. The conjugation strategy
determines the payload-to-antibody stoichiometry and the degree of homogeneity within
the conjugate pool produced in each batch [156]. Depending on the number of loaded
molecules and their conjugation sites on the antibody, the system may exhibit variable
pharmacokinetic profiles, potentially impacting its stability and even affecting the kinetic
parameters of the antibody interaction with the antigen [157]. While all antibody drug
conjugates (ADCs) approved by the FDA to date use random conjugation methods based
either on thiol coupling to reduced cysteines or amine coupling to lysine residues exposed
on the the surface of the antibody, efforts are ongoing to advance new generations of
conjugates by focusing on site-specific conjugation strategies [158]. A commonly employed
method is the substitution of specific endogenous residues with cysteines, leveraging the
reactivity of their sulfhydryl groups while preserving the interchain disulfide bonds of
the antibody [159]. This approach allows for targeted modification or conjugation of the
antibody while maintaining its structural integrity. However, the criteria for determining an
ideal residue for substitution with a cysteine prone to conjugation are not fully established.

An interesting example of the use of Phage Display to identify protein residues
suitable for substitution with cysteines prone to conjugation was presented by Junutula
and co-workers at Genentech (2008). In their work, which introduces the method called
PHESELECTOR, a library of variants with different points of cysteine substitution in the
Fab fragment of trastuzumab (anti-HER2) displayed on phage was subjected to conjugation
with a thiol-reactive biotin payload. The library was subsequently selected using ELISA on
plates coated with streptavidin and HER2, in separate steps, to identify phages that were
successfully conjugated to the payload without losing the ability to bind to the antigen [160].
Based on insights into the optimal sites for the inclusion of conjugation-prone cysteines,
highly pure ADCs with a drug-to-antibody ratio of 2.0 were successfully generated via
site-directed mutagenesis. Genentech’s THIOMABs (the full mAbs generated using this
method) exhibited higher tolerance at significantly increased doses in animals and a slower
clearance rate from circulation in rats, compared to conventional ADCs [161]. Moreover,
the cysteine–maleimide linkage of THIOMAB displayed superior serum stability [162].
These studies demonstrated the feasibility and advantages of site-specific antibody–drug
conjugation, prompting a surge of activity in the development of site-specific ADCs.

The FDA-approved anti-CD22 Lumoxiti (moxetumumab pasudotox-tdfk) (Table 1)
is classified as an ADC. It comprises an engineered murine scFv genetically fused to a
modified Pseudomonas toxin. Using Phage Display, the CDRH3 of the original mAb was
enhanced in its affinity for CD22, resulting in a 14-fold increase [163]. CD22 is expressed on
the surface of various malignant B cells, including hairy cell leukemia (HCL), the current
approved use of Lumoxiti [164].

In the context of lung cancer (solid tumor), a conjugate consisting of a C4.4A-targeting
human antibody (lupartumab) developed via Phage Display from a human synthetic com-
binatorial library and a highly potent microtubule-disrupting drug (amadotin) has been
evaluated (NCT02134197) [165]. C4.4A (LYPD3) is overexpressed in non-small-cell lung
cancer (NSCLC) and is associated with a malignant phenotype and poor prognosis in
NSCLC [166]. Under normal conditions, C4.4A is primarily expressed in stratified squa-
mous epithelia. However, knock-out mice lacking C4.4A show no significant abnormalities,
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and their epidermal development is normal [167]. Developing a C4.4A-targeting ADC
represents a promising opportunity for the selective treatment of C4.4A-positive tumors.

5.3.2. Chimeric-Antigen-Receptor-Expressing Cells: Design and Targeting Strategies

CARs are synthetic molecules created by the genetic combination of a variety of func-
tional domains from different immune receptors. These engineered genes are then inserted
into effector cells, typically autologous T lymphocytes, which are modified outside the
body and reinfused into the patient to selectively redirect these effector cells to recognize
and attack tumor cells [168]. In addition to CAR-T cell therapy, which already includes six
FDA-approved products, all for hematological cancers, other effector cells such as natural
killer (NK) cells [169] and macrophages [170] have also been engineered with CARs and
tested in pre-clinical and clinical trials [171], expanding the potential applications of this
therapy. Regarding their structure, several combinations of intracellular, transmembrane,
and extracellular domains from different sources have been extensively explored to con-
struct improved CARs. This design and redesign process is crucial as each component
can potentially affect the performance of the therapy, either independently or synergi-
cally [172]. Crucial steps include the appropriate selection of the extracellular domain
responsible for specificity, typically an scFv, as well as the intracellular domains responsible
for intracellular signaling that triggers activation upon antigen encounter on the target
cell surface, regardless of its presentation via MHC. Similar to the natural activation of T
cells, CAR-T cells also rely on the integration of multiple stimulatory signals [173]. This
process is initiated through the CD3 protein, an essential accessory component of the TCR
complex. The CD3ζ chain acts as the main intracellular signaling domain in these receptors.
Furthermore, basic costimulatory proteins are required for proper cell activation in the
natural context and have been incorporated into CARs through improved generations of
these molecules [174], which will be discussed later in this section.

Despite the high efficacy demonstrated in hematological tumors, therapy with CAR-
expressing cells still faces several challenges in its application to treat solid tumors [175].
One challenge is the infeasibility of completely depleting cells expressing the target antigen,
as solid-tumor-associated antigens are often found in healthy cells of vital tissues. However,
several proteins overexpressed in tumor cells have been tested as targets for CAR cell
therapy [175], including mesothelin (MSLN), a membrane glycoprotein expressed in normal
mesothelial tissues but highly expressed in various malignancies, such as non-small-cell
lung cancer (NSCLC) and ovarian cancer. MSLN has been investigated as a target for
CAR-T cells in treating solid tumors, including mesothelioma, lung, breast, and pancreatic
cancer [175,176]. Recently, Chen et al. [177] selected a human anti-MSLN scFv using Phage
Display, which was subsequently used to construct a second-generation CAR. The phage-
derived anti-MSLN CAR-T cells demonstrated in vitro efficacy against ovarian tumor cell
lines and in vivo effectiveness against ovarian cancer cell-derived xenografts. Preliminary
clinical trials using the novel anti-MSLN CAR-T cell therapy in autologous T cells from
three patients with chemotherapy-refractory metastatic ovarian cancer showed promising
results, indicating its potential as an immunotherapeutic approach for advanced ovarian
cancer [177].

Rhabdomyosarcoma (RMS) is a common soft tissue tumor in children, traditionally
treated with a highly toxic chemotherapy regimen, which has shown limited efficacy in
improving the survival of patients with metastatic or relapsed RMS [178]. Despite the
high immunologic escape capacity observed in some forms of pediatric RMS, immune
checkpoint blockade has not been proven to be an effective strategy, a characteristic shared
with other low-mutation-rate pediatric tumors [179]. The immunosuppressive microen-
vironment, characterized by a collagen-rich stroma, has been attributed to the activity of
myeloid cells in response to T cell activity in the tumor. Despite the limited availability of
neoantigens in RMS, the upregulation of fibroblast growth factor receptor 4 (FGFR4) in
these tumors has identified it as a potential target for new-generation immunotherapies as
an alternative to highly toxic conventional chemotherapy [180]. In this context, Sullivan
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et al. [180] reported the construction of CARs targeting FGFR4 developed by using human
Fab and VH libraries to select anti-FGFR4 fragments via Phage Display. The inefficiency of
T cells engineered with CARs containing previously selected scFvs against the full-length
protein led the group to improve the biopanning strategy by including selection rounds
using only the FGFR4 domain closest to the cell membrane, which likely enhances the
performance of CAR-T cells even against tumor cells with low target molecule density.
With the new construct, the anti-FGFR4 CAR-T cells combined with a multi-drug approach
targeting the myeloid cells responsible for the immunosuppressive microenvironment
showed high tumor elimination capacity in orthotopic mouse models [180].

Another challenge in CAR-T cell immunotherapy is the use of these engineered cells
against T cell tumors, as both cell types share a similar molecular phenotype. An alternative
is the use of intracellular antibodies, which can be selected using Phage Display, in T cells
in addition to the CAR gene modification, to block the expression of target molecules in
the effector cell. Thus, CAR-T cells can act against tumor T cells by specifically binding the
chimeric receptor, without the effects of self-damage [181].

The impact of the antibody-derived segments of CARs, including factors such as
immunogenicity and affinity, is still under ongoing research. Studies suggest that scFvs with
moderate affinity can enhance CAR-T cell performance in certain contexts. Furthermore,
immunogenicity resulting from the murine origin of scFvs in approved CARs has also
been investigated [182,183]. Phage Display offers means to search for scFvs with advanced
properties in all these contexts, as well as to identify new targets and epitopes.

Many advanced improvements have been made in CAR signaling domains, leading
to the emergence of different CAR generations. First-generation CARs, which contain
an intracellular CD3ζ chain, activate T cells but exhibit limited proliferative activity and
cytotoxicity. Second-generation CARs, incorporating an additional costimulatory molecule
(CD28, 4-1BB, or OX40), exhibit enhanced proliferation, cytokine release, durability, and
stability [172–174]. Further generations involve the combined expression of other effector
molecules, such as cytokines and mAbs, by CAR-expressing cells [184]. For instance, CAR-T
cells against carbonic anhydrase (an enzyme that is overexpressed in many hypoxic solid
tumors) were engineered to secrete anti-PD-L1 antibodies, and these modified CAR-T cells
showed lower expression of exhaustion molecules (PD-1, TIM-3, and LAG3) after contact
with tumor cells, compared to the conventional anti-carbonic anhydrase CAR-T cells. The
anti-PD-L1 antibody-secreting CAR-T cells also conferred greater protection against renal
carcinoma in murine models, and the secretion of the antibody led to greater recruitment
of NK cells to the tumor [134].

6. Conclusions

Recent advances in cancer therapy have been boosted by the application of antibodies
derived from Phage Display libraries. The importance of this approach has been recognized
by the scientific community through the 2018 Nobel Prize in Chemistry “for the Phage Dis-
play of peptides and antibodies”, awarded to George P. Smith and Gregory P. Winter. This
methodology involves biopanning of specific antibodies that can bind to different targets,
such as cancer cell markers, with remarkable specificity and affinity. The potential to screen
extensive libraries of phage-displayed antibodies, along with numerous available selection
approaches, underscores the increasing promise of utilizing phage-derived antibodies as
a highly favorable resource for advancing therapeutic product development focused on
cancer-specific antibody treatments. Despite being almost 40 years old and amidst the
ongoing methodological progress in target and ligand discovery, Phage Display technology
remains a crucial tool in various cutting-edge research fronts, being part of the horizon of
perspectives and innovations in oncology.
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